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Abstract
Tumor microenvironment (TME) cells are important elements in tumor tissue. There is increasing evidence that they have
important clinical pathological significance in predicting tumor clinical outcomes and therapeutic effects. However, no system-
atic analysis of TME cell interactions in glioblastoma (GBM) has been reported. We systematically analyzed the transcriptional
sequencing data of GBM to find an immune gene marker to predict the clinical results of GBM. First, we downloaded the
expression profiles and clinical follow-up information of GBM from The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO). CIBERSORTwas used to evaluate the infiltrationmode of TME in 757 patients, systematically correlated TME
phenotype with genomic characteristics and clinicopathological characteristics of GBM, defined four TME phenotypes, and
TMEScore was constructed using algorithms such as random forest and principal component analysis. There is a significant
correlation between TMEScore and age of onset. High TMEScore samples are characterized by immune activation, TGF
pathway activation, and high expression of immune checkpoint genes, while low TMEScore samples are characterized by
high-frequency IDH1 and MET mutations. Therefore, a comprehensive landscape depicting the TME characteristics of GBM
may help explain GBM’s response to immunotherapy and provide new strategies for cancer treatment. In this study, TMEScore
can be used as a new prognostic marker to predict the survival of GBM patients, and as a potential predictor of immune
checkpoint inhibitor response.

Keywords Tumormicroenvironment . Immunity . TMEScore . TCGA

Introduction

Glioblastoma (GBM) is the most common highly degenerative
primary intracranial tumor in adults, accounting for 14.9% of all

primary and central nervous system (CNS) tumors, 47.1% of
malignant primary and central nervous systems tumors, and
56.1% of all gliomas (Thakkar et al. 2014). The prognosis of
GBM is poor, and the relative survival rate is low, and only
5.5% of patients aged 55–64 survive for 5 years (Ostrom et al.
2017); the median survival time was only 3 months without
treatment, and the median survival time after standard treatment
was only 15 months (Malmstrom et al. 2012). GBM typically
has the ability to severely invade and permeate normal sur-
rounding tissue throughout the brain, including areas that con-
trol speech andmotor function, making it impossible to perform
a full resection. Infiltrating tumor cells are always retained in
the surrounding brain and contribute to disease progression or
recurrence. Tumors smaller than 5–6 cm and those that do not
cross the mid-line, and supratentorial (cerebrum) and cerebellar
tumors (persuadable to surgical resection) have been associated
with favorable outcomes (Ellor et al. 2014; Walid 2008).
Current standard therapy for GBMs encompasses maximally
secured surgical resection followed by concomitant RT and
TMZ chemotherapy (Stupp et al. 2009; Van Meir et al. 2010).
Given the poor prognosis after standard treatment and the low
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level of targeted therapies in GBM, immunotherapy is a prom-
ising additional approach (Couzin-Frankel 2013; Farkona et al.
2016) and is currently undergoing intensive research. At the
same time, several immune-related parameters have been re-
ported for predicting the prognosis of patients with GBM
(Cheng et al. 2016; Luoto et al. 2018; Mohme et al. 2018),
further indicating that different immune status has a significant
impact on the prognosis of GBM patients. Therefore, there is a
need to systematically study the immunophenotype in the
GBM microenvironment to better understand complex anti-
tumor responses and to guide effective immunotherapy in
GBM.

Different tumor microenvironments (TMEs) are formed in
different stages of tumor development, and have multiple ca-
pabilities to induce adverse and beneficial consequences of
tumorigenesis; immune cells can be activated to promote tu-
mor growth and progression, most likely to be affected by the
tumor microenvironment (Kim and Bae 2016). More and
more research shows that TME plays a vital role in cancer
progression and therapeutic response (Jiang et al. 2018;
Zeng et al. 2018). For example, differences in the composi-
tions of resident cell types within the TME, including cyto-
toxic T cells, helper T cells, dendritic cells (DCs), tumor-
associated macrophages, mesenchymal stem cells, and asso-
ciated inflammatory pathways, have been reported in patients
with cancer (Fridman et al. 2017; Kalluri 2016; Mantovani
et al. 2017; Turley et al. 2015). FOXP3 expression is impor-
tant in GBM patient overall survival (Li et al. 2019). Piperi
et al. reported that STAT3 impairs anti-tumor immunity
(Piperi et al. 2019). At diagnosis, TME may reflect immune
responses and chemotherapy benefits (Rosenberg et al. 2016),
and the changes in the number of infiltrating CD8+ T cells,
CD4+ T cells, macrophages, and fibroblasts in TME are asso-
ciated with clinical and prognosis of various malignancies
(Lee et al. 2014; Mariathasan et al. 2018; Nishino et al.
2017; Turley et al. 2015). There are several algorithms that
can estimate the abundance of immune cells and other cells in
TME(Becht et al. 2016; Newman et al. 2015; Yoshihara et al.
2013), although some studies have used these methods to
explore the relationship between TME infiltration and clinical
outcomes of tumors (Fu et al. 2018; Zeng et al. 2019), the
comprehensive landscape infiltrated by TME has not been
discussed in GBM so far.

In this study, based on clinical annotated GBM gene ex-
pression profile, computational algorithms were used to esti-
mate the proportion of 22 immune cell types and cancer-
related fibroblasts. We assessed the TME infiltration patterns
from 757 GBM patients, and systematically correlated TME
phenotypes with the genomic and clinicopathological charac-
teristics of GBM. Therefore, we established a method to quan-
tify the penetration pattern of TME (TMEScore). TMEScore
was found to be a powerful prognostic biomarker and predic-
tor of response to immunocheckpoint inhibitors.

Materials and Method

Data Collection and Processing

The expression data of TCGA-GBM’s Affymetrix HT Human
Genome U133a microarray platform were download from the
UCSC Xena database, containing a total of 539 samples
12,043 gene expression profiles at May 5, 2019, and the prog-
nostic information of these samples at the same time was
download, no clinical data and follow-up time is less than
30 days samples were removed, and the final study included
500 GBM samples as training sets. Similarly, a set of chip
dataset GSE13041(Lee et al. 2008) were download from the
Gene Expression Omnibus (GEO) database, which integrates
Affymetrix Human Genome U133A Array, Affymetrix
Human Genome U133 Plus 2.0 Array, and Affymetrix
Human Genome U95 Version 2 Array. A total of 267 GBM
samples of expression data and clinical follow-up information,
removal of follow-up time of less than 30 days, and finally
included 257 cases as test sets. The sample statistics of the two
sets of data are shown in Table 1. For the probe data, we used
the R software package hgu133plus2.db to map the probe to
GeneSymbol. Multiple probes correspond to the median ex-
pression of a gene, and probes that match multiple genes are
removed.

Infiltrating Cell Score in TME

CIBERSORT is a deconvolution algorithm that uses a set of
reference gene-expression values (a signature with 547 genes)
considered a minimal representation for each cell type and,
based on those values, infers cell type proportions in data from
bulk tumor samples with mixed cell types using support vec-
tor regression. CIBERSORT is able to identify 22 kinds of
human immune cells according to the gene expression data
with high specificity and sensitivity, including B cells, T cells,
NK cells, macrophages, DCs, and myeloid subset cells. In
order to quantify the proportion of immune cells in GBM
samples, CIBERSORT algorithm (Newman et al. 2015) was
used to calculate the scores of 22 immune cells in TCGA-
GBM and GSE13041 data sets with LM22 gene signature as
the reference. Specifically, gene expression data were
uploaded to the CIBERSORT website (http://cibersort.
stanford.edu/), and scores of 22 immune cells were obtained
using LM22 signature and 1000 permutation.

Consensus Clustering to Obtain Molecular Subtypes
Associated with TME-Infiltrating Cells

Consensus c lus te r ing was per fo rmed us ing the
ConcensusClusterPlus (Sorlie et al. 2001) package in R to
determine subgroups of GBM based on the TME-infiltrating
cells. As Zhang et al.(Zhang et al. 2018) evaluated the optimal
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number of clusters between k = 2–10, repeated 1000 times to
ensure the stability of the results, and used the R software
package pheatmap for visualization.

Differentially Expressed Genes Associated
with the TME Phenotype

To identify genes associated with TME cell-infiltrating pat-
terns, the linear model was used to analyze the gene expres-
sion differences among phenotypic-related TME subgroups.
Specifically, the R software package limma (Ritchie et al.
2015) was used to calculate the differential genes, and FDR
< 0.05 was selected. In order to include more candidate genes,
Foldchange was not restricted.

TME Phenotype-Related Differential Gene
Re-Clustering

Nonnegative matrix factorization (NMF) is an unsupervised
clustering method that is widely used in the discovery of tu-
mor molecular subtypes based on genomics (Mirzal 2014; Yu
et al. 2018). In order to further observe the relationship be-
tween the expression and phenotypes of TME phenotype-
related difference genes, we used NMF method to re-cluster
samples based on the expression profile of TME phenotype-
related difference genes, and analyzed the clinical characteris-
tics of the samples after re-clustering. The NMF method se-
lects the standard “brunet” and performs 50 iterations. The
number of clusters k is set to 2 to 10, and the average profile
width of the commonmember matrix is calculated using the R
package NMF(Ye et al. 2019), and the minimum member of
each subclass is set to 10.

Dimension Reduction and Generation of TME Gene
Signatures

In order to obtain a robust TME gene signatures, the prognos-
tic value of each differentially expressed genes (DEG) were
predicted, genes with prominent prognosis were selected, and
the importance of these DEGs were evaluated by random for-
est algorithm. Specifically, the copth function of survival of R
software package was used for univariate survival analysis,
and the selection threshold was 0.05, and the genes with sig-
nificant prognosis were included for randomForest feature
selection using randomForest of R software package, andmtry
of each segmentation set as 1–165 and ntree = 500, and the
mtry value with the lowest error rate was selected as the opti-
mal mtry value of the randomForest algorithm. Then ntree =
100 was selected according to the error rate of random forest.
Finally, each DEG was ranked according to its importance,
and 95% DEGs with cumulative importance > 95% were se-
lected as candidate feature genes. k-means(Boillaud and
Molina 2015) was used to divide these genes into five cate-
gories. Psych R package was used for principal component
analysis of the expression profiles of 5 categories of genes,
and the first principal component was extracted as signature
score after 100 iterations. This approach has the advantage of
focusing the score on the set with the largest block of well-
correlated (or anticorrelated) genes in the set, while
downweighting contributions from genes that do not track
with other set members. For gene type j, signature score for-
mula of samples is as follows:

S j ¼ ∑
i¼1

n j

Pc1i*Expi

j represents the jth class of the five types of genes,
wherein nj represents the number of genes of the jth gene,

Table 1 Sample information of TCGA-GBM and GSE13041

Clinical features TCGA GSE13041

Event

Alive 71 21

Dead 429 236

Platform

GPL570 0 23

GPL8300 0 47

GPL96 500 187

New event type

Unknown 153 257

LD 9 0

PD 227 0

RC 102 0

Age

0~30 23 36

30~40 35 22

40~50 71 63

50~60 137 67

60~70 132 37

70~100 102 32

Gender

Female 195 88

Male 305 142

Neoadjuvant

No 479 0

Yes 21 0

Unknown 0 257

HC class distribution

Mes 0 96

PN 0 76

Pro 0 58

ProMes 0 27

Unknown 500 0

J Mol Neurosci (2020) 70:738–750740
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Fig. 1 a Correlation of 22 immune cells in TME, among which the dot
size and color represented correlation, blue represented negative
correlation, red represented positive correlation, and the white
represented non-significant. b A forest map of 22 immune cells in

TME. c Heat map of the scores of 22 immune cells in TME, the higher
the red, the lower the blue. d Distribution box map of 22 immune cell
scores in four types of TMEC, red * indicates significant difference. eOS
prognosis KM curves of four TMEC groups
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Pc1i represents the first principal component coefficient of the
ith gene of the jth gene, and Expi indicates the first the ith gene
expression level of the j-type gene.

Finally, the risk coefficient of each signature score is ob-
tained by using the signature score of the five genes in each
sample through multivariate regression. For any sample, the
TMEScore formula is as follows:

TMEScore ¼ ∑
5

j¼1
S j*β j

where j represents the jth class of the five classes of genes,
Sj represents the signature score of the class j gene of the
sample, and βj represents the risk regression coefficient of
the signature score of the class j gene.

Relationship Between TMEScore and Clinical Features

To observe the relationship between TMEScore and clinical
phenotype, the samples were divided into two groups based
on the median TMEScore of the samples, which compared the
prognostic differences between high TMEScore and low
TMEScore, respectively. Similarly, the relationship between
high and low TMEScore and age and gender is analyzed.

Relationship Between TMEScore and Immune-Related
Gene Expression

In order to observe the relationship between TMEScore and
immune-related genes, three types of immune-related geneswere
first collected: (1) immune activation genes CXCL10, CXCL9,
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GZMA, GZMB, PRF1, IFNG, TBX2, TNF (where CD8Awas
not detected in TCGA-GBM data); (2) immunological check-
point genes PDCD1, CTLA4, LAG3, PDCD1LG2 (IDO1,
CD274, HAVCR2 are not detected in TCGA-GBM data); and
(3) TGF/EMT pathway genes VIM, ACTA2, COL4A1,
TGFBR2, ZEB1, CLDN3, SMAD9, TWIST1. The expression
profiles of these genes were extracted to further analyze the dif-
ferential expression of these three types of genes in high
TMEScore and low TMEScore.

Relationship Between TMEScore and Tumor Genomic
Variation

To observe differences in genomic variation between high
TMEScore and low TMEScore samples, we downloaded SNP
data from TCGA, removed intron and silent mutations, and used
Fisher’s exact test to analyze the difference in the mutations
between the two samples, selected the threshold p < 0.05.

Statistical Analysis

The normality of the variables was tested by the Shapiro-Wilk
normality test (Ghasemi and Zahediasl 2012), unless otherwise
specified. For the comparison of the two groups, the statistical
significance of the normal distribution variables was estimated
by the unpaired Student t test, and the non-normal distribution
variables were analyzed by the Mann-Whitney U test. For com-
parisons between the two groups, the Kruskal-Wallis test and the
one-way ANOVA were used as non-parametric and parametric
methods, respectively (Hazra and Gogtay 2016). Correlation co-
efficients were calculated by Spearman and distance correlation
analysis. The two-sided Fisher’s exact test was used to analyze the
contingency table, and we used the Benjamini-Hochberg method
to convert the p value to FDR. The Kaplan-Meier method was
used to generate survival curves for the subgroups in each data set,
and the log rank test was used to determine the statistical signifi-
cance of the differences, with significance being defined as
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Fig. 2 aVenn diagram of differentially expressed genes between TMEC3
(C3), TMEC2 (C2), and TMEC4 (C4). b Heatmap of NMF algorithm
consistency matrix. c Prognosis KM curve of GeneC1 and GeneC1. d

The scores of 22 immune cells were shown in the boxplot of GeneC1 and
GeneC1 samples
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p< 0.05. All of these analyses were performed in R 3.4.3, and all
analyseswere based on default parameters unless otherwise stated.

Results

TME Landscape in GBM

CIBERSORTwas used to calculate 22 immune cell scores in
the training set, and the correlation was analyzed between

these scores. They were mainly divided into three categories,
two with positive correlation and one with negative correla-
tion (Fig. 1a); this suggests that there may be some specific
communicationmode between immune cells. The relationship
between these 22 immune cell scores and prognosis were an-
alyzed by Univariate cox, and found that neutrophils scores
were associated with poor prognosis (log rank p < 0.05), while
T cells CD8 scores were associated with better prognosis (log
rank p < 0.05) (Fig. 1b). The scores of the top 4 immune cells
with the highest prognostic value were selected for consistent
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cluster analysis, and k = 4 was selected as the optimal number
of clusters (Fig. S1). The four categories of TME scores are
defined as TMEC1-TMEC4, and they have different patterns
in 22 scores (Fig. 1c). Among them, we analyzed the distri-
bution differences of these 22 kinds of scores in four types of
samples, 14 of which (63.6%) had significant differences
(Fig. 1d). Further analysis of the prognostic differences among
the four samples showed no significant prognostic differences
in their overall survival (Fig. 1e), but there are significant
differences in the local (TMC3 vs. TMEC2, log rank p =
0.03, Fig. S2). Similarly, we also get the optimal clustering
results of four categories in the test set (Fig. S3). There were
no significant differences in the overall survival of the four
types of samples in the test set (Fig. S4A), But it is worth
mentioning that these four types of samples overlap signifi-
cantly with Phillips and colleagues suggested the following
terms to be more descriptive of the cellular characteristics:
“ProNeural” (PN) for HC1A, “Proliferative” (Pro) for
HC2A, and “Mesenchymal” (Mes) for HC2B (Phillips et al.
2006) (Fig. S4B). Fourteen (63.6%) of the 22 scores in the
four categories of PN, Pro, Mes, and ProMes have significant
distribution differences (Fig. S4C). In short, TME score may
be closely related to the occurrence and development of GBM.

Differential Expression of Genes Between TMEC

The differences in gene expression between those with the
best prognosis (TMEC3) and those with the worst prognosis
(TMEC2 and TMEC4) were analyzed in the training set.
There were 599 DEGs in TMEC3-vs-TMEC2 and 2085
DEGs in TMEC4-vs-TMEC3, and 333 genes in the intersec-
tion of them were selected (Fig. 2a), Based on the 333 gene
expression profile, TFGA samples were re-clustered using
NMF to obtain stable class 2 samples, which were defined
as GeneC1, GeneC2, respectively (Fig. 2b), There were

significant prognostic differences between GeneC1 and
GeneC2 in overall survival (Fig. 2c). The distribution of
GeneC1 and GeneC1 in 22 immune cell scores was compared,
and there were significant differences between GeneC1 and
GeneC1 in various TME (Fig. 2d), For example, GeneC1with
a good prognosis obtained significantly higher scores in T cell
CD8 and T cell infertile helper than GeneC2.

Construction of the TME Signature

We first evaluated the correlation between 333 genes and prog-
nosis, among which 166 genes (49.8%) were significantly cor-
related with prognosis. The expression profiles of these 166
genes were used for random forest dimension reduction analy-
sis, and ntree = 100 was selected according to the error rate of
random forest (Fig. S5A). A total of 65 candidate genes were
identified by selecting DEGs with cumulative importance >
95% (Fig. S5 BC). These 65 genes are mainly enriched in the
immune-related GO Term and KEGG Pathway (Fig. 3a, b) and
were clustered by k-means algorithm; the optimal number of
clusters is 5 (Fig. 3c), defined as signature G1, signature G2,
signature G3, signature G4, and signature G5, which contains
10, 19, 9, 22, and 5 genes, respectively, which have different
patterns in each sample (Fig. 3d). As described in the
“Methods” section, TMEScore is built to calculate the
TMEScore for each sample in the training set as S1.txt.
According to TMEScore, the samples were divided into Risk-
H (high TMEScore) and Risk-L(low TMEScore) groups, and
the relationship between the expression of 65 genes and Risk-H
and Risk-L was shown in Fig. 3e, The five types of genes have
different expression patterns in each sample, and their expres-
sions are also different in the Risk-H and Risk-L groups.
Among them, the samples of GeneC1 are mainly concentrated
in the Risk-L group, while the samples of GeneC2 are mainly
concentrated in the Risk-H group (Fig. 3f, g). Further analysis
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of the prognostic differences between Risk-H and Risk-L, as
expected, the prognosis of the Risk-H group was significantly
worse than that of the Risk-L group (Fig. 3h).

Clinical and Transcriptome Characteristics
of TMEScore

The relationship between TMEScore and age and gender were
evaluated, and the results showed that there was a significant
difference in the TMEScore of the age group sample (Fig. 4a),
while no such significant difference was observed in gender
group sample (Fig. 4b). To investigate the relationship be-
tween different TME and immune status, the relationship be-
tween the expression of immune activation genes (CXCL10,
CXCL9, GZMA, GZMB, PRF1, IFNG, TBX2, TNF) and
TMEC, GeneC, and TMEScore were analyzed. There were
different expression patterns in different GeneC, TMEScore,
and TMEC (Fig. 4c), and the expression level of Risk-H sam-
ples with poor prognosis such as CXCL10, CXCL9, and
GZMB is significantly higher than that of prognosis (Fig.
S6A). The relationship between the expression of immune
checkpoint genes (PDCD1, CTLA4, LAG3, PDCD1LG2)
and TMEC, GeneC, and TMEScore was analyzed (Fig. 4d);
although the expression level was not high, there were differ-
ent expression trends in different GeneC, TMEScore, and
TMEC. PDCD1LG2 (PD-L2) was significantly higher in
Risk-H than that in Risk-L group (Fig. S6B). Through analyz-
ing the expression levels of TGF/EMT pathway genes VIM,
ACTA2, COL4A1, TGFBR2, ZEB1, CLDN3, SMAD9, and
TWIST1 in TMEC, GeneC, and TMEScore, we can see that
there are also different expression patterns in different GeneC,
TMEScore, and TMEC (Fig. 4e); among them, the expression
of ZEB1 was significantly lower in Risk-L than that in Risk-
H, and the expression of other genes was significantly higher
in Risk-H group than that in Risk-L (Fig. S6C). In addition,
we also found the same phenomenon in the verification data
set (Fig. S7). All in all, different TMEScore is closely corre-
lated to the expression of immune genes.

TME Characteristics of Cancer Somatic Genomes

In order to observe the relationship between the distribution of
somatic mutations and TMEScore, 35 genes with significant
difference in mutation frequency in samples of Risk-H and
Risk-L were finally identified by analyzing the mutation anno-
tation files of TCGA-GBM cohort using Fisher’s exact test
(Fig. 5). Previous studies have reported links between genetic
mutations and immune checkpoint blocking responses or resis-
tance (Burr et al. 2017; George et al. 2017); however, few
studies have been conducted in GBM. The mutation frequency
of IDH1,MET, and other genes in Risk-L is significantly higher
than that in Risk-H, while EGFR shows an opposite trend.
These data can provide a new perspective for the study of the

formation mechanism of TME, and explore individual muta-
tions and their role in cancer immunity and immunotherapy.

Discussion

Recently, tumor immunotherapy has achieved remarkable
success in the treatment of advanced tumors (Maccio and
Madeddu 2012; Sharma et al. 2011). A comprehensive under-
standing of GBM not only needs to focus on tumor cells but
also on the tumor microenvironment (Leonardi et al. 2012;
Yarchoan et al. 2017), which contains a variety of cell popu-
lations that interact with cancer cells and participate in various
stages of tumorigenesis. Tumor-invasive immune cells and
immune response in tumor microenvironment have attracted
great attention of researchers and become promising therapeu-
tic targets. Further research into how immune characteristics
are associated with the development and progression of GBM
can assist in the development of new and specific targeted
therapeutic strategies, especially in the setting of combination
therapies. In this study, the TME landscape in GBM was sys-
tematically analyzed. Among the 22 kinds of immune cells,
many of them are related to the poor prognosis of GBM, and
they have the potential of molecular stratification of GBM,
which indicates that different immune characteristics of
GBM in different tumor stages.

Therapeutic antibodies that block the PD-1/PD-L1 path-
way induce a robust and long-lasting response in patients with
a variety of cancers, including GBM (Hardcastle et al. 2017);
however, these responses occur only in a small number of
patients, and some studies have found that PD-1 expression,
PD-L1 expression, MSI status, and mutation load are not ef-
fective biomarkers for predicting the benefit of immune
checkpoint blockade. (Roh et al. 2017). Therefore, it is impor-
tant to develop biomarkers that predict the benefits of check-
point immunotherapy, and the latest data supports the notion
that TME plays a key role in checkpoint inhibitor immuno-
therapy (Cristescu et al. 2018). Here, we have elucidated the
comprehensive landscape of the interaction between GBM
clinical characteristics and infiltrating TME cells, and with
the help of several computational algorithms, we have
established a method to quantify the infiltrating mode of
TME–TMEScore.

Comprehensive analysis shows that TMEScore is a prog-
nostic biomarker of GBM, and high TMEScore is correlated
with poor prognostic results. Age is a key prognostic factor in
GBM (Lee et al. 2008); as expected, there is a significant
association between TMEScore and the age of the patient.
The immunological activation genes such as CXCL10,
CXCL9, GZMB, and immunological checkpoint genes such
as PDCD1LG2 are highly expressed in high TMEScore, sug-
gesting the potential of TMEScore as a marker for the benefit
of immunological checkpoints. The significantly high
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expression of TGF pathway genes in high TMEScore indi-
cates that TGF activation may result in a faster metastasis of
GBM leading to poor clinical outcomes. IDH mutation is one
of the causes of GBM (Cohen et al. 2013) and plays an im-
portant role in clinical treatment and prognosis. IDH1 muta-
tion frequency in high TMEScore samples is significantly
lower than that in low TMEScore samples, while EGFR gene
shows an opposite trend. These data can provide a new per-
spective for studying the mechanism of TME formation and
explore individual mutations and their role in GBM immunity
and immunotherapy.

Although we use bioinformatics techniques to identify po-
tential candidate immune gene markers involved in the devel-
opment of GBM in large samples, further validation should be
performed in a prospective cohort of immunotherapy to more
fully define the cutoff values to be used. Second, given the
heterogeneity of different tumor regions, it is appropriate to
systematically assess immune infiltration at the tumor core
and invading limbic areas, since not all patients with high
TMEScore have greater immunotherapeutic benefits, and
therefore more clinical factors should be included in the pre-
diction model to improve accuracy. Finally, the results obtain-
ed by bioinformatics analysis alone are not sufficient, and
experimental verification is needed to confirm these results.
Therefore, further genetic and experimental studies with larger
sample size and experimental verification are needed.

In summary, in this study, we systematically evaluated the
TME infiltration pattern from 757 GBM patients and devel-
oped a TME infiltration model approach. The TME score was
found to be a powerful prognostic biomarker and predictor for
immune checkpoint inhibitor responses.
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