Associations Between Two Single-Nucleotide Polymorphisms in *NINJ2* Gene and Risk of Psychiatric Disorders

Arezou Sayad¹ · Soudeh Ghafouri-Fard¹ · Mir Davood Omrani¹ · Mohammad Taheri²

Received: 12 October 2019 / Accepted: 4 December 2019 / Published online: 23 December 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

NINJ2 encodes a transmembrane protein that contributes in neurodevelopment and regeneration of neurons. Single-nucleotide polymorphisms (SNPs) within this gene have been associated with Alzheimer's disease, ischemic stroke, and multiple sclerosis. The rs11833579 and rs3809263 SNPs have been associated with risk of ischemic stroke in Iranian population. While the *NINJ2* rs12425791 has been with risk of ischemic stroke in East Asian population, the rs11833579 has not been associated with this condition either in East Asian population or Chinese Han population. In the current project, we genotyped rs11833579 and rs3809263 in a large cohort of neuropsychiatric patients including major depressive disorder, bipolar disorder, schizophrenia, and methamphetamine addiction. No significant difference was detected in frequencies of alleles, genotypes, or haplotypes between patients and controls. Thus, the current investigation failed to show association between rs11833579 and rs3809263 and the mentioned neuropsychiatric disorders. Future studies are needed to verify our results.

Keywords NINJ2 · rs11833579 · rs3809263 · Substance abuse · Bipolar disorder · Major depressive disorder · Schizophrenia

Introduction

Based on the reports of the World Health Organization, neuropsychiatric disorders and substance use are among the leading causes of global disability-adjusted life years (Whiteford et al. 2013). Both single-gene association studies and genomewide association studies have shown several genomic loci for these conditions (Treutlein and Rietschel 2011; Jensen 2016; Corvin et al. 2012). However, the data provided by these studies are not conclusive. Thus, assessments of the associations in other populations and functional studies are needed to elaborate the mechanisms of neuropsychiatric disorders and substance abuse.

Arezou Sayad and Soudeh Ghafouri-Fard contributed equally to this work.

Mir Davood Omrani davood_omrani@yahoo.co.uk

Mohammad Taheri mohammad_823@yahoo.com

¹ Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran

² Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

NINJ2 encodes a transmembrane protein that contributes in the interactions between cells as well as interaction between cells and the extracellular matrix. These interactions have crucial roles in different phases of neurodevelopment and regeneration of neurons (Seilheimer and Schachner 1988; Araki and Milbrandt 2000). Expression of this protein has been detected in brain radial glial cell and lymphocytes. Notably, nerve injury has resulted in overexpression of the protein which finally leads to neurite outgrowth (Seilheimer and Schachner 1988). Single-nucleotide polymorphisms (SNPs) within this gene have been associated with decreased risk of Alzheimer's disease (Lin et al. 2011). Moreover, the rs11833579 and rs3809263 NINJ2 SNPs have been associated with risk of ischemic stroke in Iranian population (Malekzadeh et al. 2019). Furthermore, the rs3809263 has been associated with risk of multiple sclerosis in the same population (Noroozi et al. 2019). While the *NINJ2* rs12425791 has been with risk of ischemic stroke in East Asian population, the rs11833579 has not been associated with this condition either in East Asian population or Chinese Han population (Li et al. 2012).

Check for updates

In the present project, we aimed to assess the association between two *NINJ2* SNPs (rs11833579 and rs3809263) and risk of neuropsychiatric disorders in Iranian population. The rs11833579 changes Hand1 and Pou3f2 motifs, while the rs3809263 alters Eomes motif. In addition, there are some evidences associating both SNPs with expression quantitative T.L.L. 4

The abare stariation of the colored CNDs

	characteristics of the set	ected SNPs			
SNP	Position	Minor allele	Minor allele frequency	Minor allele count	Туре
rs11833579	Chr 12:666033	А	0.2971	1488	_
rs3809263	Chr 12:664290	Т	0.3157	1581	upstream_transcript_ variant

 Table 2
 Features of primer pairs and PCR protocol (F, forward; R, reverse; i, inner; o, outer)

Gene name	SNP number	Primer position	Primer sequence	Annealing temperature	Band	Size
NINJ2	rs11833579	Fo Ro	AATTTTTTTTTTAATTGAGCTAGATGTGGC ATATTCGAGTACTGTTCTCTTTTTGCATT	50.1	Outer	351
		Fi (A)	CTTTCTGGAAAACCTTAATTCGGCTA		Fi (A)	170
		Ri (G)	GGATAAATAGTTAATATGTTGCTTCTTGC		Ri (G)	236
	rs3809263	Fo Ro	GACTAAAATATGGCACCCATCCTATCATC ATGGAGCATGGAGTAGTTGTACCTTCGA	52.7	Outer	437
		Fi (G)	CTTCAAGCCCTGAATTGGATTACTGG		Fi (G)	262
		Ri (A)	GTAGACGTGCTTGGCAGAGTGTTCAT		Ri (A)	227

trait loci (eQTL) (Ward and Kellis 2012). So, we genotyped these SNPs in a population of patients with different conditions including major depressive disorder (MDD), bipolar disorder types 1 and 2 (BP I and BP II), schizophrenia (SCZ), and methamphetamine addiction. 95 °C for 10 min; 35 cycles at 95 °C for 30 s; annealing temperature for 35 s, 72 °C for 40 s, and a final extension at 72 °C for 10 min.

Study Participants

Materials and Methods

SNP Characteristics

Table 1 summarizes the features of the selected SNPs in this research project.

The genotypes of the mentioned SNPs were determined using the tetra-primer amplification-refractory mutation system (ARMS)-PCR technique. Taq DNA Polymerase Master Mix RED (Amplicon, Denmark) was used for preparation of reactions. Table 2 summarizes the features of forward and reverse (inner/outer) primers, the annealing temperatures, and the expected sizes for different alleles. The PCR was performed using the following conditions: a primary step at A total of 289 persons with methamphetamine addiction, 128 patients with BP I, 86 patients with BP II, 54 patients with MDD, and 189 patients with SCZ were recruited in the current study. Appropriate amounts of age-/sex-matched normal persons were also selected as controls for each category of patients. Patients were selected from those referred to Farshchian Hospital, Hamadan, Iran. Addicted individuals were recruited from Niaz and Atinegar Addiction Treatment Centers, Mashhad, Iran. A psychiatrist assessed all individuals and confirmed the diagnosis based on criteria of the *Diagnostic and Statistical Manual of Mental Disorders* (5th edition) (Whiteford et al. 2013). Patients with structural or metabolic brain disorders or any condition with neuropsychiatric signs were exempted from the

 Table 3
 Demographic data of study participants (total number of control subjects was 801. Cases and controls were sex-matched except for the MDD cohort)

Variable	BPD1	BPD2	MDD	Control	Addiction	Control	SCZ	Control
Age (mean ± SD) Female	$\begin{array}{c} 42\pm4.2\\ 80\end{array}$	42±7.6 52	49±1.0 23	$\begin{array}{c} 47\pm5.4\\ 142 \end{array}$	$\begin{array}{c} 36.43 \pm 9.79 \\ 0 \end{array}$	$\begin{array}{c} 37.76 \pm 9.6 \\ 0 \end{array}$	$\begin{array}{c} 35\pm1.24\\ 60\end{array}$	37.1±0.2 77
Male	48	34	34	97	289	323	109	162
Total	128	86	54	239	289	323	169	239

lable 4 The allele frequencies in the study subgroups																				
rs11833579	61										rs3809263									
Cohorts	Addiction	cohort	Cohorts Addiction cohort BP1 cohort	, tt	BP2 cohort	ort	MDD cohort		SCZ cohort	ort	Addiction	cohort	Addiction cohort BP1 cohort	ort	BP2 cohort	Ţ	MDD cohort	lort	SCZ cohort	LT L
Allele G Total	Control 404 242 646	Case 373 578 578	Control Case Control Case 306 165 306 114 172 91 172 58 478 256 478 172	Case 165 256	Control 306 172 478	Case 114 58 172	Control 323 155 478	Case 75 33 108	Control Case Control Case Control 323 75 306 233 452 155 33 172 105 194 478 108 478 338 646	Case 233 338 338	Control 452 194 646	Case 383 578 578	Control Case Control Case Control Case Control 323 182 323 121 306 77 323 155 74 155 51 172 31 155 478 256 478 172 478 108 478	Case 182 74 256	Control 323 155 478	Case 121 51 172	Control 306 172 478	Case 77 31 108		Case 219 338

Table 5 Compliance of genotype frequencies of the rs11833579	of gen	lotype	freque	encies of th	e rs118.	33579	with HWE	HWE														
	Αdι	diction	Addiction cohort	īt		BP1	BP1 cohort	t		В	BP2 cohort	hort		MDL	MDD cohort	t		SC	SCZ cohort)rt		
Genotypes/study groups G/ G/ G/ Total <i>P</i> value G/ G A G	C C/	G/ G/ G A	0 0	Total <i>I</i>	⁹ value	ט ט	G/ G/ A G	0 ପ	Total	Total P value $G/G/G/G$ G A G	i A	G/ G	Total P value $G/G/G/G$	0 Ū	G/ A	0 0	Total P value $G/G/G/G$	0 0 0	G/ A	0 (Total	Total P value

J Mol Neurosci (2020) 70:236–245

0.77 0.54

0.07 0.978

0.77 0.12

0.767 0.749

0.873 0.496

Control Case

Genotypes/study groups Control Case		G/ G 151 124	G/ A 150 135	G/ T G/ T 22 3; 30 2; 30 2; 0types an	Total 323 323 and sub	Total <i>P</i> value 323 0.91 289 0.52 nd substance ad e Cor	G/ G 65 65		G G G (G / 19 1) 11 11 11 11 11 11 11 11 11 11 11 11	Total 239 (239 (128 (1128)))))))))))))))))))))))	G/TotalP valueAG2390.0752111280.8957in four inheritance models	4 10 C C	G/ A 3 117 5 31 5 31	G/ G 19 10 0.426	Total 86	P value 0.07 0.27 000 72	53 0 U	51 88	G/ Total P G 239 0 5 54 0 OR (95% CI)	Total <i>P</i> value 54 0.896 55% CI)		A A 33 117 33 117 0 79 Value P value 0.44	50 C C	Total 239	Total P value 239 0.07 169 0.75
Control Case		151 124	150 135	22 30 https://	323 289 and sub	0.91 0.52 stance ac	103 65 Idiction		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	239 (128 (ritance	0.07 0.8957 models		31 31 ase	19 10 0.426	86	.07		38	2 23 5 5 0R (95	9 0.77 4 0.896 % CI)	10	3 117 0 79 2 value	20		0.07 0.75
				otypes (and sub	stance a	ldiction		Ir inhe	ritance	models		ase	0.426					OR (95	% CI)		^o value			
				otypes (and sub	Sstance ad	Idiction		ır inhe	ritance	models		ase	0.426					OR (95	% CI)		^o value			
				itypes : Jenotyl	and sub	stance ad Cor	ldictior		ır inhe	ritance	models		ase	0.426		000			OR (95	% CI)		o value			
Table 7 Asso	Associations between genotypes and substance addiction)etweel	n geno	Jenoty	be	Cor						Ca	ase	0.426					OR (95	% CI)		^o value .44			
SNP	Model			;			Control							0.426		000 6						.44		Adjusted P value	<i>P</i> valı
rs11833579	Codominant	nant		9/9 9/9	G/A A/A	127 150		0.393).464	150 46		0.464 0.142	12.	űΓ	0.439		39.000	0.439 0.135	9 5	1.14 (0.81–1.6 1.14 (0.7–1.9)	1.14 (0.81–1.61) 1.14 (0.7–1.9)		.60		0.88 1	
	Dominant	nt	9	5/C				0.142 0.393				39 123	o σ κ	0.135 0.426				-	0.87 (0.1	0.87 (0.633–1.208)		0.42	C	0.83	
	Recessive	ve	. ט כ	G/G	A/A G/A	196 277		0.607 0.858				16 25	9 O 0	0.574 0.865				_	0.94 (0	0.94 (0.593–1.488)		0.79			
	Multiplicative	cative	₹IJ	VA j		46 404		0.142).625				37.	<i>v</i> v	0.645 0.645					0.92 (0.	0.92 (0.727–1.159)		0.47	0	0.938	
	Codominont	toot	∢ ୯		<td></td> <td></td> <td>0.375 7467</td> <td>15</td> <td></td> <td>797.0</td> <td>202</td> <td>₹ 2</td> <td>0.355</td> <td></td> <td>125,000</td> <td>,9V U</td> <td></td> <td>0.01.00</td> <td>001 (0 65 1 20)</td> <td></td> <td>020</td> <td></td> <td></td> <td></td>			0.375 7467	15		797.0	202	₹ 2	0.355		125,000	,9V U		0.01.00	001 (0 65 1 20)		020			
C07600CSI	COUDILL	IIIaIII	טע		A/A			0.407 0.464	22		0.068	13: 13:	ţν	0.467	-	30.000	0.104		0.6 (0.	(0.037-1.26)		ec.u 0.95			
	¢		(Ç				0.068				30	0,	0.104										0	
	Dominant	tu	ט כ	ני/פ 1/9	A/A			0.46/).533				16	<u>t</u> vo	0.429					1.17 (0.	(10.1–C8.0)/1.1	-	0.34		0.68	
	Recessive	ve	0	J/G	G/A			0.932				25	6	0.896					1.58 (0.	1.58 (0.89–2.82)	0	0.11	0	0.22	
			Α	NΑ		22		0.068				æ	0	0.104											
	Multiplicative	icative	U	IJ		452		0.700				383	ŝ	0.663					1.2 (0.	1.2 (0.93–1.50)	0	0.164	Ŭ	0.328	

 Table 8
 Haplotype analysis in addiction group

rs11833579	rs3809263	Control	Case	OR (95% CI)	P value	Adjusted P value
A	G	0.3645	0.3547	0.94 (0.74–1.19)	0.62	1
G	G	0.3351	0.308	0.89 (0.70-1.43)	0.38	1
G	А	0.2902	0.3374	1.22 (0.96–1.55)	0.1	0.4
А	А	0.0101	0	0	0.164	0.654

 Table 9
 Associations between genotypes and BP1 in four inheritance models

SNP	Model	Geno	otype	Cont	trol			Case	;			OR (95% CI)	P value	Adjusted P value
rs11833579	Codominant	G/G	G/A	99	0.414	108	0.452	54	0.422	57.000	0.445	1.03 (0.652–1.64)	0.89	1
		G/G	A/A	108	0.452	32	0.134	57	0.445	17.000	0.133	1.03 (0.52-2.02)	0.94	1
				32	0.134			17	0.133					
	Dominant	G/G		99	0.414			54	0.422			0.97 (0.63–1.5)	0.89	1
		G/A	A/A	140	0.586			74	0.578					
	Recessive	G/G	G/A	207	0.866			111	0.867			0.99 (0.53-1.86)	0.98	1
		A/A		32	0.134			17	0.133					
	Multiplicative	G		306	0.640			165	0.645			0.98 (0.715-1.35)	0.91	1
		А		172	0.360			91	0.355					
rs3809263	Codominant	G/G	G/A	103	0.431	117	0.490	65	0.508	52.000	0.406	1.42 (0.905–2.23)	0.13	0.26
		G/G	A/A	117	0.490	19	0.079	52	0.406	11.000	0.086	1.09 (0.49–2.43)	0.83	1
				19	0.079			11	0.086					
	Dominant	G/G		103	0.431			65	0.508			0.734 (0.48–1.13)	0.16	0.32
		G/A	A/A	136	0.569			63	0.492					
	Recessive	G/G	G/A	220	0.921			117	0.914			1.09 (0.501-2.365)	0.83	1
		A/A		19	0.079			11	0.086					
	Multiplicative	G		323	0.676			182	0.711			0.85 (0.61-1.2)	0.327	0.654
		А		155	0.324			74	0.289					

project. Persons with history of substance abuse were exempted from all subgroups rather than the "addiction" group. Individuals enlisted in control groups were selected from volunteers who came for routine health check-up. Control subjects were matched with cases in their ethnicity. These persons were evaluated through a semi-structured interview. Written informed consent forms were signed by all individuals. The study protocol was approved by the ethics committees of Shahid Beheshti Universities of Medical Sciences.

Statistical Analyses

R 3.2.2 software was used for statistical assessments. Agreement with Hardy-Weinberg equilibrium (HWE) was judged using Chi-square test. Associations between the neuropsychiatric conditions and the rs11833579/rs3809263 alleles/genotypes were judged in codominant, dominant, recessive, and multiplicative inheritance models. Haplotype frequencies were compared between each subgroup of patients

Table 10	Haplotype	analysis	in
BP1 grou	р		

rs11833579	rs3809263	Control	Case	OR (95% CI)	P value	Adjusted P value
A	G	0.34644	0.34933	1 (0.73–1.375)	0.997	1
G	G	0.32929	0.36161	1.17 (0.85–1.61)	0.337	1
G	А	0.31088	0.28292	0.864 (0.62–1.205)	0.4	1.0
А	А	0.01339	0.00614	0.465 (0.052-4.180)	0.818	1.000

Table 11 As	Table 11 Associations between genotypes and BP2 in four inheri	genotypes	and BP2 i	n four inhe	eritance models	dels								
SNP	Model	Genotype	/pe	Control				Case				OR (95% CI)	P value	Adjusted P value
rs11833579	Codominant	G/G	G/A	66	0.414	108	0.452	41	0.477	32.000	0.372	1.4 (0.82–2.4)	0.22	0.44
		G/G	A/A	108	0.452	32	0.134	32	0.372	13.000	0.151	1.02 (0.49–2.13)	0.96	1
				32	0.134			13	0.151					
	Dominant	G/G		66	0.414			41	0.477			0.78 (0.48–1.27)	0.32	0.63
		G/A	A/A	140	0.586			45	0.523					
	Recessive	G/G	G/A	207	0.866			73	0.849			1.15 (0.58–2.31)	0.69	1
		A/A		32	0.134			13	0.151					
	Multiplicative	G		306	0.640			114	0.663			0.90 (0.63–1.30)	0.60	1
		Α		172	0.360			58	0.337					
rs3809263	Codominant	G/G	G/A	103	0.431	117	0.490	45	0.523	31.000	0.360	1.64 (0.97–2.8)	0.62	1
		G/G	\mathbf{A}/\mathbf{A}	117	0.490	19	0.079	31	0.360	10.000	0.116	0.83 (0.36–1.93)	0.66	1
				19	0.079			10	0.116					
	Dominant	G/G		103	0.431			45	0.523			0.7 (0.42–1.132)	0.141	0.282
		G/A	\mathbf{A}/\mathbf{A}	136	0.569			41	0.477					
	Recessive	G/G	G/A	220	0.921			76	0.884			1.52 (0.68–3.42)	0.3	0.6
		A/A		19	0.079			10	0.116					
	Multiplicative	Ū		323	0.676			121	0.703			0.88 (0.60–1.3)	0.5	1
		Α		155	0.324			51	0.297					

Table 12Haplotype analysis inBP2 group

rs11833579	rs3809263	Control	Case	OR (95% CI)	P value	Adjusted P value
A	G	0.34644	33,721	0.94 (0.65–1.36)	0.736	1
G	G	0.32929	0.36628	1.2 (00.84–1.73)	0.32	1
G	А	0.31088	29,651	0.91 (0.62–1.33)	0.6	1
А	А	0.01339	0	0	0.525	1

Table 13 Associations between genotypes and MDD in four inheritance models
--

SNP	Model	Geno	type	Cont	rol			Cas	e			OR (95% CI)	P value	Adjusted P value
rs11833579	Codominant	G/G	G/A	103	0.431	117	0.490	26	0.481	23.000	0.426	1.28 (0.69–2.39)	0.43	0.86
		G/G	A/A	117	0.490	19	0.079	23	0.426	5.000	0.093	0.56 (0.33-2.81)	0.94	1
				19	0.079			5	0.093					
	Dominant	G/G		103	0.431			26	0.481			0.82 (0.45-1.47)	0.5	1
		G/A	A/A	136	0.569			28	0.519					
	Recessive	G/G	G/A	220	0.921			49	0.907			1.2 (0.42–3.32)	0.97	1
		A/A		19	0.079			5	0.093					
	Multiplicative	G		323	0.676			75	0.694			0.92 (0.58–1.44)	0.71	1
		А		155	0.324			33	0.306					
rs3809263	Codominant	G/G	G/A	99	0.414	108	0.452	28	0.519	21.000	0.389	1.455 (0.78–2.72)	0.24	0.482
		G/G	A/A	108	0.452	32	0.134	21	0.389	5.000	0.093	1.81 (0.64–5.079)	0.26	0.51
				32	0.134			5	0.093					
	Dominant	G/G		99	0.414			28	0.519			0.66 (0.36–1.2)	0.16	0.32
		G/A	A/A	140	0.586			26	0.481					
	Recessive	G/G	G/A	207	0.866			49	0.907			0.67 (0.245–1.79)	0.41	0.82
		A/A		32	0.134			5	0.093					
	Multiplicative	G		306	0.640			77	0.713			0.72 (0.454–1.13)	0.15	0.3
		А		172	0.360			31	0.287					

and the corresponding controls. Odds ratios (OR), 95% confidence intervals (95% CI), and P values were quantified to judge the statistical significance. P values less than 0.05 were considered significant. P values were corrected by multiplying the original P value by the number of comparisons.

Results

General Data of Study Participants

General demographic data of study participants are summarized in Table 3.

Allele Frequencies

Table 4 shows the allele frequencies of the rs11833579 and rs3809263 in study subgroups.

Genotype Frequencies

Genotype frequencies of the rs11833579 and rs3809263 were in accordance with the HWE supposition in all subgroup patients and controls (Tables 5 and 6).

Either SNP was associated with risk of psychiatric conditions in any inheritance model. Moreover, there was no

Table 14	Haplotype analysis in
MDD gro	up

rs11833579	rs3809263	Control	Case	OR (95% CI)	p value	Adjusted P value
A	G	0.34644	0.28703	1.43 (0.93–2.2)	0.099	0.396
G	G	0.32929	0.40742	0.74 (0.47–1.174)	0.2	0.8
G	А	0.31088	0.30555	0.95 (0.61-1.5)	0.8	1.0
А	А	0.01339	0	0 (0)	0.76	1.000

Table 15 As	Table 15 Associations between genotypes and SCZ in four inheritance models	genotypes	and SCZ ii	n four inh	eritance mo	dels								
SNP	Model	Genotype	pe	Control				Case				OR (95% CI)	P value	Adjusted P value
rs11833579	Codominant	G/G	G/A	66	0.414	108	0.452	82	0.485	69.000		1.3 (0.85–1.98)	0.23	0.46
		G/G	A/A	108	0.452	32	0.134	69	0.408	18.000		1.48 (0.78–2.81)	0.24	0.48
				32	0.134			18	0.107					
	Dominant	G/G		66	0.414			82	0.485			0.75	0.16	0.31
		G/A	A/A	140	0.586			87	0.515			(0.5-1.115)		
	Recessive	G/G	G/A	207	0.866			151	0.893			0.78	0.41	0.82
		A/A		32	0.134			18	0.107			(0.42 - 1.425)		
	Multiplicative	IJ		306	0.640			233	0.689			0.80	0.14	0.288
		A		172	0.360			105	0.311			(0.6-1.1)		
rs3809263	Codominant	G/G	G/A	103	0.431	117	0.490	70	0.414	79.000	0.467	1.01 (0.66–1.53)	0.98	1
		G/G	A/A	117	0.490	19	0.079	79	0.467	20.000	0.118	0.65 (0.32–1.3)	0.22	0.44
				19	0.079			20	0.118					
	Dominant	G/G		103	0.431			70	0.414			1.1 (0.71–1.6)	0.74	1
		G/A	A/A	136	0.569			66	0.586					
	Recessive	G/G	G/A	220	0.921			149	0.882			1.554 (0.80–3.01)	0.2	0.4
		A/A		19	0.079			20	0.118					
	Multiplicative	G		323	0.676			219	0.648			1.132 (0.84–1.52)	0.41	0.82
		Α		155	0.324			119	0.352					

Table 16 Haplotype analysis inSCZ group

rs11833579	rs3809263	Control	Case	OR (95% CI)	P value	Adjusted P value
A	G	0.34644	0.30625	0.82 (0.609–1.104)	0.19	0.76
G	G	0.32929	0.34168	1.075 (0.8–144)	0.633	1
G	А	31,088	0.34767	1.162 (0.87–1.56)	0.3	1.0
А	А	0.01339	0.0044	0.35 (0.04–3.16)	0.270	1.000

significant difference in the frequencies of the estimated haplotypes between patients and controls (Tables 7, 8, 9, 10, 11, 12, 13, 14, and 15). The assessed SNPs were in linkage disequilibrium (*D*' statistic = 0.95716, $r^2 = 0.24554$) (Table 16).

Discussion

In the current project, we genotyped two NINJ2 SNPs in a large cohort of Iranian patients with diverse psychiatric conditions to unravel their possible role in conferring risk of these disorders. Some recent studies have shown shared genetic loci for a number of psychiatric conditions (Smeland et al. 2019), so we hypothesized that this NINJ2 locus might be one of the shared loci in these disorders. However, we could not find any associations between NINJ2 SNPs and the mentioned disorders. Upregulation of NINJ2 has been detected in Schwann cells adjacent to the distal part of an injured nerve. This protein can enhance neurite outgrowth, probably through homophilic cellular adhesion (Araki and Milbrandt 2000). NINJ2 protein also participates in the regulation of interactions between cells and the extracellular matrix, so it is possibly involved in the neurodevelopmental processes and regeneration of neurons (Seilheimer and Schachner 1988; Araki and Milbrandt 2000). Consequently, NINJ2 polymorphisms are putative candidates for psychiatric disorders. The associations between these SNPs and human disorders have been evaluated in different populations. However, a previous meta-analysis showed no association between rs11833579 and ischemic stroke risk (Lian et al. 2012). Homozygosity for rs11833579 SNP was significantly associated with lower susceptibility to Alzheimer's disease in Chinese population (Lin et al. 2011). The rs3809263 is a functional polymorphism in the NINJ2 promoter and has been associated with large artery atherosclerotic stroke in Chinese population. Moreover, the AA genotype of this SNP has been associated with higher levels of NINJ2 transcripts (Zhang et al. 2016). Both selected SNPs have been associated with ischemic stroke in Iranian population (Malekzadeh et al. 2019). Based on the results of in silico analyses, the selected SNPs could affect the expression of NINJ2 (Ward and Kellis 2012). Moreover, the results of previous studies implied their association with some human disorders at least in some populations. However, we did not report any association between these SNPs and neuropsychiatric disorders. This might be explained by different etiology of

neuropsychiatric disorders and their independence from a "vascular susceptibility gene" or small sample size of current study. Assessment of expression levels of *NINJ2* in peripheral blood of patients with neuropsychiatric disorders and their comparison with matched controls is needed to evaluate contribution of NINJ2 in the pathogenesis of these disorders.

Taken together, the current study exclude association between rs11833579 and rs3809263 and the mentioned neuropsychiatric disorders. Future studies are needed to appraise our results.

Funding information The current study was supported by a grant from Shahid Beheshti University of Medical Sciences.

Compliance with Ethical Standards

The study protocol was approved by the ethics committees of Shahid Beheshti Universities of Medical Sciences.

Conflict of Interest The authors declare they have no conflict of interest.

References

- Araki T, Milbrandt J (2000) Ninjurin2, a novel homophilic adhesion molecule, is expressed in mature sensory and enteric neurons and promotes neurite outgrowth. J Neurosci 20:187–195
- Corvin A, Donohoe G, Hargreaves A, Gallagher L, Gill M (2012) The cognitive genetics of neuropsychiatric disorders. Curr Top Behav Neurosci 12:579–613
- Jensen KP (2016) A review of genome-wide association studies of stimulant and opioid use disorders. Mol Neuropsychiatry 2:37–45
- Li BH, Zhang LL, Yin YW, Pi Y, Guo L, Yang QW, Gao CY, Fang CQ, Wang JZ, Li JC (2012) Association between 12p13 SNPs rs11833579/rs12425791 near NINJ2 gene and ischemic stroke in East Asian population: evidence from a meta-analysis. J Neurol Sci 316:116–121
- Lian G, Yan Y, Jianxiong L, Juanjuan X, Qing C, Guangliang W, Li, S. (2012) The rs11833579 and rs12425791 polymorphisms and risk of ischemic stroke in an Asian population: a meta-analysis. Thromb Res 130:e95–e102
- Lin KP, Chen SY, Lai LC, Huang YL, Chen JH, Chen TF, Sun Y, Wen LL, Yip PK, Chu YM, Chen WJ, Chen YC (2011) Genetic polymorphisms of a novel vascular susceptibility gene, Ninjurin2 (NINJ2), are associated with a decreased risk of Alzheimer's disease. PLoS One 6:e20573
- Malekzadeh V, Azari I, Noroozi R, Shams R, Farzaneh M, Taheri M, Ghafouri-Fard S (2019) Genetic variants within Ninjurin 2 gene are associated with risk of ischemic stroke in Iranian population. Neurol Sci

- Noroozi R, Azari I, Taheri M, Omrani MD, Ghafouri-Fard S (2019) A single nucleotide polymorphism within Ninjurin 2 is associated with risk of multiple sclerosis. Metab Brain Dis
- Seilheimer B, Schachner M (1988) Studies of adhesion molecules mediating interactions between cells of peripheral nervous system indicate a major role for L1 in mediating sensory neuron growth on Schwann cells in culture. J Cell Biol 107:341–351
- Smeland OB, Bahrami S, Frei O, Shadrin A, O'connell K, Savage J, Watanabe K, Krull F, Bettella F, Steen NE, Ueland T, Posthuma D, Djurovic S, Dale AM, Andreassen OA (2019) Genome-wide analysis reveals extensive genetic overlap between schizophrenia, bipolar disorder, and intelligence. Mol Psychiatry
- Treutlein J, Rietschel M (2011) Genome-wide association studies of alcohol dependence and substance use disorders. Curr Psychiatry Rep 13:147–155

- Ward LD, Kellis M (2012) HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40:D930–D934
- Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, Charlson FJ, Norman RE, Flaxman AD, Johns N, Burstein R, Murray CJ, Vos T (2013) Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 382:1575–1586
- Zhang Z, Ni G, Xu G, Xu J, Liu X (2016) A novel functional polymorphism in the NINJ2 promoter predicts risk of large artery atherosclerotic stroke. Mol Neurobiol 53:7178–7183

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.