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Abstract
Development and design of agents derived from natural sources with neuroprotective properties have received considerable
attention. In the literature, it has been stated that these polyphenolic molecules have low adverse impacts and high efficacy when
used in pathological conditions. Dietary flavonoids as a subgroup of polyphenols are bioactive products, extracted from several
types of vegetables and fruits. Luteolin (3′,4′,5,7-tetrahydroxyflavone, LUT) is a widespread flavone known to have antioxidant
and cytoprotective properties related to nuclear factor erythroid 2-related factor 2-(Nrf2) pathway. Extensive in vitro and in vivo
investigations have indicated that LUT exhibits beneficial neuroprotective properties via different mechanisms. However, its
psychopharmacological mechanisms are presently investigated in fewer studies. Therefore, we aimed to evaluate the neuropro-
tective impacts of LUT against central nervous system (CNS) disorders by reviewing available literature. Herein, we also
reviewed the studies to understand the underlying mechanisms of LUT for curing CNS disorders.
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Introduction

Consumption of foods of plant origin decreases the risk of
developing different pathological conditions, which is attribut-
ed to their high content of phytochemicals (Baradaran 2017;
Ghorbani et al. 2014; Pandey and Rizvi 2009). Herbal medi-
cine from natural sources has been used to treat a wide range of
neurological disorders such as traumatic brain injury (TBI),

Alzheimer’s disease (AD), stroke and Parkinson’s disease
(PD; Bayat et al. 2012; Feigin 2007; Sarrafchi et al. 2016;
Wang et al. 2016b). Herbs contain different types of molecules
with antioxidant capacity such as flavonoids (Kr and Christina
2011; Rafieian-Kopaei 2013). The evidence obtained from dif-
ferent levels of studies on animal and human populations has
indicated that flavonoids are beneficial for health (Nasri 2016;
Rafieian-Kopaei 2013). Due to their abundance in foods, such
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Table 1 The different mechanisms of flavone luteolin against the pathogenesis of central nervous system disorders based on different experimental
studies

Authors (year) Disorder Study model Dosage Mechanism

Xu et al. (2014a) TBI In vitro: cell culture Luteolin: 5, 10 and 25 mM • Reducing the oxidative stress
• Nrf2–ARE pathwayIn vivo: mice Luteolin: 10, 30 and

50 mg/kg/IP (30 min
after the onset of TBI)

Xu et al. (2014b) TBI In vivo: mice Luteolin: 30 mg/kg/IP
(30 min after the onset
of TBI)

• Amelioration of brain edema and BBB
disruption

• Suppression of neuronal degeneration
• Inhibition of autophagy (upregulation

of beclin-1 and LC3II)
• Downregulation of proinflammatory

factors (IL-1b and TNF-a)
• Inhibition of the activity of NF-kb

Cordaro et al. (2016) TBI In vivo: CD1 mice Co-ultraPEA/LUT: 1 and
10 mg/kg/IP

• Decreasing the edema, brain infarctions,
and apoptosis

• Recovery promotion and improvement
of behavioral functions

• Modulation of inflammation by
upregulation of Iκκα, downregulation
of pIκBα, and prevention of NF-κB
p65 translocation, and also reduction
in TNF-α, IL-1β, chymase, and
tryptase in brain tissue

• Upregulation of GDNF
• Modulation of iNOS, P-JNK, and

nitrotyrosine expression
• Inhibition of autophagy (upregulation

of mTOR and p70S6K)

Sawmiller et al.
(2014)

AD by TBI In vivo: induced by
TBI in mice
(Aβ deposition in
Tg2576)

Luteolin: 20 mg/kg/IP
for 15 d

• Reducing the Aβ, AD-like active
phosphorylated GSKβ, and
phosphotau levels elicited by TBI in
Tg2576 mice

• Reduction in microglial-derived
inflammatory cytokines, TNFα, and
IL-1β

• Crossing through the BBB

Qiao et al. (2012a) pMCAO In vivo: rat Luteolin: 10 and
25 mg/kg/IP (24 and
72 h after stroke)

• Reducing the neurological deficits
scores

• Reducing the brain water content and
infarct volume

• Upregulation of Bcl-2 and
downregulation of Bax

• Anti-oxidative activity (increase in the
levels of SOD1 and CAT)

Qiao et al. (2012b) pMCAO In vivo: rat Luteolin: 10 and
25 mg/kg/IP (24 and
72 h after stroke)

• Reducing the neurological deficits scores
• Upregulation of p-ERK expression
• Downregulation of NF-κB, TLR4,

TLR5, and p-p38MAPK expression

Zhang et al. (2013a,
b)

MCAO In vitro: SH-SY5Y
cells

Luteolin extracted from
Ixeris sonchifolia
Hance

• Protection of SH-SY5Y cells from
H2O2-induced cytotoxicity

Luteolin: 4 mg/kg via the
tail vein 24 and 48 h
postoperatively

• Free radical scavenging and
antioxidant activity

Fang et al. (2009) Oxygen-glucose
deprivation/
reperfusion
(2 h/24 h)

In vitro: hippocampal
neurons from
newborn rats

luteolin (1–100 μmol/L) • Increasing the cell viability
• Decreasing LDH leakage rate
• Decreasing the percentage of apoptotic

cells in a dose-dependent manner

Global cerebral
I/R

In vivo: rats Luteolin: 200 mg/kg/ IP • Inhibition of decrease in ATPase activity
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Table 1 (continued)

Authors (year) Disorder Study model Dosage Mechanism

Caltagirone et al.
(2016)

MCAO In vivo: rats Co-ultraPEA/LUT:
1 mg/kg 1 h after
ischemia and 6 h after
reperfusion

• Improvement of neurological index
• Reducing the infarct area
• Decreasing the neuronal cell death
• Decreasing the astrocyte activation
• Limitation of ischemia-induced loss of

GDNF and BDNF expression
• Reduction in ischemia-induced mast

cell infiltration, and chymase and
tryptase expression

• Regulation of Bax and Bcl-2 expression

Birman et al. (2012) Epilepsy Luteolin: 10 mg/kg/IP
pretreatment

• Decreasing the seizure frequency
• Increasing iNOS and MMP2 reactions

in hippocampus

Zhen et al. (2016) Epilepsy In vivo: rat model
induced by PTZ

Luteolin: 50 or
100 mg/kg/d per os,
30 min before PTZ
injection

• Decreasing the seizure severity and
cognitive impairment

• Decreasing the oxidative stress and
neuronal damages

• Enhancement in phospho-activation of
PKA and CREB

• Upregulation of BDNF expression

Shaikh et al. (2013) Epilepsy In vivo: mice models:
1) MEST
2) 6 Hz
3) PTZ
4) Second hit PTZ test

in the chronic stage
of the pilocarpine
model

Luteolin single dosing
for the 6 Hz
(0.3–10 mg/kg),
MEST (0.3–20 mg/kg)
and PTZ (3 mg/kg) tests,
3–4 d, 10 mg/kg in the
6 Hz model

• No indications to show pro- or
anti-convulsant effects of luteolin in
chronic and acute models of mouse
seizure

Tambe et al. (2017) Epilepsy In vivo: mice model
induced by PTZ

Luteolin from Eclipta alba
leaves: 5, 10, 20mg/kg/IP

• Inhibition of PTZ-induced kindling
• Decreasing the MDA level
• Restoration of reduced GSH levels

Kempuraj et al.
(2008)

MS In vitro: activation of
hCBMCs and Jurkat
T cells by MBP

Luteolin: 1–100 μm • Suppressing the MBP as the main MS
antigen

• Inhibition of mast cell activation, Jurkat
cell activation, and mast cell-dependent
stimulation of Jurkat T cells

• Stimulation of mast cell to produce IL-2

Sternberg et al. (2009) MS In vitro: PBMC from
patients with MS

Luteolin: 0.2, 1, 5,10,
25, 50 μM

• Immunomodulatory effects
• Modulation of pro-inflammatory

cytokines such as TNF-α, IL-1β, and
cell proliferation

• Modulation of factors of cell migration
such as MMP-9 and TIMP-1

Verbeek et al. (2004) MS: human
and murine
autoreactive
T cells (PLP)

In vitro: PBMC from
healthy donors

In vivo and in vitro:
SJL/J mice by PLP

injection and culturing
the spleen cells and
lymph node

Luteolin: 3.5, 17.5, and
35 uM

• Prevention of murine and human T-cell
responses in the production of IFN-γ
and their in vitro antigen-specific
proliferation

Verbeek et al. (2005) EAE: MS
model

In vivo: SJL/J mice • Increasing the production of IFN- γ
• Inhibition of proliferative responses

Theoharides (2009) MS – – • Inhibition of mast cells and T-cell
activation

Choi et al. (2014) In vitro: cortical
neurons isolated
form fetal mice induced
by Aβ

Luteolin: 10, 20, 40,
and 80 μM

• Decreasing the neurotoxicity in murine
cortical neurons through antioxidant
activity

Wang et al. (2016a, b) AD Luteolin: 10 and 20 mg/kg • Anti-oxidative characteristic
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Table 1 (continued)

Authors (year) Disorder Study model Dosage Mechanism

In vivo: rat model induced
by STZ

• Inhibition of free radical products
• Dispersing Aβ plaques

Paterniti et al. AD In vitro: neuron-like cell
differentiated from
SH-SY5Y cells induced
by Aβ1–42

Co-ultraPEA/LUT: 27,
2.7, and 0.27 μM

• Increasing the cell viability and
decreasing apoptosis

• Reducing inducible NO synthase
• Reducing the expression of GFAP
• Restoring the neuronal synthase of NO

and BDNF
• Attenuating neuroinflammation

Ex vivo organotypic model:
mice hippocampal slices
cultures induced by
Aβ1–42

Wruck et al. (2007) PD In vitro: MPP+-induced C6
and PC12 cells in rat

Luteolin: 20 μM • Activation of Nrf2
• Suppression of ERK1/2-activation

Chen et al. (2008) PD In vitro: primary
mesencephalic
neuron–glia
cultures induced by LPS

Luteolin: 1, 2.5, and
5 μM

• Suppression of microglial activation
• Suppression of the production of

proinflammatory factors such as NO,
superoxide, and TNF-α in such cells

Lin et al. (2010) PD In vitro: cytotoxicity
induced in PC12 cells
by serum withdrawal

Luteolin: 10 and 20 μM • Decreasing apoptosis
• Increasing the expression of GAP-43
• Increasing the binding of Nrf2 to ARE,

as an stimulator sequence of HO-1
promoter

• Increasing the expression of HO-1 levels

Hu et al. (2014) PD In vitro: 6-OHDA-induced
PC12 cells

Luteolin: 20 μM • Decreasing cytotoxicity
• Reducing the oxidative stress and

caspase-3 activation.
• Decreasing the transcription of p53

target genes including p21, PUMA,
and GADD45α

• Modulation of the activated
Keap1-Nrf2-ARE pathway

• Reducing the GCLC and HO-1
expression

Zhu et al. (2014) PD In vitro: co-culture of
microglia-like BV-2 cells
with the neuronal-like
neuroblastoma SH-SY5Y
cell induced by LPS

Luteolin: 20 μM • Inhibition of apoptosis in SH-SY5Y
cells through the inhibition of TLR-4,
NF- B, MAPK, and Akt pathways in
LPS-stimulated, co-cultured murine
microglial BV2 cells

Park and Song
(2013)

PD In vitro: LPS-induced
RAW 264.7 cells

Luteolin: 5, 10, 25, and
50 μM

• Inhibition of NO and PGE2 production
• Modulation of NF-κB and AP-1

activation
• Inhibition of Akt phosphorylation

Luteolin −7-O-glucoside:
5, 10, 25, and 50 μM

• Inhibition of NO and PGE2 production
• Modulation of NF-κB activation
• Inhibition of Akt phosphorylation

Lin et al. (2015) PD In vitro: H2O2-induced
PC12 neurons

Luteolin: 10, 25,
and 50 μg/mL
(pretreatment)

• Inhibition of decrease in cell viability
• Increasing the SOD and GSH-Px levels,

and reducing MDA levels
• Decreasing the generation of ROS and

releasing LDH
• Improving the Bcl-2/Bax ratio
• Increasing the phosphorylation of Akt

Wu et al. (2017) PD In vitro: arsenite-induced
PC12 neurons

Luteolin: 20 μM • Decreasing the increased activation
of caspase-3

• Decreasing the generation of ROS
• Decreasing the expression of γ-H2AX

and α-syn

Patil et al. (2014) PD In vivo: MPTP-induced
mice model

Luteolin: 10 and
20 mg/kg

• Increasing locomotor and muscular
changes
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as fruits, vegetables andmedicinal herbs, flavonoids are known
as common nutrients which act as antimicrobial agents, anti-
oxidants and regulators of estrogen (Birt et al. 2001; Jafari
2016; Rafieian-Kopaei et al. 2013; Tables 1 and 2).

Luteolin (LUT, 3′,4′,5,7-tetrahydroxyflavone) is a natural
flavone compound which can be extracted from different
types of plants. Its polyphenolic structures are essential for
protecting plant cells against insects, microorganisms and
UV irradiation (Harborne and Williams 2000). LUT has a
wide range of pharmacological activities and potent anti-
oxidant characteristics which scavenge reactive nitrogen and
oxygen species. It has been found that the antioxidant proper-
ties and neuroprotective effects of LUTare associated with the
nuclear factor erythroid 2-related factor 2-(Nrf2) pathway
(Wruck et al. 2007). In oxidative stress-induced cell death, a
cis-acting element known as the antioxidant responsive

element (ARE) regulates the activation of protective transcrip-
tion factors. Then, Nrf2 binds to ARE and works as the Nrf2-
ARE pathway which exhibits resistance to neurotoxicity in-
duced by oxidative stress (Johnson 2008). In the rat model of
ischemia, middle cerebral artery occlusion-induced ischemia
(MCAo), the anti-oxidative and neuroprotective effects of
LUT are associated with its role in the scavenging of free
radicals by upregulating Nrf2 protein level, a well-known
transcription factor as cells are produced to defend against a
variety of detrimental stresses. Subsequently, it can contribute
in the inhibition of cell death and decreasing the infarct area
(Zhang et al. 2013a, b). In other study, it has been recorded
that LUT can protect the glial C6 and dopaminergic neural
PC12 cells of a rat against N-methyl-4-phenyl-pyridinium-in-
duced neurotoxicity via the upregulation of Nrf2 protein
(Wruck et al. 2007).

Table 1 (continued)

Authors (year) Disorder Study model Dosage Mechanism

• Increasing BDNF and decreasing
GFAP levels

• Modulation of neuroinflammation,
oxidative stress, and glial activation

Siracusa et al. (2015) PD In vivo: MPTP-induced
mice model

co-ultraPEA/LUT:
1 mg/kg

• Decreasing TH positive neurons
• Decreasing neuroinflammation level
• Improving autophagy process

In vitro: SH-SY5Y
neuroblastoma cells

co-ultraPEA/LUT:
0.1–100 μM

• Decreasing cell death rate
• Improving autophagy process by

increasing the levels of p62 and
beclin-1

BDNF: brain-derived neurotrophic factor; BBB: blood–brain barrier; pMCAO: permanent focal cerebral ischemia; MCAO: middle cerebral artery
occlusion rat model; PTZ: pentylenetetrazole; MEST: maximal electroshock test; I/R: ischemia/reperfusion; PKA: protein kinase A; CREB: Cyclic
adenosine monophosphate (cAMP) response element-binding protein; NOS: nitric oxide synthases; MMP: matrix metalloproteinases; GSH: glutathione
levels; SOD: superoxide dismutase; MDA: malondialdehyde; MBP: myelin basic protein; GFAP: glial fibrillary acidic protein; NF- B: nuclear factor
kappa B; 6-OHDA: 6-hydroxydopamine; KEAP1: Kelch-like erythroid cell-derived protein with CNC homology [ECH]-associated protein 1; GCLC:
glutamate cysteine ligase (GCL) consisting of a catalytic subunit; HO-1: heme oxygenase-1; MPP+: 1-methyl-4-phenylpyridinium; TLR: Toll-like
receptor; MAPK: Mitogen-activated protein kinase; PGE2: prostaglandin E2; GAP-43:growth-associated protein-43; ROS: reactive oxygen species;
LDH: lactate dehydrogenase; MPTP: 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine; TH: tyrosine hydroxylase; PD: Parkinson’s disease; STZ:
streptozotocin; EAE: experimental autoimmune encephalomyelitis; PBMC: peripheral blood mononuclear cells; hCBMCs: human umbilical cord
blood-derived cultured mast cells; MS: multiple sclerosis; Aβ: β-amyloid; AD: Alzheimer’s disease

Table 2 The neuroprotective mechanism of flavone luteolin against central nervous system disorders based on clinical studies

Authors (year) Disorder Study model Dosage Mechanism

Caltagirone
et al. (2016)

Stroke patients Clinical trial: 250
patients with stroke

Glialia® (composed of 700 mg
of co-ultramicronized PEA and
70 mg of luteolin, every 12 h)

• Improvement in score of Canadian
neurological scale

• Improvement in mini-mental state examination
(MMSE)

• Improvement in muscle spasticity evaluated
by the Ashworth scale

• Lower values of numeric rating scale (NRS)
used for evaluation of pain intensity

• A significant improvement in Barthel index
(patients’ mobility and independence in daily
living activities)

MCAO: middle cerebral artery occlusion rat model

J Mol Neurosci (2018) 65:491–506 495



Moreover, LUT displays anti-inflammatory and neuropro-
tective activities in many studies (Ren et al. 2013; Wang et al.
2011). It represents neuroprotection in some animal models
such as TBI (Xu et al. 2014a), AD (Paterniti et al. 2014) and
anti-inflammation in the model of spinal cord injury (Paterniti
et al. 2013). In previous studies, it has been shown that LUT
can prevent neuroinflammation by suppressing the microglial
inflammation (Andersen and Markham 2005). Moreover, the
flavonoid LUT inhibits the lipopolysaccharide (LPS)-stimu-
lated nuclear factor kappa B (NF-κB) pathway (Kim and
Jobin 2005; Lee et al. 2009; Weng et al. 2015). In addition,
LUT has been shown to attenuate microglial activation and
mediate brain-derived neurotrophic factor (BDNF)-like be-
havior both in vitro and in vivo (Lin and Harnly 2010; Patil
and Sathaye 2015; Patil et al. 2014).

Based on these findings, LUT might protect neural cells
against impairments included in different conditions. In this
study, we reviewed the different sources of literature such as
PUBMED to show the mechanisms of LUT neuroprotection
against neural damages and subsequent related complications.
In this review, we tried to investigate the effects of LUT on
central nervous system (CNS) disorders in different types of
studies such as animal studies, case reports, open studies and
double-blind studies, etc.

Luteolin Source, Structure
and Neuropharmacological Features

Among the different varieties of flavonoids with pharmaco-
logical and biological features, LUT with antioxidant activity
(Fig. 1) is one of the most common flavonoids present in
vegetables and various fruits such as parsley, celery, perilla
leaf, chamomile tea and green pepper (Leung et al. 2006;
Paladini et al. 1999; Wang et al. 2005a). Flavonoids (2-phe-
nyl-benzo-ã-pyrones), which are extensively distributed in
plant-based foods, are a large group of polyphenolic natural

compounds (Andersen and Markham 2005; Shahidi et al.
2008). Flavonoids propose a variety of biological and phar-
macological characteristics, including antiallergic, antiulcer,
cardiovascular protection, antiviral, anticancer and anti-
inflammatory potentials (Dehghan et al. 2007). Moreover, it
has been proven that LUT can freely cross the blood–brain
barrier (BBB) by modulating the Rho GTPases (Sawmiller et
al. 2014; Fig. 2).

According to the literature, most of the flavonoids have free
radical scavenging and metal chelating activities (Dehghan and
Khoshkam 2012).Moreover, LUT has been recorded to exhibit
anti-inflammatory, antioxidant and anti-cancer properties
(Hougee et al. 2005; Romanova et al. 2000). It mediates these
actions by different mechanisms such as inhibiting the produc-
tion of nitric oxide (NO; Kim et al. 1999). LUT is a potent
inhibitor of human mast cell activation by suppressing the pro-
tein kinase C (PKC) activation and Ca2+ influx (Chowdhury
and Rasmusson 2002). LUT has been introduced as an immune
reactions modulator, as several studies have compared the anti-
inflammatory features of LUTwith other flavonoids like quer-
cetin, genistein or hesperetin (Comalada et al. 2006; Xagorari et
al. 2001). In addition, LUT has been found to possess anti-
inflammatory and neuroprotective activities in microglia
(Dirscherl et al. 2010) to reduce the peroxide-induced neuro-
toxicity (Pavlica and Gebhardt 2010), N-methyl-4-phenyl-
pyridinium (MPP+)-induced neurotoxicity (Wruck et al.
2007) and amyloidβ (Aβ) protein (Cheng et al. 2010) in vitro.

LUT inhibits the production of tumor necrosis factor-α
(TNF-α), interleukin (IL)-6, IL-8 and tryptase (Kempuraj et
al. 2005; Park et al. 2008), and likewise for leukotrienes, his-
tamine and prostaglandin D2 from human cultured mast cells
(Kimata et al. 2000).Moreover, LUTsuppresses the activation
of IL-1-stimulated mast cells (Kandere-Grzybowska et al.
2006) leading to selective release of IL-6. LUT also inhibits
release of IL-6 by microglia cells (Jang et al. 2008) and astro-
cytes (Sharma et al. 2007). In addition, LUT permeates
through the BBB, shows anti-amnesic effects against the tox-
icity of amyloid (β25–35) in mice and attenuates scopolamine-
induced amnesia in rats (Liu et al. 2009; Tsai et al. 2007). LUT
also activates cyclic AMP (cAMP) response element-binding
protein (CREB), which is the mechanism underlying its ef-
fects on the facilitation of long-term potentiation (LTP) and
memory enhancement (Xu et al. 2010). In addition, LUT pro-
tection of neural cells against induced neurotoxicity via the
upregulation of Nrf2 protein has received much attention
(Wruck et al. 2007). Different pharmacological features have
been demonstrated for LUTas follows: (1) the structural com-
ponent of LUT being similar to other active flavonoids, (2) the
activity of some of its glycosylated derivatives (Coleta et al.
2006; Coleta et al. 2008; Fernández et al. 2006) and (3) the
similar flavonoid effects in the CNS. The effects of LUT in the
CNS are complex and involve different mechanisms such as
interaction with the benzodiazepine-binding sites (BDZ-bs) atFig. 1 Molecular structure of luteolin
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the gamma-aminobutyric acid (GABA)A receptors (Goutman
et al. 2003). Despite the low affinity for the BDZ-R shown in
vitro, Coleta et al. (2008) proposed that the CNS activity of
LUT is apparently associated with its anxiolytic-like effects
via a GABAergic mechanism. Their results suggested that
there is a possible interaction between LUT and other neuro-
transmitter systems (Coleta et al. 2008).

It has been demonstrated that the levels of malondialdehyde
(MDA), a marker of lipid peroxidation and the activity of
glutathione peroxidase (GSH-Px) were restored after treat-
ment with LUT in heroin-induced oxidative damage in a
mice brain (Qiusheng et al. 2005). Inflammatory responses
of LUT and LUT-7-O-glucoside by modulatory impacts of
NF-κB/AP-1/PI3K-Akt signaling cascades have been

Fig. 2 Different mechanisms of luteolin action in central nervous system
disorders. Inhibition of autophagy by upregulation of beclin-1 and LC3II;
Downregulation of proinflammatory factors (IL-1b and TNF-a);
Inhibition of the activity of NF-kB; Upregulation of mTOR and
p70S6K; Upregulation of Bcl-2 and downregulation of Bax; Inhibition
of the activity of NF-κB, TLR4 and TLR5; Decreasing the astrocyte
activation by reducing the expression of GFAP; Increasing MMP2;
Suppressing the MBP as the main MS antigen; Modulation of factors of
cell migration such as MMP-9 and TIMP-1; Increasing the production of
IFN- γ; Reducing inducible NO synthase; Suppression of ERK1/2-
activation; Increasing the expression of HO-1 levels; Decreasing the

transcription of p53 target genes including p21, PUMA and
GADD45α; Inhibition of Akt phosphorylation; Anti-oxidative activity
(increasing the SOD and GSH-Px levels, and reducing MDA levels);
Decreasing the increased activation of caspase-3. MBP: myelin basic
protein; TLR: Toll-like receptor; NF- B: nuclear factor kappa B; GFAP:
glial fibrillary acidic protein; BDNF: brain-derived neurotrophic factor;
PKA: the protein kinase A; NO: nitric oxide; MMP: matrix
metalloproteinases; GSH: glutathione levels; SOD: Superoxide
dismutase; MDA: malondialdehyde; 6-OHDA: 6-hydroxydopamine;
HO-1:heme oxygenase-1
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confirmed in vitro (Park and Song 2013). In addition, via a
reduction in the intracellular Ca2+ levels, LUT also sup-
presses the expression of TNF-α, IL-6, IL-8 and cycloox-
ygenase (COX)-2 (Lamy et al. 2015). LUT was reported to
inhibit IL-1β function (believed to contribute to glioblas-
toma cell proliferation) which triggered the expression of
the inflammation biomarker of COX-2 in U-87 glioblasto-
ma cells. In a concentration-dependent manner, it also
inhibited IL-1β-mediated phosphorylation of inhibitor of
NF-κB, inhibitor of κB (IκB), c-Jun amino-terminal kinase
(JNK) and extracellular signal-regulated kinase (ERK) 1/2
(Lamy et al. 2015).

The Beneficial Effects of Luteolin on Different
Nervous System Disorders

Different Mechanisms of Luteolin Against Traumatic
Brain Injury

TBI occurs in acute head trauma in events such as falling,
motor vehicle accidents or accidental firearm injury. It has
been recognized that TBI is a major risk factor for AD (Guo
et al. 2000; O'Meara et al. 1997; Plassman et al. 2000).
Furthermore, it is attributed to diminished or altered state of
consciousness. In addition, it affects the quality of life and
expectancy and has been introduced as a common leading
cause of morbidity (Brooks et al. 2013). While the outcome
of TBI is majorly related to the severity of the primary insult, it
is aggravated by secondary events caused by pathological
processes, including oxidative stress, excitotoxicity, inflam-
mation and enhanced vascular permeability (Werner and
Engelhard 2007). Although different approaches have been
tried to cure the secondary insult and improve the outcome
of TBI, most of these approaches have failed in clinical trials
because of targeting a single injury mechanism of TBI (Sun et
al. 2015). It has been proven that LUT, which belongs to the
flavonoid family, provides neuroprotection in a variety of neu-
rological diseases, as it is abundant in fruits and vegetables.
With no or minimal serious side effects, LUT can treat or
prevent the brain against damages following TBI, including
neuronal death and subsequent neurological deficits (Dajas et
al. 2013). Nrf2–ARE has been proven to be activated in many
neurological diseases (Chen et al. 2011; Wang et al. 2007a).
This pathway has been introduced as an endogenous and com-
pensatory adaptation against TBI (Yan et al. 2008).

Basic Research Studies (In Vitro & In Vivo)

According to the findings of Xu et al. (2014a, b), LUTwith a
purity of more than 98% (Shanghai Yuanye Bio-Technology
Co., Ltd., Shanghai, China) cured secondary brain impair-
ments following TBI in a modified Marmarou′s weight-drop

model of mice by increasing the neuron survival neuronal
apoptosis and improving neurological deficits. They used
LUT in three doses of 10, 30 and 50 mg/kg in their in vivo
and three doses of 5, 10 and 25 mM in their in vitro studies.
Their results showed that administration of LUT reduced ox-
idative stress by modulating the LDA levels, GSH-Px activity
and reactive oxygen species (ROS) production. Moreover, in
their study, LUT upregulated the translocation of Nrf2 in both
in vitro and in vivo investigations. In addition, administration
of LUT failed to provide neuroprotective effects following
TBI in transgenic Nrf2(−/−) mice; yet it provided neuropro-
tective effects possibly via the activation of the Nrf2-ARE
pathway (Xu et al. 2014a, b). In another study, Xu et al.
(2014a, b) demonstrated that treatment with LUT (30 mg/
kg/IP for 15 days, Shanghai Yuan ye Bio-Technology Co.,
Ltd., Shanghai, China) protected mice from TBI by enhancing
the autophagy via expressions of autophagic markers and re-
ducing inflammation by decreasing the nuclear accumulation
of P65. Moreover, LUT decreased mRNA and protein expres-
sions of TNF-α and IL-1b, pro-inflammatory factors.
Moreover, LUT decreased BBB disruption, neuronal degen-
eration and alleviated brain edema (Xu et al. 2014b). Cordaro
et al. (2016) evaluated the neuroprotective effects of co-
ultramicronized compound PEA/LUT (co-ultraPEA/LUT, un-
known source, 1 and 10 mg/kg/PI) on secondary events fol-
lowing TBI including inflammatory process and autophagy.
Their findings suggest that co-ultraPEA/LUT can counter-
act the neurodegeneration and neuroinflammation induced
by TBI (Cordaro et al. 2016). In a study by Sawmiller et al.
(2014), they proved that LUT (unknown source) reduced
AD pathologies induced by TBI in Aβ-depositing Tg2576
mice. In this study, they observed that LUT significantly
terminated the accelerated pathologies including increased
pro-inflammatory cytokines, deposition of Aβ, phospho-
tau and also activation of glycogen synthase-3 (GSK-3;
Sawmiller et al. 2014).

No clinical trial studies have been investigated to demon-
strate the neuroprotective effects of LUT against TBI yet.
However, these types of studies are suggested to design and
use this agent in a clinical setting to manage the disorders
induced by TBI, based on the approved neuroprotective prop-
erties of LUT in animal models of TBI.

Different Mechanisms of Luteolin Against Cerebral
Ischemic Stroke

Cerebral stroke is one of the common causes of neurological
disabilities and the second leading cause of death worldwide
(Corbett et al. 2015; Thrift et al. 2014). Cerebral ischemic
stroke results from the sudden reduction or obstruction of
blood flow to a region of the brain, resulting in a correspond-
ing loss of neurons and subsequent neurological dysfunction
including different partial paralysis, difficulties with memory,
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learning, thinking, language and movement (Mokhtari et al.
2017). Although the restoration of blood circulation to the
ischemic region is the current approach for treatment of clin-
ical stroke, this can cause additional impairment and aggravate
neurocognitive deficits. Inflammation is introduced as a key
characteristic of brain ischemia (Kawabori and Yenari 2015)
with major immune system players, namely mast cells (Jin et
al. 2009; Silver and Curley 2013) and microglia (Chew et al.
2006; Hanisch and Kettenmann 2007) which act as early re-
sponders. These reactions lead to the release of pro-
inflammatory mediators and infiltration of other inflammatory
cell populations such as T-cell subsets, neutrophils and
monocyte/macrophages into the region of the brain with an
ischemic condition. In addition, astrocytes activities in the late
phase cause the formation of glial scar in the boundary zone of
the ischemic core (Sofroniew and Vinters 2010). LUT dis-
plays specific anti-inflammatory effects, which are only de-
scribed by its antioxidant capacities. The anti-inflammatory
activity of LUT includes activation of anti-oxidative en-
zymes, suppression of the NF-κB pathway, and inhibition
of pro-inflammatory substances (Middleton et al. 2000;
Seelinger et al. 2008). In this study, we reviewed the char-
acteristics of LUT to define the mechanisms of this agent
against the pathogenesis of cerebral ischemic stroke based
on different studies.

Basic Research Studies (In Vitro & In Vivo)

Different studies have been conducted to determine the mech-
anism of LUT against pathological changes induced by brain
ischemia. Qiao et al. (2012a, b) evaluated the neuroprotective
effects of LUT (Rongsheng Biotechnology Co, Xi’an, Shanxi,
China, purity of more than 99%) in experimental permanent
ischemic stroke 1 or 3 days after surgery and showed that
different doses of 10 (middle dose) or 25 mg/kg (high dose)
immediately upregulated superoxide dismutase (SOD), cata-
lase (CAT), Bcl-2 and claudin-5 expression, down-regulated
Bax and MDA expression and also alleviated the brain water
content neurological deficits and volume of infarct 1 day and
3 days after permanent middle cerebral artery occlusion
(pMCAO). They concluded that LUT protected the brain from
ischemic damage by decreasing oxidative stress and apoptosis
(Qiao et al. 2012a, b). In another study, Qiao et al. (2012a, b)
confirmed that LUT (10 and 25 mg/kg/IP, Rongsheng
Biotechnology Co, Xi’an, Shanxi, China) could protect rat
brains against focal ischemia by upregulation of the p-ERK
expression and downregulation of NF-κB, Toll-like receptor-4
(TLR-4), TLR5 and p-p38MAPK expression in the pMCAO
rat model (Qiao et al. 2012a, b). Zhang et al. (2013a, b) re-
ported that 4 mg/kg of LUT, a flavonoid extracted from Ixeris
sonchifolia Hance, provided neuroprotective effects by
antioxidant- and Nrf2-inducing activities which resulted in
inhibition of neuronal cell death and reducing the infarct area

in the rat model of MCAO (Zhang et al. 2013a, b).
Additionally, Fang et al. (2009) evaluated the LUT (unknown
source) underlying mechanism against ischemia/reperfusion
injury and demonstrated that treatment of the cultured neurons
of oxygen-glucose deprivation/reperfusion model with LUT
increased the cell viability, decreased the apoptotic cells per-
centage and leakage of lactate dehydrogenase (LDH) rate in a
dose-dependent manner (1–100 μmol/L). LUTwith a dose of
200 mg/kg/ IP markedly prevented the decrease of ATPase
activities in a rat model of global cerebral ischemia/
reperfusion (Fang et al. 2009). Moreover, Caltagirone et al.
(2016) proved that co-ultraPEA/LUT (Glialia®, 1 mg/kg 1 h
after ischemia and 6 h after reperfusion) synergistically im-
proved the neurological index, reduced the infarct area, neu-
ronal cell death, astrocyte activation and mast cell-mediated
toxicity, regulated the GDNF- and brain-derived neurotrophic
factor (BDNF) expression and elicited neuroprotection in the
MCAo model of brain ischemia (Caltagirone et al. 2016).

Clinical Research

Using LUT for curing patients with cerebral ischemia has
been evaluated in clinical studies. In a cohort of 250 stroke
patients undergoing neurorehabilitation between April 2013
and June 2014, Caltagirone et al. (2016) treated the patients
with Glialia® (composed of co-ultramicronized 700 mg of
PEA and 70 mg of luteolin, in microgranular form every
12 h) for 60 days. Their results showed improvement in dif-
ferent scores such as Canadian neurological scale (CNS),
mini-mental state examination (MMSE), Ashworth scale, nu-
meric rating scale and Barthel index of stroke patients receiv-
ing Glialia® for 60 days (Caltagirone et al. 2016).

Different Mechanisms of Luteolin Against Epilepsy

The term epilepsy has been used for a group of disorders that
involve hyperexcitable neurons and is described by recurrent
spontaneous seizures. It has been suggested that imbalance
between excitatory glutamate-mediated neurotransmission
and GABA-mediated inhibition leads to epilepsy (Diniz et
al. 2015; Grosso et al. 2013). It is usually related to dysfunc-
tions of the brain which lead to numerous behavioral comor-
bidities (Singh et al. 2012). After the seizure activity during
epilepsy, mechanisms of antioxidant defense are reduced in
the brain and amount of free radicals is enhanced, which fur-
ther induces the oxidative stress. During epilepsy, seizure ac-
tivity diminishes the mechanisms of antioxidant protection in
the brain and enhances the amount of free radicals, which
further prompts the oxidative stress. Free radicals (FRs) can
be defined as molecules or molecular fragments that contain
one or more unpaired electrons (Cardenas-Rodriguez et al.
2013). These free radicals are involved in lipid peroxidation,
brain edema, and epilepsy, including coma and death
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(Ramalingam et al. 2013). LPS-mediated activation of Toll-
like receptor-4 (TLR-4) receptors can produce epileptiform
discharges that can be attenuated by IL-1 receptor antagonists
(Rodgers et al. 2009). Inflammation, in the form of microglial
activation, generation of the cytokine interleukin 1β (IL-1β)
and stimulation of TLR-4 have been reported in epilepsy pa-
tients (Maroso et al. 2010). Acute LUTadministration has also
been shown to attenuate oxidative stress in neuroblastoma
cells (Zhou et al. 2011). Anxiolytic-like effects of LUT have
been reported following oral and intraperitoneal administra-
tion in mice, suggesting that it can cross the BBB (Coleta et al.
2008). In this part, we reviewed the features of LUT to define
the mechanisms for this agent against the pathogenesis of
epilepsy according to different investigations.

Basic Research Studies (In Vitro & In Vivo)

Birman et al. (2012) demonstrated that pretreatment with LUT
(10 mg/kg/IP, Department of Pharmacognosy, Faculty of
Pharmacy, Istanbul University) decreased seizure frequency
and enhanced reactions of nitric oxide synthases (iNOS) and
matrix metalloproteinases (MMP2) in a rat hippocampus after
pentylenetetrazole (PTZ) administration (indication of MMP
and NOS activities; Birman et al. 2012). In addition, the ef-
fects of acute and chronic intraperitoneal LUT injections were
evaluated by Shaikh et al. (2013) in four mouse seizure
models of 1) maximal electroshock test (MEST), 2) the 6-Hz
model, 3) PTZ and 4) second hit PTZ test in the chronic stage
of the pilocarpine model. Their study showed that LUT (un-
known source) did not exert any significant anti- or pro-
convulsant effects after a single dose in the 6-Hz (0.3–
10 mg/kg/IP, 3–4 days), PTZ (3 mg/kg/IP) and MEST (0.3–
20 mg/kg/Ip) tests and following repeated daily dosing
(10 mg/kg/IP) in the 6-Hz model. While TLR4 mRNA levels
were enhanced 3 days after pilocarpine-induced status epilep-
ticus, they remained unaltered in the chronic stage of the mod-
el. No effect was observed in the second hit PTZ test following
repeated LUT injections. These findings suggest that seizure
threshold may be independent of TLR4 signaling (Shaikh et
al. 2013). Zhen et al. (2016) examined the impacts of LUT (50
or 100 mg/kg/day by oral administration, purity N 98%, CAS:
ZL201125, Nanjing Zelang Biotechnology Company,
Jiangsu, China) 30 min before PTZ injection on the brain of
mice in PTZ-induced seizures. They expressed that LUT re-
duced the seizure severity and cognitive impairment, decreas-
ing the oxidative stress and subsequent neuronal damages and
enhanced phosphoactivation of the protein kinase A (PKA)
and CREB and upregulated BDNF expression in the hippo-
campus region (Zhen et al. 2016). Tambe et al. (2017)
assessed the effects of pretreatment with LUT (5, 10 and 20
mg/kg/IP, isolated from Eclipta alba leaves) in PTZ-induced
acute and chronic epilepsy models in mice. They found that
PTZ-induced kindling was inhibited by LUT (5, 10 and 20

mg/kg/IP) in a dose-dependent manner. LUT decreased the
MDA level and restored levels of reduced glutathione
(GSH) in these animals (Tambe et al. 2017).

Different Mechanisms of Luteolin Against Multiple
Sclerosis

In young adults, multiple sclerosis (MS), as a T cell-
mediated demyelinating disease of CNS (Verbeek et al.
2004), is a leading cause of disability and most common
inflammatory disease of CNS. Based on strong evidence, it
has been suggested that MS pathologically is an autoim-
mune disease that affects the oligodendrocytes or CNS
myelin which is mainly mediated by type 1 T helper
(Th1) cell responses to CNS myelin antigens (Alamouti
et al. 2015; Milo and Kahana 2010). Interferon-beta
(IFN-β), the most effective cure for MS with an unclear
mechanism of action, leads to asymptomatic relief in a type
of MS in patients called relapsing-remitting MS (RRMS)
and administered only parenterally with different undesir-
able adverse impacts (Bertolotto et al. 2015). LUT as an
important member of the flavonoid family has been report-
ed to have immunomodulatory effects that may be benefi-
cial in curing neurodegenerative diseases (Chen et al.
2004) such as MS with autoimmune pathogenesis mediat-
ed by T cells (Stadelmann 2007). Based on the findings
from different in vitro studies, LUT could suppress T-cell
activation (Chen et al. 2004) and decrease the proliferation
of autoreactive T cells induced by murine encephalitogen
proteolipid protein peptide (PLP) as a candidate
autoantigen in MS and an alpha B-crystallin autoantigen
in experimental autoimmune encephalomyelitis (EAE;
Verbeek et al. 2004). In this section, we reviewed the ef-
fects of LUT on pathogenesis of MS to define the mecha-
nisms for it based on different evaluations:

Basic Research Studies (In Vitro & In Vivo)

In an in vitro study, Kempuraj et al. (2008) evaluated the
effects of LUT (Sigma) on the human umbilical cord blood-
derived cultured mast cells (hCBMCs) and Jurkat T cells ac-
tivated by myelin basic protein (MBP) and reported that LUT
effectively suppressed the main MS antigen, MBP, which in-
duced the activation of human mast cells at 10 and 100 μm. In
addition, LUT (1–100 μm) could concentration-dependently
inhibit the mast cell-dependent Jurkat T cell activities and
stimulate mast cells to produce IL-2, which are associated
with the pathogenesis of autoimmune diseases, such as MS,
atopic dermatitis and psoriasis (Kempuraj et al. 2008).
Moreover, Sternberg et al. (2009) demonstrated that LUT
(Sigma Aldrich, St. Louis, MO, USA) also had immunomod-
ulatory impacts on isolated peripheral blood mononuclear
cells (PBMC) in MS patients when incubated with this
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flavonoid. Besides, LUT treatment proposed the additive ef-
fects in modulation of pro-inflammatory cytokines secretion
such as TNF-α, IL-1β and cell proliferation and as well as
effective factors of cell migration, MMP-9 and TIMP-1
(Sternberg et al. 2009). Verbeek et al. (2004) studied the ef-
fects of different flavonoids such as LUT on human and mu-
rine autoreactive T cells [culturing the spleen cells and lymph
node cells 10 days after 40 μg of PLP (139–151) injection]
and showed that LUT and apigenin (different concentrations
of 3.5, 17.5 and 35 μM, Kaden Biochemicals, Hamburg,
Germany) strongly prevented the murine and human T-cell
responses in the production of interferon-gamma (IFN-γ)
and their in vitro antigen-specific proliferation (Verbeek et
al. 2004). In another study, Verbeek et al. (2005) demonstrated
that oral flavonoids such as LUT and structurally similar fla-
vonoids (solution of 2.5 mg/ml/daily, Kaden Biochemicals,
Hamburg, Germany) delayed recovery from experimental au-
toimmune encephalomyelitis (EAE) as a model of MS in SJL
mice. Both LUT and apigenin enhanced the production of
interferon-gamma (IFN-γ) and inhibited the proliferative re-
sponses (Verbeek et al. 2005). Furthermore, in a commentary
study, Theoharides (2009) recommended that LUT, as a ther-
apeutic option with antioxidant and anti-inflammatory effects,
inhibited the mast cells and T cells implicated in the treatment
and pathogenesis of MS (Theoharides 2009).

Different Mechanisms of Luteolin Against Alzheimer’s
Disease

AD, as the most common leading cause of aging-related de-
mentia, is a progressive neurodegenerative disease that usual-
ly starts slowly in the CNS (Zhu et al. 2013). AD is charac-
terized by irreversible loss of neurons. This disorder clinically
causes gradual deterioration in intellectual abilities including
cognition and memory and leads to neuropsychiatric symp-
toms (Zhu et al. 2013). Histopathologically, AD is associated
with the loss of cortical neurons and synapses and forming the
intracellular hyperphosphorylated tau-containing neurofibril-
lary tangles (NFTs) fragments (Terry et al. 1991). In this neu-
rodegenerative disease, β-amyloid (Aβ) fragments, as major
elements of extracellular neurotic plaques, contain between 39
and 43 amino acids which form the core constituent of these
plaques (Masters et al. 1985). Aβ fragments are generated
from a sequential cleavage of amyloid precursor protein
(APP) by γ-secretase and β-site APP cleavage enzyme
(Choi et al. 2014). Although the exact mechanism mediating
neuronal death induced by Aβ is unknown, oxidative stress,
free radical generation and neuroinflammation appear to play
prominent roles in the pathogenesis of AD. Aβ can addition-
ally induce cell death through excitotoxicity and neuroinflam-
mation (Subasinghe et al. 2003). Recently, there has been a
concerted effort to develop drugs to ameliorate the different
defects observed in AD worldwide. Many studies have

demonstrated that compounds with free-radical scavenging
activities can attenuate Aβ-induced neuronal death (Choi et
al. 2014; Di Domenico et al. 2015). In this section, we
reviewed the effects of LUT on pathogenesis of PD in differ-
ent studies.

Basic Research Studies (In Vitro & In Vivo)

In a similar in vitro study, Zhou et al. (2012) showed that LUT
attenuated zinc-induced tau phosphorylation at Ser262/356
(an in vitro model of AD) in a dose-dependent manner in
SH-SY5Y cells (Zhou et al. 2012). Recently, Choi et al.
(2014) showed that LUT (different concentrations of 10, 20,
40 and 80 μM, Sigma-Aldrich, St. Louis, MO, USA) could
decrease the Aβ-induced neurotoxicity inmurine cortical neu-
rons (isolated from fetal mice) by its potent antioxidant activ-
ity (Choi et al. 2014). LUT can alleviate spatial learning and
memory defect in AD animal models. It also prevents the
thickness reduction in the pyramidal cell layer of hippocampal
CA1. According to the findings ofWang et al. (2016a, b), they
suggested that LUT (10 and 20 mg/kg) improved memory
impairment and prevents the decrease of the CA1 pyramidal
cell layer in a streptozotocin (STZ)-induced AD rat model.
They declared that these neuroprotective effects of LUT
against AD pathogenesis maybe due to the anti-oxidative
characteristic of this agent by inhibiting the production of free
radicals and dispersing Aβ plaques (Wang et al. 2016a, b). In
both in vitro and ex vivo organotypic models of AD, Paterniti
et al. (2014) investigated the impacts of co-ultraPEA/LUT on
the pathogenesis of AD. They pre-treated neuron-like cells
differentiated from SH-SY5Y cells with different doses of
co-ultraPEA/LUT (27, 2.7 and 0.27 μM, unknown source)
and used Aβ1–42 stimulation (1 μM) for induction of AD
(a suitable in vitro model to investigate the pathogenesis of
AD). In an ex vivo organotypic model, mice hippocampal
slice cultures were prepared and pre-treated with different
doses of co-ultraPEA/LUT (27, 2.7 and 0.27 μM, unknown
source) and subsequently incubated with Aβ1–42. Treatment
with co-ultraPEA/LUT improved cell viability, significantly
reduced inducible NO synthase and glial fibrillary acidic pro-
tein (GFAP) expression, restored neuronal synthase of NO and
BDNF and subsequently reduced apoptosis. In addition, their
results proved that the combination therapy with co-ultraPEA/
LUT could attenuate neuroinflammation in an experimental
AD model (Paterniti et al. 2014).

Different Mechanisms of Luteolin Against Parkinson’s
Disease

PD is a common and slowly progressive neurodegenerative
disorder. As pathologic events, degeneration of dopaminergic
neurons occurs in the striatum in the substantial nigra pars
compacta (SNpc), a brain area involved in controlling
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movements (Meissner et al. 2011). In addition, the presence of
abnormal fibrillary aggregations of α-synuclein (α-Syn) pro-
tein within neurons, known as Lewy bodies, have been intro-
duced as other pathological characteristics of PD. Based on
evidence, oxidative stress and neuroinflammation play pivotal
roles in the neurodegeneration associated with PD and the
progression of disease (Jenner and Olanow 1996; Taylor et
al. 2013; Zhang et al. 1999). It has been reported that oxidative
stress impairs lipids, DNA and proteins of neurons along with
decreased SOD, CATand GSH-Px levels (Jenner and Olanow
1996). PD is commonly characterized by a wide range of
cardinal features, including tremor, slowness of movement,
rigidity and postural instability as a result of selective and pro-
gressive degeneration in the dopaminergic neurons of SN (Liu
and Hong 2003; Wang et al. 2005b, 2007b). Based on our
knowledge, the related data on the pathogenesis of PD have
been found from cell culture studies and experimental models
and using the neurotoxins (e.g. 1-methyl-4-phenylpyridinium
(MPP+ ) , 6 - h y d r o x ydop am i n e ( 6 -OHDA) a nd
popolysaccharide (LPS); Bové et al. 2005). 6-OHDA with
structural features analogous to noradrenaline and dopamine,
induces neural death via the generation of cytotoxic quinines
and free radicals (Saito et al. 2007). As a therapeutic agent, LUT
has been used in different studies to reduce the pathogenesis of
PD.

Basic Research Studies (In Vitro & In Vivo)

In a recent study, Wruck et al. (2007) demonstrated that LUT
(20 μM, Sigma-Aldrich Co., St. Louis, MO, USA) protected
rat glial C6 and neural PC12 cells against MPP+-induced cy-
totoxicity (an in vitro model of PD) through activation of Nrf2
and suppression of ERK1/2 activation known as a Kelch-like
ECH-associating protein 1 (Keap1)-Nrf2-ARE pathway de-
pendent factor (Wruck et al. 2007). Additionally, Chen et al.
(2008) found that LUT (1, 2.5 and 5 μM, Sigma-Aldrich Co.,
St. Louis, MO, USA) protected dopaminergic neurons from
LPS-induced injury through suppression of rat microglial ac-
tivation isolated from whole brains of one-day-old Sprague-
Dawley rats. In their study, the neuroprotective effects of LUT
were investigated evaluating [(3)H]dopamine uptake and
counting tyrosine hydroxylase (TH)-immunoreactive cells in
primary mesencephalic neuron-glia cultures exposed to LPS
treatment. LUT inhibited the production of proinflammatory
factors such as NO, superoxide and TNF-α in these cells
(Chen et al. 2008). Moreover, Lin et al. (2010) implicated
the cytoprotective and neurotrophic actions of LUT (10 and
20μM, Sigma-Aldrich Co., St. Louis,MO, USA)which dose-
dependently enhanced the expression of the growth-
associated protein-43 (GAP-43) and differentiation marker
in PC12 cell-induced cytotoxicity by serum withdrawal.
Furthermore, LUT reduced apoptosis, enhanced the expres-
sion of HO-1 levels and increased the binding of Nrf2 to

ARE, as a stimulator sequence of HO-1 promoter (Lin et al.
2010). Park and Song (2013) demonstrated that LUT (5, 10,
25 and 50 μM, Sigma-Aldrich Co., St. Louis, MO, USA) and
LUT-7-O-glucoside (5, 10, 25 and 50 μM, Sigma-Aldrich
Co., St. Louis, MO, USA) inhibit LPS-induced inflammatory
responses through modulation of NF-κB/AP-1/PI3K-Akt sig-
naling cascades in RAW264.7 cells (Park and Song 2013). Hu
et al. (2014) revealed that treatment with LUT (20 μM,
Sigma-Aldrich Co., St. Louis, MO, USA) attenuates cytotox-
icity in 6-OHDA-induced PC12 cells (an in vitro model of
PD) by reducing the oxidative stress and caspase-3 activation.
Likewise, LUT reduced the transcription of p53 target genes
including p21, PUMA and GADD45α. In a similar finding,
they demonstrated that this agent modulated the activated
Keap1-Nrf2-ARE pathway mediated by 6-OHDA, leading
to a reduction in the expression of glutamate cysteine ligase
(GCL) consisting of a catalytic subunit (GCLC) and heme
oxygenase-1 (HO-1; Hu et al. 2014). Zhu et al. (2014) showed
that LUT (20 μM, purity >98%; molecular weight, 286.24;
chemical formula C15H10O6) inhibits SH-SY5Y cell apoptosis
through the inhibition of TLR-4, NF-κB, mitogen-
activated protein kinase (MAPK) and Akt pathways in
LPS-stimulated co-cultured murine microglial BV2 cells
(Zhu et al. 2014). Moreover, Lin et al. (2015) proved that
LUT (10, 25 and 50 μg/ml, Chengdu Must Biotechnology
Co., Ltd. Chengdu, China, purity >98.0%) induced protec-
tion against the H2O2-induced apoptosis cell death in PC12
neurons by inhibiting the decrease in cell viability, gener-
ation of ROS and releasing the LDH. In addition, the SOD
and GSH-Px levels were increased after administration of
LUT; however, MDA levels were reduced. Furthermore,
LUT enhanced the Bcl-2-to-Bax ratio and increased the
phosphorylation of Akt (Lin et al. 2015). Wu et al.
(2017) demonstrated the ameliorative properties of dietary
flavonoids LUT (20 μM, National Institutes for Food and
Drug Control, Beijing, China) which attenuated the in-
creased activation of caspase-3, ROS, expression of γ-
H2AX and α-Syn in an in vitro model of PD induced by
arsenite in neural PC12 cells (Wu et al. 2017).

Recently, Patil et al. (2014) demonstrated that LUT (10 and
20 mg/kg, A. K. Scientific, Inc., Union City, CA, USA) and
apigenin (5, 10 and 20 mg/kg, A. K. Scientific, Inc., Union
City, CA, USA) improves locomotor and muscular changes in
a mice model of PD exposed to neurotoxin 1-methyl-4-phe-
nyl-1,2,3,6- tetrahydropyridine (MPTP; 25 mg/kg) along with
probenecid (250 mg/kg). In addition, LUT and apigenin
protected the neurons of SN against the neurotoxicity of
MPTP by increasing the BDNF and decreasing the GFAP
levels. Their finding assumed that LUTwith enhancing poten-
tial of neurotrophic factors (NFs) could support the dopami-
nergic neurons of SN by modulating the oxidative stress, neu-
roinflammation and glial activation (Patil et al. 2014).
Siracusa et al. (2015) found that treatment with co-ultraPEA/
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LUT (1 mg/kg, Sigma-Aldrich, St, Louis, MO, USA) de-
creased the tyrosine hydroxylase (TH) immunopositive neu-
rons, neuroinflammation and stimulated autophagy process in
a mice model of PD induced by MPTP, actions which may
underlie its neuroprotective effect. Furthermore, their results
were confirmed via an in vitro study (co-ultraPEA/LUT con-
centration: 0.1–100 μM) on SH-SY5Y neuroblastoma cells.
Pretreatment with co-ultraPEA/LUT decreased cell death and
maintained high levels of p62 and beclin-1 (improving the
autophagy process; Siracusa et al. 2015).

Conclusion

CNS diseases are leading causes of mortality and morbidity
worldwide. Literature suggests that LUT has a therapeutic role
in the treatment of neurological disorders. Based on the
reviewed literature, LUT has antioxidant and neuroprotective
properties. It also suppresses different cell-signaling pathways
and regulates inflammation, in part, and may be responsible
for its beneficial impacts on damaged nerve functions in dif-
ferent neurological disorders. Although further studies includ-
ing clinical trials should be conducted to confirm this hypoth-
esis, LUT as a neuroprotective agent is a potential suitable
therapeutic candidate against different neurological disorders
such as AD, PD, TBI, etc.
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