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Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the
vasoactive intestinal polypeptide/glucagon/secretin family of peptides. PACAP and its three receptor subtypes are expressed in
neural tissues and in the eye, including the retina, cornea, and lacrimal gland. PACAP is known to exert pleiotropic effects on the
central nervous system and in eye tissues where it plays important roles in protecting against dry eye. This review provides an
overview of current knowledge regarding dry eye symptoms in aged animals and humans and the protective effects, mechanisms
of action. In addition, we also refer to the development of a new preventive/therapeutic method by PACAP of dry eye patients.
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Introduction

Pituitary adenylate cyclase-activating polypeptide (PACAP) and
its receptorswere first identified in the hypothalamus of the sheep
brain. It is well known that PACAP receptors are widely distrib-
uted throughout the central and peripheral nervous system aswell
as in many other peripheral organs and tissues of mammals and
other animals. We recently reported that PACAP plays important
roles in protecting against dry eye symptoms in mice
(Nakamachi et al. 2016). The present paper provides an overview
of the reported actions of PACAP in dry eye symptoms reported
to date. Moreover, based on our recent dry eye research, this

paper focuses on neuroprotective actions of PACAP and dis-
cusses the possibility of its clinical application. In the near future,
we will also refer to the establishment of PACAP for prevention
and treatment of dry eye patients.

PACAP and Its Receptors

PACAP is a neuropeptide that is first isolated from the sheep
hypothalamus in 1989 (Miyata et al. 1989). PACAP27 and
PACAP38 have 27 and 38 amino acid residues respectively,
and their biological activities are very similar. The amino acid
sequence of PACAP—a member of the vasoactive intestinal
polypeptide (VIP)/secretin/growth hormone-releasing hormone
family of peptides—shows a high degree of similarity to that of
VIP. PACAP and VIP share three different receptors—the
VPAC1- and VPAC2-receptors (VPAC1R, VPAC2R) and the
PAC1-receptor (PAC1R)—with different splice variants
(Arimura and Shioda 1995; Sherwood et al. 2000; Shioda and
Wascheck 2002; Harmar et al. 2012). The affinity of PAC1R for
PACAP is more than 1000 times higher than its affinity for VIP,
indicating that PAC1R is a relatively selective receptor for
PACAP. PACAP is primarily expressed in the nervous tissues,
while PAC1R is also widely distributed in the nervous tissues.

The biological and physiological actions of PACAP are
highly diverse, but one of the most extensively studied func-
tions of PACAP is its potent effects of neuroprotection in brain
and spinal cord injury (Shioda and Nakamachi 2015). PACAP
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was shown to protect neurons in vitro against various toxic
agents, such as glutamate, 6-hydoryoxydopamine, HIVenvel-
op protein, and oxidative stress. The neuroprotective efficacy
of PACAP in vivo has also been shown in various animal
models of neurological diseases, such as cerebral brain ische-
mia, Parkinson’s disease, and traumatic brain injury (Shioda
and Nakamachi 2015). PACAP has various physiological ac-
tivities the main ones amongwhich are as a neurotransmitter, a
neuromodulator and an immunosuppressive factor.

PAC1R is coupled to adenylyl cyclase (AC) and phospho-
lipase C (PKC). Through monophosphate AC (cAMP), the
binding of PACAP to PAC1R activates protein kinase A
(PKA), which can activate the mitogen-activated protein ki-
nase (MAPK) pathway (Shioda et al. 2016). PAC1R-binding
can also activate the MAPK pathway independently of AC
activation. PLC activation stimulates calcium (Ca2+) mobili-
zation and protein kinase C (PKC) activation. These and other
pathways regulated by PAC1Rs are different in distinct cell
types depending on the expressed splice variant, the PACAP
concentration, and other factors. VPAC receptors are coupled
to Gs proteins resulting in AC activation, while other signaling
pathways downstream or independent of cAMP are associated
with VPAC receptor activation depending on the tissues
where they are expressed (Banks et al. 1993, 1996; Birk et
al. 2007; Boni et al. 2009; Asghar et al. 2011).

PACAP in the Eye

PACAP is widely distributed in the brain and peripheral organs
and tissues inmammals (Arimura and Shioda 1995;Vaudry et al.
2000, 2009). In the rabbit eye, PACAP27- and PACAP38-like
immunoreactivity (LI) was studied by radioimmunoassay and
the highest concentrations are demonstrated in the iris sphincter
and ciliary body. The distribution pattern of PACAP-LL resem-
bles that of CGRP (calcitonin gene-related peptide)-LI (Wang et
al. 1995). PACAP-LI is demonstrated in the lacrimal gland, cho-
roid, iris, ciliary body, conjunctiva, sclera, cornea, and
retroocular arteries (Wang et al. 1995; Elsas et al. 1996).
PACAP is also shown to present in the trigeminal,
sphenopalatine, and ciliary ganglia (Elsas et al. 1996).

PACAP-LI is also found in themammalian retina. PACAP-LI
nerve fibers and their processes exist in the ganglion cell layer
(GCL), nerve fiber layer (NFL), and inner plexiform layer (IPL)
(Seki et al. 1997). At the ultrastructural level by use of electron
microscopy, PACAP-LI is demonstrated in plasma membrane,
rough endoplasmic reticulum and the cytoplasmicmatrix of neu-
rons in the inner nuclear layer (INL), in amacrine and horizontal
cells, and in the GCL (Izumi et al. 2000; Seki et al. 2000a,
2000b). PACAP-LI is also demonstrated in the mouse retina
and its expression pattern does not seem to be regulated by visual
experience (Mathis and Schaeffel 2007). The presence of
PACAP-LI is shown in the retinal tissue of other species

including the teleost, turtle, and chicken (Jozsa et al. 2001;
Reglodi et al. 2001; Grone et al. 2007).

PACAP Receptors in the Eye

A lot of studies have described the existence of PACAP
receptor-LI in the retina. The selective PACAP receptors are
responsible for approximately 80% of PACAP-binding in the
retina (Nilsson et al. 1994). The rest of 20% of it is no-
selective VIP/PACAP receptors (Nilsson et al. 1994). It is
not yet identified whether VPAC1R or VPAC2R is really
expressed in the retina. Radio-ligand labeling studies have
also shown the existence of PACAP-binding sites in the hu-
man fetal retina and PACAP receptor mRNAwas determined
by real-time PCR (RT-PCR) methods (Olianas et al. 1997).
Retinoblastoma cells are reported to express PACAP receptors
(Olianas et al. 1996). PACAP binding has been shown in the
choroid and iris and PACAP is shown to stimulate cAMP
formation (Nilsson et al. 1994).

PAC1Rand itsmRNAaredemonstrated tobeexpressed in
the GCL, INL, and amacrine cells (Seki et al. 1997, 1998,
2000a, 2000b). They are weakly expressed in the IPL and
outer nuclear layer (ONL) in rat retina (Seki et al. 1997,
1998, 2000a, 2000b). PAC1RmRNA and its protein expres-
sion are found in all layers of the neonatal rat retina (Silveira
et al. 2002). The PAC1R and its mRNA are reported to detect
in chicken retinas at embryonic day (E) 6 (Borba et al. 2005).
All types of PACAP receptor gene expression are demon-
strated in the retinal pigment epithelial cell line (Zhang et
al. 2005). The strong expression of PAC1RmRNA is detect-
ed in the GCL, and weaker expression in the IPL and outer
plexiform layer (OPL), the ONL layers and the outer seg-
ments of rat photoreceptors (Seki et al. 1997, 2000b). In situ
RT-PCR study has shown that both the short and hop variants
of PAC1RmRNA are found in the rat ganglion and amacrine
cells (Seki et al. 2000a). Other studies have also demonstrat-
ed the presence of VPACRs in the rat retina (D’Agata and
Cavallaro 1998). They have detected mRNA expression of
PACAP/VIP receptor variants in the rat retina. Both type of
PAC1R hop splice variants and VPAC1R and VPAC2R
mRNAs are detected. PAC1R expression is detected in
Muller cells, which are the major retinal glial cells
(Kubrusly et al. 2005). Lakk et al. (2012) indicate that
VPAC1R and VPAC2R are present during all stages of reti-
nal development, and that PACAP acts through a specific set
of PAC1R isoforms including hip and hop1 type.

Dry Eye Syndrome

Dry eye syndrome, also known as keratoconjunctivitis
sicca, is one of the most common eye ailments, caused
by the volume reduction of tears or altered tear quality.
Different studies have reported a relative wide range of
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prevalence estimates, ranging 7 to 33% (Peck et al. 2018),
amounting to as many as 20 million people in the USA
and 100 million in the developed world (Sharma and
Hindman 2014). The most established risk factors are
old age and being female (Sharma and Hindman 2014).
The number of patients diagnosed with the condition has
increased in recent years, which could be due to the pop-
ularity of video display terminal use (computer vision
syndrome) or the wearing of contact lenses (Moss et al.
2000; Blehm et al. 2005; Nowak et al. 2007; Chen et al.
2009). The orthodox strategy for treating dry eye syn-
drome is symptomatic therapy such as tear replacement
using artificial tears. Although artificial tears provide tem-
porary symptomatic relief, they do not address the under-
lying pathophysiology of the dry eye syndrome, and the
outcome is not always satisfactory (O’Brien and Collum
2004; Nowak et al. 2007).

Aqueous Tear Deficiency Changes with Aging

Dry eye is a common disease in the elderly, especially in older
women. The prevalence of dry eye is 3.9% among men aged
from 50 to 54 years compared to 7.67% among men 80 years
and older (Schaumberg et al. 2009). In contrast, the prevalence
is 9.8% among women aged 75 years or older compared to
only 5.7% among women aged less than 50 years
(Schaumberg et al. 2003). Secretory function of the lacrimal
gland is known to be regulated by androgens (Suzuki et al.
2006; Sullivan et al. 2009), serum levels of which are lower in
women with Sjogren’s syndrome, older men and older women
(Valtysdottir et al. 2003). Women have lower levels of andro-
gens compared to the levels in men, so age-related decrease in
androgen levels may diminish the androgen levels below a
critical threshold required for optimum eye health (Labrie et
al. 1997). In accordance with a decrease in androgen levels,
post-menopausal women develop lower levels of deficiency
of androgen, and estrogen, which is known to stimulate the
Meibomian glands, helps to regulate ocular surface

homeostasis (Sullivan et al. 2009). There was a weak correla-
tion between higher levels of androgen and healthier global,
lipid and aqueous tear film parameters (Azcarate et al. 2014).
It was also reported that an absence of estrogen is not a risk
factor for the development of Sjogren’s syndrome-like lacri-
mal gland inflammation or for aqueous-deficient dry eye in
mice (Rahimi Darabad et al. 2014). Taken together, androgen
deficiency and decreased estrogen levels lead to decreased
lacrimal gland secretion with superimposed tear film instabil-
ity in older women and a higher risk of developing dry eye.
Despite these findings, no meaningful correlations between
androgen levels and dry eye symptoms were found
(Azcarate et al. 2014), meaning that further research is needed
to clarify the role of androgens in tear secretion in males and
females.

Dry Eyelike Symptoms in PACAP−/− Mice

During the past 10 years, PACAP−/−mice have been generated
by some groups and their phenotypes have been analyzed.
Recently, we observed that corneal keratinization with de-
creasing tear volume frequently occurs in PACAP−/− mice
(Nakamachi et al. 2016). To address this interesting finding,
we investigated the effects and underlying mechanism of ac-
tion of PACAP on tear secretion in PACAP-deficient mice and
in an eye drop treatment study (Nakamachi et al. 2016).

During the routine housing of PACAP−/− mice in our animal
facility, we found some of these animals had opaque-like cloud-
iness of the eyes (Fig. 1). The surface of the eyes appeared white,
and it was found angiogenesis occurred in the substantia stroma
of the cornea (Fig. 1). In the cornea, its epithelial cells were
hypertrophied, and the surface was keratinized. To quantify the
degree of corneal keratinization, it was classified into four stages
by use of dissecting microscope (grade 0 (normal) to grade 3
(hypertrophy of the surface and keratinization and angiogenesis)
(Fig. 1).Wild-type and PACAP+/−malemice had normal corneas
until old age, but about 40%of PACAP−/−malemice had grade 3
corneas after the age of 20 weeks (Fig. 2). In female mice, all
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Fig. 1 Corneal keratinization in
PACAP−/− mice
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groups showed a relatively high frequency of keratinization com-
pared with that in male mice (Fig. 2). In female PACAP−/−mice,
the percentage of corneal keratinizationwas less than 20% before
10 weeks of age, increasing to about 50% at 20 weeks of age,
80% after 30 weeks of age and 90% in animals over 30 weeks of
age (Fig. 2). These results may indicate that corneal keratiniza-
tion is more prominent in PACAP−/− mice, especially in higher-
aged female than that in males.

Because this phenotype is a common feature of dry eye
symptoms in humans, we thought that a reduction in tear fluid
volume or quality reason might cause of the corneal keratiniza-
tion. To ascertain its hypothesis, tear secretion levels in
PACAP−/− mice were measured by use of the cotton thread
method. A reduction of tear secretion was found in male and
female PACAP−/− mice aged 10 weeks or younger (Fig. 3).
Animal models of dry eye have been demonstrated by two
groups (Barabino and Dana 2004; Schrader et al. 2008). One
type of dry eye is the aqueous-deficient model, which consists
of removal or irradiation of the lacrimal gland. The other type is
the evaporative dry eye model, environmental stress, and phar-
maceutically induced tear film instability as seen in Meibomian
gland dysfunction. We have observed that the PACAP−/− mice

exhibit (1) reduction of lacrimation, (2) increased lacrimation
by PACAP administration, and (3) a morphologically normal
lacrimal gland. These suggest that the lack of tears in PACAP−/−

mice results from functional modulation of the lacrimal gland,
but not from developmental and/or structural dysfunction.
Moreover, PACAP−/− mice spontaneously developed corneal
keratinization with aging and it may be suggested that the
PACAP−/− mouse is a good, reliable, and a new aqueous-
deficient dry eye model. On morphological observation, the
lacrimal gland and conjunctiva of the PACAP−/− mice were
normal. The tear volume in eyes with corneal keratinization
was significantly reduced compared with that of grade 0 eyes
(Fig. 3), while the tear volume and the corneal grade had a weak
though significant inverse correlation (r = − 0.242, P = 0.007).
These observations may indicate that PACAP−/− mice exhibit a
dry eye syndrome phenotype with a reduction of tear volume
and the corneal disorder.

Tear secretion is regulated by the autonomic nervous system
(Dartt 2009). Themain neurotransmitters that regulate secretion
are the parasympathetic neurotransmitters acetylcholine and
VIP, as well as the sympathetic neurotransmitter noradrenaline
(Hodges and Dartt 2003). Although PACAP immunoreactivity
in fibers of the cat lacrimal gland has been reported (Elsas et al.
1996), the precise morphological analysis was not done yet.
Our results indicate that PACAP immunoreactivity is co-
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Fig. 3 Reduction of tear volume in PACAP−/− mice

Fig. 2 Scoring of corneal keratinization in wild-type, PACAP+/− and
PACAP−/− mice at different ages
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localized with a parasympathetic neuronal marker, suggesting
that PACAP is one of the neurotransmitters and/or
neuromodulators secreted from parasympathetic nerves.
PAC1R immunoreactivity is localized close to the basal side
of acinar cells and ducts in the mouse lacrimal gland and it may
suggest that PACAP, secreted from the axon terminals, affects
the lacrimal acinus and ducts. PACAP may contribute to the
autonomic nervous system control of lacrimation.

To clarify the function of PACAP in the eye drop secretion,
PACAP38 was instilled and the level of tear secretion was
measured with the cotton thread method. Eye drops contain-
ing 10−10 to 10−8 M PACAP38 significantly increased tear
secretion from 15 to 45 min after treatment, with levels
returning to baseline at 120 min (Fig. 4).

PACAP27-containing eye drops also stimulated lacrima-
tion, but the structurally similar peptide VIP did not. When
PACAP38 was used unilaterally, tear secretion was induced
only on the same side on which PACAP was administrated.
Moreover, the toxicological effect of PACAP (10−7 M) was
evaluated at a 1000 times higher concentration than an effec-
tive dose of PACAP (10−10 M) 48 h after the eye drop treat-
ment; we did not find any histopathological changes in the
corneas and lacrimal glands (Nakamachi et al. 2016). These
data may indicate suggestion that PACAP acts locally to stim-
ulate lacrimation without causing acute toxicity.

VIP eye drops did not induce any significant tear secretion,
and VIP6-28 did not suppress PACAP-induced tear secretion
(Nakamachi et al. 2016). PACAP activates Gs protein signal-
ing, such as that involving cAMP production and PKA phos-
phorylation in the lacrimal gland. However, the AC inhibition
and a PAC1R antagonist suppressed the Gs signaling and
PACAP-induced tear secretion. These may indicate that
PACAP-induced lacrimation is mediated by the AC/cAMP/
PKA signaling pathway through PAC1-R (Fig. 5). In addition,
PACAP6-38 (a PAC1R antagonist) eye drops suppressed tear
secretion and PACAP was detected in tears in intact wild-type
mice, suggesting that the endogenous PACAP plays as a very
important regulator of lacrimation.

Distribution and Function of PACAP in the Lacrimal
Gland

Aquaporins (AQPs) are a family of water channel proteins that
regulate water homeostasis. The AQP family genes and proteins
are demonstrated in the eye and its accessory organs (Castle
2005). AQP5-like immunoreactivity is dramatically decreased
in lacrimal acinar cells of persons with Sjogren’s syndrome,
which is a chronic autoimmune disease with impairment of
water-producing glands (Tsubota et al. 2001). The decreased
AQP5 level suggests that AQP5 is related to the reduction of tear
secretion. It is shown that the activation of cAMP/PKA can
induce the translocation of AQP5 from the cytosol to the apical
membrane of the lacrimal acinar cells (Yang et al. 2003; Kosugi-
Tanaka et al. 2006). In addition, X-ray analysis of the human
AQP5 structure appeared that phosphorylation of this molecule
required for the conformational change for trafficking
(Horsefield et al. 2008). The relation betweenmembrane traffick-
ing and phosphorylation of AQP5 is not yet clarified. In the case
of AQP2, the closest paralog of AQP5, a key event for mem-
brane trafficking of this molecule is the phosphorylation of a C-
terminal site by PKA (Fushimi et al. 1997; Nedvetsky et al.
2009). We have shown that PACAP eye drops induces the ele-
vation of cAMP, pPKA and pAQP5 levels and the membrane
trafficking of this molecule. Therefore, PACAP may be an en-
dogenous regulator of AQP5 trafficking in the lacrimal gland. In
support of this, chronic treatment of mouse lung epithelial cells
with a cAMP analog induces the AQP5 mRNA level and mem-
brane trafficking (Yang et al. 2003; Sidhaye et al. 2005). Our
finding that the AQP5 signal is reduced in the PACAP−/−mouse
in the lacrimal gland, suggesting that a loss of endogenous
PACAP down-regulates AQP5 expression and the chronic treat-
ment with PACAP eye drops stimulates AQP5 transcription.

Tear fluid is known to include several antibacterial proteins,
growth factors, and secretory mucin for corneal maintenance
(Dartt 1989, 1994). Systemic infusion of PACAP is shown to
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Fig. 5 Schematic diagram of signal transduction for PACAP in the
lacrimal gland
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alter the composition of tears in rats (Gaal et al. 2008). Tear
secretion is important for corneal healing (Il’inskii et al. 1985),
and for this reason we hypothesize that a reduction of tear fluid
would be an important factor underlying corneal keratinization,
and that PACAP could protect the corneal surface by stimulating
tear secretion.We usedMALDI-TOFmass spectrometry to iden-
tify the presence of PACAP in mouse tear fluid and PACAP is
shown to secrete from the lacrimal gland into the tear fluid.
Although the distribution of PACAP and its receptors is well
characterized in the retina (Seki et al. 1998, 2000a), less is known
about their distribution and function in other ocular tissues in-
cluding the cornea (Wang et al. 1995). We very recently demon-
strated that PACAP has effects on corneal healing and stimulates
epithelia cell regeneration and cell migration in the cornea
(Nakamachi et al. in preparation).

In conclusion, our results indicate a new function of PACAP
as a tear-stimulator which initiates the PAC1R/AC/cAMP/PKA/
AQP5 signaling cascade pathway. We have demonstrated that
PACAP eye drops induce tear secretion and suppress the pro-
gression of corneal keratinization. Cyclosporine has been devel-
oped in eye drop form for dry eye patients in the expectation of
an anti-inflammatory effect; however, eye drops focusing on
tear-stimulating mechanisms are still only in the developmental
stage. The findings from our work are encouraging and should
provide the impetus for further preclinical and clinical studies on
the efficacy of PACAP eye drops to treat dry eye patients.
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