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Abstract
Mitochondrion is the main site of ATP production in animal cells and also orchestrates signaling pathways associated with cell
survival and death. Mitochondrial dysfunction has been linked to bioenergetics and redox impairment in human diseases, such as
neurodegeneration and cardiovascular disease. Protective agents able to attenuate mitochondrial impairment are of pharmaco-
logical interest. Gastrodin (GAS; 4-hydroxybenzyl alcohol 4-O-beta-D-glucoside) is a phenolic glucoside obtained from the
Chinese herbal medicineGastrodia elata Blume and exhibits antioxidant, anti-inflammatory, and antiapoptotic effects in several
cell types. GAS is able to cross the blood-brain barrier, reducing the impact of different stressors on the cognition of experimental
animals. In the present work, we investigated whether GASwould protect mitochondria of human SH-SY5Y neuroblastoma cells
against an exposure to a pro-oxidant agent. The cells were treated with GAS at 25 μM for 30 min before the administration of
hydrogen peroxide (H2O2) at 300 μM for an additional 3 or 24 h, depending on the assay. We evaluated bothmitochondrial redox
state and function parameters and analyzed the mechanism by which GAS protected mitochondria in this experimental model.
Silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor suppressed the GAS-induced mitochondrial
protection seen here. Moreover, Nrf2 knockdown abrogated the effects of GAS on cell viability, indicating a potential role for
Nrf2 in both mitochondrial and cellular protection promoted by GAS. Further research would be necessary to investigate whether
GAS would be able to induce similar effects in in vivo experimental models.
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Introduction

Mitochondria are double-membrane organelles in which the
oxidative phosphorylation (OXPHOS) system is the major
source of ATP in mammalian cells (Arnold 2012;
Jonckheere et al. 2012). The tricarboxylic acid (TCA) cycle
occurs in the mitochondrial matrix and generates reducing
power (mainly in the form of NADH and FADH2) that is
utilized by the respiratory chain, which is located in the inner
mitochondrial membrane (Robinson and Srere 1985). The

flux of electrons between the respiratory chain complexes I–
IV generates an electrochemical gradient across the inner mi-
tochondrial membrane that is utilized by complex V (ATP
synthase/ATPase) to produce ATP from ADP and Pi (Flippo
and Strack 2017; Letts and Sazanov 2017). Oxygen (O2) is the
final acceptor of electrons in the respiratory chain, and inhibi-
tion of O2 utilization by mitochondria leads to general cellular
impairment causing, for example, cell death (Enríquez 2016).
The integrity of mitochondrial membranes is crucial for the
maintenance of the OXPHOS function (Letts and Sazanov
2017). Redox impairment in the mitochondria, for example,
causes loss of membrane integrity in the organelles and affects
OXPHOS directly (de Oliveira et al. 2012; de Oliveira 2015).
In this context, mitochondria are a major source of reactive
species in virtually any cell type in mammals (Chong et al.
2014; Sies et al. 2017). Mitochondria-related redox disruption
and OXPHOS dysfunction have been seen during the intrinsic
apoptotic pathway, which is dependent on the release of the
mitochondria-located electron transfer cytochrome c (Green
et al. 2014). Oxidation of cardiolipin, which is a lipid
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responsible for the association of cytochrome c in the inner
mitochondrial membrane, leads to cytochrome c release from
the organelle and consequent activation of the apoptosome
complex in the cytosol (Ott et al. 2007). The exposure of
mammalian cells to certain toxicants leads to mitochondrial
dysfunction, redox impairment, and cell death, as previously
reported (Oliveira 2015; de Oliveira 2016a; de Oliveira and
Jardim 2016). Moreover, mitochondrial dysfunction has been
observed during neurodegeneration and cardiovascular dis-
ease (Witte et al. 2010; Peixoto et al. 2012; Tocchi et al.
2015; Anandhan et al. 2017; Erpapazoglou et al. 2017;
Kanaan and Harper 2017).

There is evidence showing that natural and synthetic
compounds can protect mitochondria against a myriad of
toxicants and also during the progression of some types of
diseases (de Oliveira et al. 2015a, 2016a, b, c; de Oliveira
2016b; Picard et al. 2016; Jardim et al. 2017). Gastrodin
(GAS; 4-hydroxybenzyl alcohol 4-O-bata-D-glucoside;
C13H18O7) is a phenolic glucoside found in the Chinese
herbal medicine Gastrodia elata Blume (Yang et al.
2007). GAS exerts antioxidant, antiapoptotic, and anti-
inflammatory actions in mammalian cells (Peng et al.
2013; Xiao et al. 2016; Chen et al. 2017a). Recently,
Jiang et al. (2014) demonstrated that GAS suppressed
the mitochondria-related triggering of cell death in the
human SH-SY5Y neuroblastoma cells by activating the
p38/nuclear factor erythroid 2-related factor 2 (Nrf2) axis.
Similar antioxidative and antiapoptotic effects were seen
in in vivo experimental models, as shown by Peng et al.
(2015). Moreover, Chen et al. (2017b) published that
GAS alleviated seizures induced by pentylenetetrazole in
C57BL/6 mice. GAS also exhibited antidepressant effects
in experimental animals, as demonstrated by Lee et al.
(2016) and Chen et al. (2016). As previously reported
by Wang et al. (2008), GAS crosses the blood-brain bar-
rier (BBB) and was found in several rat brain regions.
Thus, GAS may serve as a potential neuroprotective
agent.

Nrf2 is a major modulator of the redox environment in
mammals (Lu 2013; Costa et al. 2016; Kim and Keum
2016). Nrf2, after being released from the Nrf2-Kelch-like
ECH-associated protein 1 (Keap1) complex in the cytosol,
migrates to the cell nucleus and mediates the transcription of
genes involved in both antioxidant defense and metabolism of
xenobiotics and takes a role in controlling the expression of
genes related to mitochondria-associated bioenergetics, by
binding to the antioxidant responsive element (ARE) found
in these genes (Nguyen et al. 2009). Disruption in the Nrf2-
mediated signaling is associated with generalized cell dys-
function, as observed experimentally and in human diseases
(Jin et al. 2013; Sachdeva et al. 2014).

Even though efforts have been made aiming to elucidate
how GAS would cause cytoprotective effects in several

experimental models, it remains to be demonstrated exact-
ly how this phenolic glucoside promotes mitochondrial
protection in mammalian cells. Therefore, we investigated
here whether and how GAS would prevent mitochondria-
related bioenergetics and redox impairment in SH-SY5Y
cells exposed to the pro-oxidant agent hydrogen peroxide
(H2O2). This reactive species is produced by mitochondria
and by other reactions occurring in several cell types and
also plays a role during the progression of neurodegenera-
tion, as previously reported (Coombes et al. 2011;
Koppenhöfer et al. 2015). Furthermore, we analyzed
whether Nrf2 would take a role in the protection elicited
by GAS in this experimental model.

Materials and Methods

Materials

The cell culture-related plastic materials were obtained from
Corning, Inc. (NY, USA) and Beckton Dickson (NJ, USA).
Culture analytical grade chemicals were purchased from
Sigma (MO, USA). The other chemicals and assay kits used
in the present work were acquired as described.

Cell Culture and Chemical Treatment

The human neuroblastoma SH-SY5Y cell line was acquired
from the American Type Culture Collection (Manassas, VA,
USA) and cultured in Dulbecco’s modified Eagle’s medium
(DMEM)/F-12 HAM nutrient medium (1:1 mixture; supple-
mented with 10% fetal bovine serum, 2 mM L-glutamine,
1000 units/mL penicillin, 1000 μg/mL streptomycin, and
2.5 μg/mL amphotericin B) in a 5% CO2-humidified incuba-
tor at 37 °C, as previously described (de Oliveira et al. 2015b,
2016d).

Cytotoxicity and mitochondrial dysfunction were induced
by exposing the SH-SY5Y cells to H2O2 at 300 μM for 24 h,
as previously described by our research group (de Oliveira
et al. 2017a). The cells were treated with gastrodin at 5–
25 μM for 30 min before exposure to H2O2 for an additional
3 or 24 h, as described in details according to each experiment.

Cell Viability and Cytotoxicity Analyses

Cell viability was analyzed through the 3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay
(Mosmann 1983). The release of the lactate dehydrogenase
(LDH) enzyme was utilized as an index of cytotoxicity, and
we performed this assay based on the protocol of the manu-
facturer of the kit (CytoTox 96-Non-Radioactive Cytotoxicity
Assay, Promega).
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Malondialdehyde, Protein Carbonyl, and 8-Oxo-dG
Level Measurement

The levels of MDA and protein carbonyl, as well as the
amounts of nuclear 8-oxo-dG, were measured by using com-
mercial kits following the instructions of the manufacturer
(Abcam, MA, USA), as previously published by us (de
Oliveira et al. 2017b).

3-Nitrotyrosine Level Quantification

We evaluated the levels of 3-nitrotyrosine by utilizing a poly-
clonal antibody to 3-nitrotyrosine (Calbiochem, Germany) in
an indirect ELISA assay, as previously described (de Oliveira
et al. 2015b, 2016d).

Mitochondrial Isolation

We isolated mitochondria from the human SH-SY5Y neuro-
blastoma cells by using a previously published protocol
(Wang et al. 2014). Briefly, the cells were washed and re-
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Fig. 1 The effect of GAS on the viability of SH-SY5Y cells challenged
with H2O2. The cells were treated with GAS at 1–25 μM during 30 min
before exposure toH2O2 at 300μMfor additional 24 h. Data are shown as
the mean ± SEM of three or five independent experiments each done in
triplicate. One-way ANOVA followed by the post hoc Tukey’s test,
*p < 0.05 different from the control group; # different from H2O2-treated
group
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Fig. 2 The effect of GAS on the H2O2-induced cytotoxicity in SH-SY5Y
cells. The cells were treated with GAS at 25 μM during 30 min before
exposure to H2O2 at 300 μM for an additional 24 h. Data are shown as the
mean ± SEM of three or five independent experiments each done in
triplicate. One-way ANOVA followed by the post hoc Tukey’s test,
*p < 0.05 different from the control group; # different from the H2O2-
treated group
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Fig. 3 The effects of GAS on the total levels of lipid peroxidation (a),
protein carbonylation (b), 3-nitrotyrosine (c), and 8-oxo-dG (d) in SH-
SY5Y cells exposed to H2O2. The cells were treated with GAS at 25 μM
during 30 min before exposure to H2O2 at 300 μM for additional 24 h.

Data are shown as the mean ± SEM of three or five independent
experiments each done in triplicate. One-way ANOVA followed by the
post hoc Tukey’s test, *p < 0.05 different from the control group; #
different from the H2O2-treated group

244 J Mol Neurosci (2018) 64:242–251



suspended in a buffer containing 250 mM sucrose, 10 mM
KCl, 1 mM EGTA, 1 mM EDTA, 1 mM MgCl2, 1 mM di-
thiothreitol, 1 mM phenylmethylsulfonyl fluoride, 1 mM
benzamidine, 1 mM pepstatin A, 10 mg/mL leupeptin,
2 mg/mL aprotinin, and 20 mM HEPES (pH 7.4). After sev-
eral differential centrifugations, samples containing purified
mitochondria were obtained and used in posterior assays.

Submitochondrial Particle Isolation

In order to isolate SMP from SH-SY5Y cells, the mitochon-
dria obtained by using the abovementioned protocol were fro-
zen and thawed (three times), causing rupture of mitochondri-
al membranes and leakage of mitochondrial matrix-located
enzymes, such as Mn-superoxide dismutase. The samples

containing SMPwere washed (twice) with a buffer containing
140 mM KCl, 20 mM Tris-HCl (pH 7.4), leading to the com-
plete leakage of Mn-superoxide dismutase leakage from the
organelles. This enzyme would interfere in the quantification
of the radical anion superoxide (O2

−•) produced by the organ-
elle. Therefore, we used this protocol to verify the O2

−• pro-
duction by mitochondria and to study the redox-related effects
of H2O2 and/or gastrodin in mitochondrial membranes
(Poderoso et al. 1996).

Intracellular Reactive Oxygen Species Production
Measurement

We investigated the production of intracellular ROS by using
the nonpolar compound 2′-7′-dichlorodihydrofluorescein
diacetate (DCFH-DA) assay, as reported (LeBel et al. 1992).
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Fig. 4 The effects of GAS on levels of lipid peroxidation (a), protein
carbonylation (b), and 3-nitrotyrosine (c) in mitochondrial membranes
obtained from cultured SH-SY5Y cells exposed to H2O2. The cells
were treated with GAS at 25 μM during 30 min before exposure to
H2O2 at 300 μM for an additional 24 h. Data are shown as the mean ±
SEM of three or five independent experiments each done in triplicate.
One-way ANOVA followed by the post hoc Tukey’s test, *p < 0.05
different from the control group; # different from the H2O2-treated group
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Fig. 5 The effects of GAS on the production of reactive species (a), O2
−•

(b), and NO• in cultured SH-SY5Y cells challenged with H2O2. The cells
were treated with GAS at 25 μM during 30 min before exposure to H2O2

at 300 μM for an additional 3 h. Data are shown as the mean ± SEM of
three or five independent experiments each done in triplicate. One-way
ANOVA followed by the post hoc Tukey’s test, *p < 0.05 different from
the control group; # different from the H2O2-treated group
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O2
−• Production Measurement

The production of O2
−• by mitochondria was studied by mea-

suring the auto-oxidation of adrenaline to adrenochrome in a
plate reader (Molecular Devices, CA, USA) at 480 nm at
32 °C, as described by others (Poderoso et al. 1996).

Nitric Oxide Production Evaluation

We measured the production of NO• by utilizing an assay
kit based on the instructions of the manufacturer (Abcam,
MA, USA).

Enzyme Activity Analyses

The activity of the mitochondria-located enzymes aconitase,
α-ketoglutarate dehydrogenase (α-KGDH), succinate dehy-
drogenase (SDH), complex I, and complex V were quantified
through the utilization of commercial kits according to the
instructions of the manufacturer (Abcam, MA, USA).

ATP Level Measurement

The levels of ATP were measured by utilizing a commercial
kit based on the instructions of the manufacturer (Abcam,
MA, USA).
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Fig. 6 The effects of GAS on the activity of enzymes of the tricarboxylic
acid cycle aconitase (a), α-ketoglutarate dehydrogenase (b), and
succinate dehydrogenase (c) in H2O2-treated SH-SY5Y cells. The cells
were treated with GAS at 25 μM during 30 min before exposure to H2O2

at 300 μM for additional 24 h. Data are shown as the mean ± SEM of
three or five independent experiments each done in triplicate. One-way
ANOVA followed by the post hoc Tukey’s test, *p < 0.05 different from
the control group; # different from the H2O2-treated group
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Fig. 7 The effects of GAS on the activity of the oxidative
phosphorylation system complex I (a) and complex V (b) and on the
levels of ATP (c). The cells were treated with GAS at 25 μM during
30 min before exposure to H2O2 at 300 μM for an additional 24 h.
Data are shown as the mean ± SEM of three or five independent
experiments each done in triplicate. One-way ANOVA followed by the
post hoc Tukey’s test, *p < 0.05 different from the control group; #
different from the H2O2-treated group

246 J Mol Neurosci (2018) 64:242–251



MMP Determination

MMPwas investigated by using a commercial kit applying the
tetraethylbenzimidazolylcarbocyanide iodine (JC-1) accord-
ing to the instructions of the manufacturer (Abcam, MA,
USA).

Nrf2 Silencing

The silencing of the transcription factor Nrf2 was obtained by
performing transient transfection of SH-SY5Y cells with

siRNA targeting Nrf2 based on the recommendations of the
manufacturer (Santa Cruz, CA, USA) and as previously de-
scribed (Quesada et al. 2011; Jin et al. 2015).

Statistical Analyses

We utilized the GraphPad 5.0 software in order to perform
statistical analyses in the herein presented work. Data are dem-
onstrated as the mean ± standard error of the mean (S.E.M.) of
three or five independent experiments each done in triplicate;
p values were considered significant when p < 0.05. The dif-
ferences between the experimental groups were checked by
one-way ANOVA followed by the post hoc Tukey’s test.

Results

GAS Attenuated Loss of Cell Viability and Cytotoxicity
in SH-SY5Y Cells Treated with H2O2

As depicted in Fig. 1, GAS pretreatment for 30 min at 5
or 25 μM reduced the effect of H2O2 on the viability of
SH-SY5Y cells (p < 0.05). Thus, we next investigated
whether GAS would prevent H2O2-induced cytotoxicity
in SH-SY5Y cells. We found that GAS pretreatment at
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Fig. 8 The effect of GAS on the mitochondrial membrane potential
(MMP) in SH-SY5Y cells exposed to H2O2. The cells were treated with
GAS at 25 μM during 30 min before exposure to H2O2 at 300 μM for
additional 24 h. Data are shown as the mean ± SEM of three or five
independent experiments each done in triplicate. One-way ANOVA
followed by the post hoc Tukey’s test, *p < 0.05 different from the control
group; # different from the H2O2-treated group
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Fig. 9 The effects of Nrf2
knockdown (for 48 h) on the
activity of complex I (a) and
complex V (b) in SH-SY5Y cells
treated with GAS and/or H2O2.
Data are shown as the mean ±
SEM of three or five independent
experiments each done in
triplicate. One-way ANOVA
followed by the post hoc Tukey’s
test, *p < 0.05 different from the
cells transfected with scrambled
control (NC) siRNA and treated
with GAS and H2O2
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25 μM abrogated cytotoxicity elicited by H2O2 in this
experimental model (Fig. 2).

GAS Exerted an Antioxidant Effect in SH-SY5Y Cells
Exposed to H2O2

Based on the data demonstrating the cytoprotective effect in-
duced by GAS in SH-SY5Y cells, we examined whether
gastrodin would affect redox-related parameters in cells treat-
ed with the pro-oxidant agent H2O2. As may be viewed in
Fig. 3, GAS pretreatment for 30 min at 25 μM decreased lipid
peroxidation (Fig. 3a; p < 0.05), protein carbonylation (Fig.
3b; p < 0.05), protein nitration (Fig. 3c; p < 0.05), and DNA
oxidation (Fig. 3d; p < 0.05) in H2O2-treated SH-SY5Y cells.

GAS Promoted Mitochondria-Related Antioxidant
Effects in H2O2-Treated SH-SY5Y Cells

We next evaluated whether GAS would be able to protect
mitochondria of SH-SY5Y cells exposed to H2O2. GAS
pretreatment for 30 min at 25 μM significantly reduced
the levels of lipid peroxidation (Fig. 4a; p < 0.05), protein
carbonylation (Fig. 4b; p < 0.05), and protein nitration
(Fig. 4c; p < 0.05) in the membranes of mitochondria ob-
tained from SH-SY5Y cells.

GAS Alleviated the Production of Reactive Species
in SH-SY5Y Cells Treated with H2O2

As demonstrated in Fig. 5a, GAS pretreatment for 30 min at
25 μM alleviated the production of reactive species in SH-
SY5Y cells treated with H2O2. Based on this finding, we
investigated whether GAS would exert an effect on the pro-
duction of specific reactive species. GAS reduced the produc-
tion of O2

−• (Fig. 5a; p < 0.05) and NO• (Fig. 5c; p < 0.05) in
H2O2-treated SH-SY5Y cells.

GAS Prevented H2O2-Induced Mitochondria-Related
Bioenergetics Effects in SH-SY5Y Cells

Since GAS induced an antioxidant effect in the mitochon-
dria obtained from SH-SY5Y cells exposed to a pro-
oxidant agent, we evaluated whether GAS would promote
a benefit regarding the function of mitochondria. As may
be observed in Fig. 6, GAS pretreatment for 30 min at
25 μM reduced the H2O2-induced effects on the activity
of aconitase (Fig. 6a; p < 0.05), α-KGDH (Fig. 6b;
p < 0.05), and SDH (Fig. 6c; p < 0.05).

Furthermore, GAS prevented the H2O2-elicited inhibition
in the activities of the OXPHOS complexes I (Fig. 7a;
p < 0.05) and V (Fig. 7b; p < 0.05) and prevented the reduc-
tion in the levels of ATP in SH-SY5Y cells (Fig. 7c; p < 0.05).

GAS also blocked the H2O2-induced loss of MMP in this
experimental model, as depicted in Fig. 8 (p < 0.05).

GAS Exerted Mitochondrial Protection by an
Nrf2-Related Mechanism

In order to analyze the mechanism underlying the
mitochondria-related benefits elicited by GAS in SH-SY5Y
cells, we silenced Nrf2 in these cells by using siRNA targeting
Nrf2. We observed that knockdown of Nrf2 attenuated the
effects of GAS pretreatment on the activity of the mitochon-
drial complexes I (Fig. 9a; p < 0.05) and V (Fig. 9; p < 0.05).
Moreover, the protective effect elicited by GAS regarding
MMP was alleviated by Nrf2 silencing in the cells exposed
to H2O2 (Fig. 10; p < 0.05).

GAS Promoted Cytoprotection by a Mechanism
Involving Nrf2

Finally, we evaluated the role of Nrf2 in GAS-treated cells
exposed to H2O2. We found that Nrf2 silencing abrogated
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Fig. 10 The effects of Nrf2 knockdown (for 48 h) on the mitochondrial
membrane potential (MMP) in SH-SY5Y cells treated with GAS and/or
H2O2. Data are shown as the mean ± SEM of three or five independent
experiments each done in triplicate. One-way ANOVA followed by the
post hoc Tukey’s test, *p < 0.05 different from the cells transfected with
scrambled control (NC) siRNA and treated with GAS and H2O2
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Fig. 11 The effects of Nrf2 knockdown (for 48 h) on the viability of SH-
SY5Y cells treated with GAS and/or H2O2. Data are shown as themean ±
SEM of three or five independent experiments each done in triplicate.
One-way ANOVA followed by the post hoc Tukey’s test, *p < 0.05
different from the cells transfected with scrambled control (NC) siRNA
and treated with GAS and H2O2
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the cytoprotection induced by a pretreatment (for 30min) with
GAS (at 25 μM) in H2O2-treated SH-SY5Y cells (Fig. 11;
p < 0.05).

Discussion

In the presented work, we demonstrate that a pretreatment
with GAS attenuated the H2O2-induced mitochondrial dys-
function in SH-SY5Y cells. GAS exerted cytoprotective and
antioxidative effects by reducing the levels of markers of lipid
peroxidation and protein carbonylation and nitration in the
mitochondrial membranes obtained from cultured SH-SY5Y
cells. GAS also attenuated the production of reactive species
in H2O2-treated cells. Moreover, GAS suppressed the effects
of H2O2 on the activity of mitochondria-located enzymes in-
volved in the maintenance of TCA and OXPHOS system.
GAS caused mitochondrial protection, at least in part, by a
mechanism associated with Nrf2, since the silencing of this
transcription factor abrogated the GAS-elicited benefits re-
garding mitochondrial function. This is the first work demon-
strating a direct role between Nrf2 and mitochondrial protec-
tion (involving redox state and function of the organelle) in
GAS-treated cells.

Nrf2, in addition to the modulation of the redox environ-
ment, takes a role in the bioenergetics homeostasis in mam-
malian cells, as indicated by an increasing body of evidence
(Kim et al. 2011; Ludtmann et al. 2014). Nrf2 modulates the
expression of genes whose products are involved in the con-
sumption of reactive species, such as Mn-SOD and glutathi-
one peroxidase (GPx), and coordinates the expression of en-
zymes that participate in the metabolism of xenobiotics, such
as glutathione-S-transferase (GST) (Ma 2013). Additionally,
Nrf2 activation has been linked to anti-inflammatory effects
induced by natural compounds, as evidenced in several exper-
imental models (Ahmed et al. 2017). Nrf2 also demonstrated
the ability to modulate cell fate by preventing death of cells
exposed to some toxicants (de Oliveira et al. 2016e, 2017c).
Therefore, there is increasing interest in investigating natural
and synthetic agents able to promote Nrf2 activation in mam-
malian cells.

The maintenance of mitochondrial function is neces-
sary physiologically and specially during exposure of
cells to chemical or physical stressors (Broadley and
Hartl 2008). During a mitochondria-dependent cell death
event, for example, it is important to maintain some
mitochondria-producing ATP in order to preserve the
function of the apoptosome and, consequently, the activa-
tion of the caspases, which execute reactions that lead to
the formation of apoptotic bodies (Green et al. 2014).
Otherwise, absence of ATP at sufficient levels may block
the activation of caspases and cell death would occur by
necrosis, causing inflammation (Elmore 2007). Thus,

mitochondria play a pivotal role in both triggering and
sustaining the intrinsic apoptotic pathway in mammals.
Mitochondria exposed to some types of toxicants may
present increased levels of protein carbonylation and ni-
tration and augmented lipid peroxidation, in their mem-
branes (de Oliveira and Moreira 2007; de Oliveira et al.
2009, 2011). Redox impairment in the organelles may be
associated with morphological alterations and impaired
mitochondrial dynamics (Klamt et al. 2005; Ito and Di
Polo 2017).

In this context, GAS efficiently prevented H2O2-induced
mitochondrial dysfunction regarding redox state and bioener-
getics by a mechanism associated with the transcription factor
Nrf2. Further research would be necessary in order to evaluate
whether GAS would act in a similar way in in vivo experi-
mental models.
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