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Abstract In an animal model of post-traumatic stress disorder
(PTSD), our previous studies showed mitochondrial stress-
induced apoptosis in the hippocampus. Metformin, the most
commonly prescribed anti-diabetic drug, exerts its effects
through 5′-adenosine monophosphate-activated protein kinase
(AMPK) activation. It was shown that a neuroprotective role
was gradually established against stroke, spinal cord injury and
Parkinson’s disease. The aim of this study was to explore the
role of the AMPK pathway in neuronal apoptosis in the hippo-
campus using a rat model of PTSD. The model PTSD rats
received acute exposure to prolonged stress (single prolonged
stress, SPS), followed by examination of the effects of genes
and/or proteins related to the AMPK and oxidative stress path-
ways in the hippocampus with or without metformin precondi-
tioning. The results indicated that the level of phosphorylated
AMPKwasmarkedly increased after SPS.Metformin protected
the hippocampus as evidenced by abolishing down-regulation
of the AMPK pathway and up-regulating expression of oxida-
tive stress-related genes. These results indicated that metformin
attenuated oxidative stress in the hippocampus in rats under
SPS. AMPK pathway activation may be a novel therapeutic
protocol for PTSD patients.
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Introduction

Post-traumatic stress disorder (PTSD) is an extended and
delayed psychiatric disorder. It often develops after
experiencing or witnessing life-threatening events such
as warfare, natural disasters, terrorist incidents, serious
accidents, or violent assaults (Zhang and Ho 2011; Al-
Hadethe et al. 2014).

The pathophysiology of PTSD has been intensively
investigated (Kessler 2000). As shown in previous stud-
ies, the amygdaloid nucleus, hippocampus, and medial
prefrontal cortex (mPFC) are closely related to the expe-
rience of PTSD (Shin et al. 2006). Shin and Liberzon
have shown that single prolonged stress (SPS) induces
inhibition of the hypothalamic–pituitary–adrenal (HPA)
axis (Knox et al. 2012; Hughes and Shin 2011) . The
HPA is a putative endocrinological marker of PTSD
(Yehuda 2005). SPS models have therefore been exten-
sively applied in the investigation of PTSD. In a previ-
ous study, we revealed that apoptotic cells were signifi-
cantly increased in the hippocampus in rats after SPS,
which was accompanied by release of cytochrome C
from the mitochondria into the cytosol, indicating mal-
function of mitochondria may be involved in the atrophy
and cell death of the hippocampus during PTSD (Li
et al. 2010).

Metformin, one of first-line drugs for type 2 diabetes and an
agonist of AMPK pathway, which is known for autophagy
promotion (Meijer and Codogno 2007), anti-inflammation
(Isoda et al. 2006; Kim et al. 2014; Cameron et al. 2016) and
anti-cancer effects (Jalving et al. 2010; Dowling et al. 2012),
has extensive anti-apoptotic properties in the nervous system.
Wang et al. have demonstrated that metformin pretreatment
prevented spinal cord apoptosis through enhancement of au-
tophagy and oppression of inflammation (Wang et al. 2016).
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Ashabi et al. showed that pretreatment with metformin protects
against global cerebral ischemia in male rats by intervening
with the AMPK/PGC1α pathway (Ashabi et al. 2014). Deng
et al. have revealed that pre-stroke metformin treatment is neu-
roprotective for ischemic brains (Deng et al. 2016).

AMPK pathway is involved in anti-obesity (Kim et al.
2004; Ahn et al. 2008; Chen et al. 2015) and has anti-
cancer (Park et al. 2010; Shao et al. 2012; Chen et al.
2013) effects. AMPK, a serine-threonine kinase and an
evolutionarily conserved energy sensor, is activated by
reductions in the cellular ATP/AMP ratio. The ATP/
AMP ratio turns off anabolic processes and activates cat-
abolic pathways. AMPK activation can therefore restore
an imbalance in cellular energy. AMPK senses energy
deficiency and is triggered by metabolic insults, such as
oxygen or glucose deficiency (Rutter et al. 2003;
Ramamurthy and Ronnett 2012). Activated AMPK phos-
phorylates various substrates that generally result in re-
duced ATP consumption activities and increased ATP
production. Peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC1a) is a downstream
regulator of phosphorylated AMPK and a transcriptional
coactivator that represents a master regulator of mito-
chondrial biogenesis. It promotes the transcription of mi-
tochondrial genes and plays a key role in coordinating
the oxidation of intracellular fatty acids with mitochon-
drial remodeling. These coactivators target multiple tran-
scription factors including NRF1, NRF2 and the orphan
nuclear hormone receptor (Scarpulla 2011; Ventura-
Clapier et al. 2008). Mitochondrial transcription factor
A (TFAM) performs regulation of mitochondrial biogen-
esis by interactions between TFAM and mtDNA (Picca
and Lezza 2015).

During oxidative stress, in DNA repair processes, the
poly(ADP-ribose) polymerase family plays an important role
in cell death mechanisms and the regulation of transcription
factors. It has been reported that the lipopolysaccharide (LPS)-
evoked systemic inflammatory response induces expression
of PARP family genes, including PARP1, -3, -9, -12 and -14
gene expressions in the mouse hippocampus (Czapski et al.
2013). DNA damage-inducible protein 45 beta (GADD45B)
(Liu et al. 2015) and thioredoxin reductase 1 (TXNRD1)
(Miranda-Vizuete et al. 2000) are common oxidative stress
markers, and they denote the levels of stresses.

Currently, detailed understanding of the AMPK path-
way as possibly being involved in apoptosis of the hippo-
campus due to PTSD is lacking. Therefore, we assessed
the role of the AMPK pathway in the hippocampus under
SPS including neuronal changes in SPS rats with or with-
out treatment with metformin to illuminate whether met-
formin attenuates oxidative stress through enhanced ener-
gy production, which could be used as a potential therapy
for PTSD patients.

Materials and Methods

Animals and Grouping

Male Wistar rats (aged 7 to 8 weeks; weighing 150–180 g at
arrival) were acquired from the Experimental Animal Center of
China Medical University. They were housed individually in
an air-conditioned room at 23 ± 2 °C on a 12-h light/dark cycle
with free access to food and water for 7 days to acclimate to the
new environment. All procedures were carried out in compli-
ance with the Guidance Suggestions for the Care and Use of
Laboratory Animals, the Ministry of Science and Technology
of the People’s Republic of China. The number of animals and
animal suffering during experiments were minimized.

SPS Model Constructing and Grouping

The rats (n = 72) were randomly divided into 12 groups (n = 6
per group). For the measurement of AMPK activation in the
hippocampus, there were four groups, and rats in each group
were sacrificed at 0, 1, 2 and 4 days after metformin (400 mg/
kg/day; 1,1-dimethylbiguanide hydrochloride; cat no.
D150959-5G; Sigma-Aldrich, St. Louis, MO, USA) subcuta-
neous injection. For the assessment of alterations of the
AMPK pathway downstream with/without metformin treat-
ment or SPS exposure, there were four groups of rats that were
sacrificed at the same time, including the following: control
group (CON), metformin group (MF), SPS group (SPS) and
metformin with SPS group (MF + SPS). Thereinto, the CON
rats were subcutaneously injected with an equal volume of
phosphate-buffered saline (PBS) and were sacrificed at the
same time as sacrifice occurred in the other groups. The
PTSD model in our study was induced by the SPS, which
has been established and recognized internationally (Eagle
et al. 2013; Knox et al. 2012). SPS is carried out with the
following consecutive steps: immobilization, 2 h; forced
swimming, 20 min; and ether anesthesia (until consciousness
was lost). Then, the rats remained undisturbed in their home
cages until they were used for brain tissue sampling. The
metformin (400 mg/kg/day) subcutaneous treatment was con-
sistently given at 10:00 am everyday until the rats were
sacrificed. The tissue collection after SPS exposure was exe-
cuted 6 h after the procedure.

Western Blot Analysis

The fresh hippocampus tissues were respectively
homogenated in ice-cold lysis buffer supplemented with
1 mM PMSF (Beyotime Biotechnology, China). The tissues
were then ultrasonicated and high-speed centrifuged at a low
temperature. The supernatant albumen was collected to be
used in a protein assay with a BCA protein assay kit
(Beyotime Biotechnology, China). Equal amounts of protein
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(50 μg/lane) were subjected to 8–12% SDS-PAGE and then
transferred onto PVDF membranes with electroblotting. After
2 h incubation and blocking with Tris-buffered saline (TBS)
containing 5% skim milk and 0.1% Tween 20 and 1:2000
primary antibodies, including rabbit polyclonal antibodies
against phospho-AMPKα (Thr172) (1:1000; Cell Signaling,
USA), goat polyclonal antibodies against PGC1a (1:500;
Abcam, UK) and rabbit polyclonal antibodies against PARP
(1:1000; Cell Signaling, USA), they were then incubated
overnight at 4 °C. The blots were incubated with horseradish
peroxidase (HRP)-conjugated secondary antibodies (anti-
mouse IgG-HRP and anti-rabbit IgG-HRP, 1:5000; Santa
Cruz Biotechnology, Inc., USA) at room temperature for
2 h. The membranes were subjected to enhanced chemilumi-
nescence (ECL; Thermo Scientific, USA). To confirm the
amount of protein that was loaded, the same blot was incubat-
ed with mouse monoclonal antibodies against β-actin
(1:5000; Abcam, UK). The optical density (OD) of the immu-
noreactive bands was analyzed and measured with a Gel
Image Analysis System (Tanon 2500R, Shanghai, China).

Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted from the hippocampi of the rats of
each group using TRIzol reagent (Invitrogen, USA) following
the manufacturer’s instructions. One microgram of total RNA
was reverse-transcribed into complementary DNA (cDNA)
using a Prime Script RT reagent kit (Takara Biotech, Otsu,
Japan) according to the manufacturer’s protocol. The cDNA
was used as a template to determine the gene expression level
with a SYBR Green Real-Time PCR master mix kit (Takara
Biotech, Otsu, Japan). The primer sequences used for PCR
amplification are the following:

PGC1a (upper: 5′-TGAAGTGGTGTAGTGACCAATC-
3′, lower: 5′-GCAAGTTTGCCTCATTCTCTTC-3′); NRF1
(upper: 5′-CTATCCGAAAGAGACAGCAGAC-3′, lower:
5′-GGGTGAGATGCAGAGAACAA-3′); TFAM (upper: 5′-
GCCTGTCAGCCTTATCTGTATT-3′, lower: 5′-TGCA
TCTGGGTGTTTAGCTTTA-3′); GADD45B (upper: 5′-
CCTGGTCACGAACTGTCATAC-3′, lower: 5′-GGTT
ATTGCCTCTGCTCTCTT-3′); PARP14 (upper: 5′-AGGT
GGAATTGATCCGAGATTT-3 ′ , lower : 5 ′ -GATT
TGAGCGGTGGCTGATA-3′); TXNRD1 (upper: 5′-CGGG
AGAAGAAGGTTGTCTATG-3 ′ , lower: 5 ′-GAAC
CGCTCTGCTGAGTAAA-3′); COX2 (upper: 5′-GGCC
ATGGAGTGGACTTAAA-3 ′ , l owe r : 5 ′ -GTCT
TTGACTGTGGGAGGATAC-3′); β-actin (upper: 5′-CGGA
AAGAAGATGACGCAGATA-3 ′ , lower: 5 ′-ACCA
GAGTCCAAGACAATGC-3′); RPL19 (upper: 5′-CTTA
GGCTACAGAAGAGGCTTG-3 ′ , lower: 5 ′-GAGT
TGGCATTGGCGATTTC-3′). Takara Biotech designed and
synthesized all the primers. The data were analyzed and mea-
sured with a Rotor Gene PCR-3000 (Corbett Research,

Australia). Relative mRNA expression levels were normal-
ized against β-actin or RPL-19.

Statistical Analysis

The results are expressed as the mean ± standard deviation
(SD). Statistical differences between the groupswere analyzed
with a one-way analysis of variance (ANOVA) using SPSS
version 17.0 (SPSS, Inc., an IBM Company, Chicago, IL,
USA), followed by Tukey’s post-hoc multiple comparison
tests. A result of P < 0.05 was considered to be statistically
significant.

Results

Metformin Effectively Phosphorylated AMPK
and Increased PGC1a in Hippocampal Tissue

By Western blotting analysis, as indicated in Fig. 1a, c, met-
formin (400 mg/kg) treatment by daily subcutaneous injection
triggered the phosphorylation of AMPK (pAMPKa) in the
hippocampi of rats in the 1-day, 2-day and 4-day groups com-
pared with the 0-day group (P < 0.05). Not surprisingly,
PGC1a, the important main downstream protein of AMPK,
was also augmented remarkably in the 1-day, 2-day and 4-day
groups compared with the 0-day rats (Fig. 1b, d; P < 0.05).
One day after subcutaneous injection of metformin, pAMPKa
and PGC-1a immunoreactivity increased up to twofold and
then remained stable, indicating they reached a peak concen-
tration in the hippocampus (Fig. 1c, d). These results revealed
that metformin could go through the blood-brain barrier and
react with hippocampal tissue. In addition, AMPK activation
in the hippocampus demonstrated possible benefits to PTSD
with metformin.

Metformin Pretreatment Activated the AMPK Pathway
in the Hippocampus but not after SPS Stress

Since metformin treatment would sufficiently activate the
AMPK/PGC1a pathway by increased immunoreactivity
to pAMPKa and PGC1a after 1 day, it is important to
understand the effective duration of metformin precondi-
tioning. We further investigated the effects of SPS on the
immunoreactivity of pAMPKa and PGC1a at 6 h and
1 day after metformin pretreatment to inspect the onset
and early effects of metformin on SPS stress. We ob-
served and compared the difference between four sub-
groups (CON group with vehicle injection; MF group
with metformin pretreatment; SPS group with the SPS
procedure only and the MF + SPS group with the SPS
procedure following metformin pretreatment). Upon SPS,
there was no distinction on pAMPKa and PGC1a
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between those four subgroups with 6-h metformin treat-
ment via Western blotting (Fig. 2). In contrast to the
CON group or SPS group, significant increases of
pAMPKa and PGC1a immunoreactivity, in both the MF
and MF + SPS groups, supported metformin needing
about 1 day to accumulate and activate the neurons in
the hippocampus (Fig. 2). Interestingly, SPS stress did
not show an influence on AMPK activity in the hippo-
campus at both time points (Fig. 2).

To explore the effects of metformin on transcription
levels downstream of the AMPK pathway, mRNA expres-
sion was assessed via qRT-PCR. Consistent with immuno-
reactivity response, PGC1a mRNA expression was not al-
tered by either metformin or SPS in the 6-h metformin
treatment group. Yet, 1 day after metformin treatment,
not only MF but also MF + SPS showed notable increases
in mRNA expression of PGC1a, compared to the CON or
SPS subgroups (Fig. 3a; *P < 0.05, #P < 0.02). Amazingly,
SPS stress significantly downregulated PGC1a mRNA
levels compared to the CON subgroup (Fig. 3a;
@P < 0.01). Further, downstream of the AMPK pathway,
two crucial transcription factors related to mitochondrial
function, i.e., TFAM and NRF-1, showed uniform trends
with PGC-1a (Fig. 3b, c). These results demonstrated that
SPS stress suppressed the AMPK pathway in the hippo-
campus, while 1 day of metformin pretreatment could
overturn the negative regulation of the AMPK pathway
on mRNA levels in the hippocampus. Although we did
not observe restraint of the AMPK pathway on immunore-
activity, this could be due to the short duration after SPS
exposure or through another indirect mechanism, which
need further investigation.

Metformin Prevented Hippocampus Apoptosis Induced
by SPS and Promoted Mitochondrial Biogenesis
in the Hippocampus

Our previous studies indicated that SPS could result in
incremental caspase families and apoptosis in the hippo-
campus (Han et al. 2013). PARP could be activated in
cells experiencing stress and/or DNA damage. Thus, the
DNA damage and apoptosis marker, poly(ADP-ribose)
polymerase (PARP), in the hippocampus was monitored
via Western blotting. Four groups, based on 1-day met-
formin pretreatment with or without SPS exposure, were
analyzed. As exhibited in Fig. 4a, b, SPS remarkably
raised immunoreactivity of PARP (Fig. 4b; #P < 0.01,
compared to the CON group; *P < 0.05, compared to
the MF + SPS group). With metformin preconditioning
for 1 day, SPS failed to increase the PARP immunore-
activity. In addition, metformin alone only slightly aug-
mented PARP immunoreactivity. Together, our results
suggested that metformin pretreatment protected against
neuronal apoptosis in the hippocampus, although further
morphologic observation needs to confirm and quantify
the protective effects.

Our previous study illustrated that SPS-induced apo-
ptosis is involved in multiple mechanisms, including
mitochondrial dysfunction (Li et al. 2010). Yet, one of
the most critical protective functions of metformin is to
protect the mitochondria from oxidative stress through
augmentation of the mitochondrial DNA (mtDNA) copy
number to promote mitochondrial biogenesis. Our data
illustrated that metformin increased TFAM mRNA ex-
pression in the hippocampus, which was reported to

Fig. 1 Systemic injection of metformin activated AMPK pathway in the
hippocampus. a, b Western blot analysis of pAMPKa and PGC1a in the
hippocampus was performed at different days using antibodies as
indicated. c, d Relative immunoreactive responses were evaluated by

densitometry quantization of protein bands on the blots (data represent
means ± SD; Tukey’s test *P < 0.05, compared with the 0-day group,
n = 3 for each group). β-actin protein served as loading controls
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upregulate the mtDNA copy number (Ekstrand et al.
2004; Picca and Lezza 2015). As expected, compared
to the CON group, metformin increased the mtDNA
copy number about twofold 1 day after metformin treat-
ment and was stable for 4 days with the treatments (Fig.
4c; #P < 0.05).

Metformin Suppressed the Expression of Oxidative
Stress-RelatedGenes in the Hippocampus Induced by SPS

It is revealed that oxidative stress in the hippocampus
was elevated during PTSD in an animal model. Since

metformin manifested the effects of reduction on oxida-
tive stress in the brain or blood vessels to prevent cell
death (Rösen and Wiernsperger 2006; Zhao et al. 2014;
Cahova et al. 2015), we measured three oxidative stress-
related genes (GADD45B, TXNRD1, PARP14) to clarify
the effects of metformin on oxidative stress in the hip-
pocampus. Surprisingly, our results showed that SPS
stimulated a two- to tenfold increase in mRNA levels,
but metformin pretreatment totally abolished upregula-
tion on all three genes by SPS exposure (Fig. 4d, e and
f; #P < 0.02, compared to the CON group; *P < 0.05,
compared to the MF + SPS group). Our results showed
that SPS-induced oxidative stress in the hippocampus
and metformin pretreatment could prevent this stress by
SPS to protect the hippocampus from PTSD.

Fig. 2 Metformin activated AMPK pathway in the hippocampus
following SPS after 1-day pretreatment. a Representative Western blot
with 6 h and 1 day metformin pretreatment with or without SPS exposure.
b, c Results of analysis of pAMPKa and PGC1a (data represent
means ± SD; Tukey’s test *P < 0.05 vs. the CON group; #P < 0.05 vs.
the SPS group; n = 3 for each group). β-actin protein served as loading
controls

Fig. 3 The mRNA level of PGC1a, TFAM and NRF1 was upregulated
by metformin following SPS after 1-day pretreatment. qRT-PCR analysis
comparing changes in expression ofmRNA. Relative expression levels of
PGC1a (a), TFAM (b) and NRF1 (c) were normalized with RPL19. Data
represent means ± SD. n = 3 for each group. Tukey’s test *P < 0.05
compared with the CON group; @P < 0.02 compared with the CON
group; #P < 0.02 compared with the SPS group
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Discussion

PTSD is a complex mental disorder. It develops and is
maintained in traumatized individuals as the result of im-
potent attempts to control unwanted feelings, thoughts and
memories related to traumatic events. Functional neuroim-
aging studies showed that PTSD patients had excessive
amygdala reactivity, smaller hippocampus volume and
failed activation of the medial prefrontal/anterior cingulate
cortex (Rauch and Shin 1997a; Rauch and Shin 1997b;
Shin et al. 2006; Francati et al. 2007a, b; Hughes and
Shin 2011). Our previous study showed that the mitochon-
drial pathway was involved in the process of SPS-induced
apoptosis in the hippocampus. Li et al. demonstrated that
there were an increased number of apoptotic cells in the
hippocampus after SPS exposure, which was accompanied
by release of cytochrome c from the mitochondria and in-
creases in caspase-3 and -9 expressions (Li et al. 2010).
Han et al. illustrated that the endoplasmic reticulum stress
and impairment of glial cells in the hippocampus might be
involved in PTSD-induced apoptosis (Han et al. 2013,
2015). In summary, protecting the hippocampus from
stresses, including maintaining mitochondrial function,
would be a promising protocol for the therapy of PTSD.

Recently, as described above, metformin, the AMPK path-
way activator, is famous for its anti-obesity, anti-cancer and
neuroprotective function (Rojas and Gomes 2013). An in-
creasing number of studies indicated that metformin may be
a novel method for treating brain damage (Wang et al. 2016).
In this study, we are the first to investigate the possible role of
metformin in the hippocampus of PTSD rats induced by SPS
exposure. Multiple studies have demonstrated that metformin
can activate the AMPK pathway in the brain. To date, no one
ever measured AMPK activation in the hippocampus with
metformin. Our results indicated that 1 day after the subcuta-
neous treatment, pAMPKa manifests in the hippocampus,
followed by a PGC1a increase. It is promising that metformin
could have the effect of protection of the hippocampus.

We further observed the effects of SPS on the AMPK path-
way. Instead of activation, SPS suppressed the expression of
PGC1a on mRNA expression, although it did not detect a
change in phosphor-AMPKa on immunoreactivity.
Meanwhile, the results indicated that metformin overturned
the inhibited expression of PGC1a. The downstream tran-
scription factors of PGC1a, NRF1 and TFAM are both impor-
tant in mitochondrial biogenesis and normal functioning dur-
ing stresses. As evidenced by our results, metformin pretreat-
ment 1 day before SPS defended the downregulation of both

Fig. 4 Metformin prevented
apoptosis and oxidative stress
induced by SPS. a Western blot
analysis comparing changes in
expression of PARP. β-actin
protein served as loading controls.
b PARP bands were quantified by
densitometry. c mtDNA copy
number wasmeasured by the ratio
of COX2/β-actin DNA
expression level (#P < 0.05
compared with the 0-day group).
d–f mRNA expression levels of
PARP14, GADD45B and
TXNRD1. RPL19 served as the
housekeeping gene. Data
represent means ± SD. n = 3 for
each group. Tukey’s test
#P < 0.01 compared with the
CON group; *P < 0.05 compared
with the MF + SPS group
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NRF1 and TFAM induced by SPS, which means metformin
somehow prevented injury of the hippocampal neurons by
SPS. We suspected that metformin preconditioning might en-
hance mitochondrial function against adverse stresses in the
hippocampus. Further, as is known, TFAM is responsible for
the mitochondrial copy number (Ekstrand et al. 2004). Our
data indicated that metformin increased the mRNA expression
of TFAM, which explained the increase in the mtDNA copy
number in the hippocampus, which supported metformin pro-
moting mitochondrial biogenesis, which might partially ac-
count for the neuroprotective mechanism of metformin.
Additional evidence of metformin inducing protection of the
hippocampus is the reduction of PARP immunoreactivity, the
apoptosis marker, stimulated by SPS. Moreover, three oxida-
tive related genes (PARP14, GADD45B and TXNRD1) that
were affected by SPS all recovered to the normal level, which
was the same as the control group. This indicated that the SPS-
induced oxidative stress was diminished by metformin.

In summary, metformin can activate the AMPK pathway in
the hippocampus, preserve mitochondrial function and pro-
mote its biogenesis in a rat model. This brings new light to
potential therapies for PTSD patients, although more detailed
research on the protectivemechanism, as well as clinical trials,
should be performed in the future.
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