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Abstract We explored the response of a panel of selected
microRNAs (miRNAs) in neuroprotection produced by ische-
mic preconditioning. Hippocampal neuronal cultures were ex-
posed to a 30-min oxygen–glucose deprivation (OGD). In our
hands, this duration of OGD does not result in neuronal loss in
vitro but significantly reduces neuronal death from a subse-
quent ‘lethal’ OGD insult. RT-qPCR was used to determine
the expression of 16 miRNAs of interest at 1 and 24-h post-
OGD. OnemiRNA (miR-98) was significantly decreased at 1-
h post-OGD. Ten miRNAs (miR-9, miR-21, miR-29b, miR-
30e, miR-101a, miR-101b, miR-124a, miR-132, miR-153,
miR-204) were increased significantly at 24-h post-OGD.
No miRNAs were decreased at 24-h. The increases observed
in the 24-h group suggested that these miRNAs might play a
role in preconditioning-induced neuroprotection. We selected
the widely studied miR-132, a brain enriched, CREB regulat-
ed miRNA, to explore its role in simulated ischemic insults.
We found that hippocampal neurons transducedwith lentiviral
vectors expressing miR-132 were protected from OGD and
NMDA treatment, but not hydrogen peroxide. These findings
add to the growing literature that targeting neuroprotective
pathways controlled by miRNAs may represent a therapeutic
strategy for the treatment of ischemic brain injury.
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Introduction

MicroRNAs (miRNAs) are potent regulators of gene expres-
sion involved in many biological processes. The role of these
∼21 nucleotide non-coding RNA molecules in the brain re-
mains an area of intense research efforts. The brain is miRNA-
enrichedwith∼680 annotated miRNAs expressed and sugges-
tions that there may be at least 1,000 (Jung et al. 2002;
Berezikov et al. 2006; Bramham and Wells 2007; Hong et
al. 2015). Studies have shown that miRNAs are involved in
the control of fundamental CNS processes such as develop-
ment (Nakazawa et al. 2003; Smirnova et al. 2005; Vo et al.
2005; Nakazawa et al. 2008), synaptic plasticity (Semenova et
al. 2007; Scott et al. 2012b), cellular senescence (Zhao et al.
2007; Wagner et al. 2008) and endocytosis (Klein et al. 2007;
Scott et al. 2012a) (see (Ballestar and Wolffe 2001; Kosik
2006; Bushati and Cohen 2007; Kim et al. 2009). Studies in
this area have highlighted several key features of miRNA
expression patterns. For example, not only do different neural
cells (i.e. neurons versus glia) have different miRNA expres-
sion patterns, these patterns change through development
(Miska et al. 2004; Smirnova et al. 2005; Kim et al. 2007;
Chahrour et al. 2008). MiRNA enrichment within specific
sub-cellular compartments of neuronal cells has also been de-
scribed, hinting at differential effects at the compartmental
level (Jung et al. 2002; Bramham and Wells 2007).

Altered miRNA expression has been linked with a variety
of brain diseases and injury (Chen et al. 2003; Berezikov et al.
2006; Smith et al. 2011; Hong et al. 2015; Mushtaq et al.
2015; Kim et al. 2015). The role of miRNAs in ischemic brain
damage has also been explored. These studies have shown
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that blood and brain miRNA expression profiles are altered by
ischemia, and that many individual miRNAs can be targeted
to improve outcome. Jeyaseelan et al. (2008) reported signif-
icant alterations in miRNA expression profiles in brain and
blood in rat model of focal cerebral ischemia (FCI) at 24- and
48-h post-insult. Dharap et al. (2009) followed this using a
similar focal stroke model and demonstrated that blocking
miR-145 expression decreased lesion size. Along similar
lines, Yin et al. (2010) have shown that blocking miR-497
expression also leads to reduced lesion size in a mouse FCI
model. Liu et al. (2010) compared brain and blood miRNA
expression following focal stroke, intracerebral haemorrhage
and kainite seizures. Their work suggests that some common
miRNAs are altered following each of these injuries while
other miRNAs are altered by specific injuries. Lusardi et al.
(2010) reported that miR-132 was reduced in a precondition-
ing (PC) model of focal stroke, and that this was associated
with improved outcome following a second more severe in-
sult. Jimenez-Mateos et al. (2011) also recently reported that
miR-132 expression was reduced in a model of epilepsy PC
and that this too was associated with reduced neuronal dam-
age following a second more severe insult.

In the present study we employed RT-PCR to explore the
expression of 16miRNAs of interest in a protective, PCmodel
of oxygen-glucose deprivation (OGD) in vitro. In contrast to
Lusardi et al. and Jimenez-Mateos et al., we found that miR-
132 was significantly increased following PC. We generated
lentiviral vectors expressing this highly studied, CREB-
regulated miRNA and explored its neuroprotective effects in
several in vitro models of simulated ischemia.

Experimental Protocols

All animal experiments in this study were performed in accor-
dance with the United Kingdom Animals (Scientific
Procedures) Act 1986

Hippocampal Neuronal Culturing and OGD

Neuron-rich hippocampal cultures were prepared from E18
Wistar rat pups (Kelly et al. 2002). At 11-days in vitro, neu-
rons were subjected to OGD of 30–180 min (procedure de-
scribed in (Kelly et al. 2004a). In brief, hippocampi were
dissected from foetal rats and dissociated in Hanks balanced
salt solution (HBSS) and Trypsin (2.5 g/l). Following isola-
tion, cells were suspended in serum-free medium composed of
Neurobasal (Gibco BRL), B27 supplement (2%), L-glutamine
and antibiotics. Cells were plated down in four-well plates
(13-mm diameter wells) coated with poly-D-lysine
(0.05 mg/ml) at 75,000 cells in a 50-μl spot. Twenty minutes
later, cells were flooded with 450 μl of medium. At 24-h post-
plating, neurons were treated with cytosine arabinoside

(5 μM)). After 12-days in vitro, cultures were washed with
and then immersed in deoxygenated, glucose-free balanced
salt solution (BSSo). Plates were placed in a hypoxia chamber
(O2 tension < 0.02 %) and returned to the incubator at 37 °C
for the duration of the experimental procedure. OGD was
ended by removing the plates from the hypoxia chamber, re-
placing BSSo with their own media and placing them back
into the incubator. At 1 and 24 h after OGD, cultures were
prepared for MTT assay and MAP2 staining to assess cell
health (n = 8–12 wells per condition). Further cultures were
washed with ice cold PBS and prepared for RNA extraction
(n = 8–12 wells per condition). The ischemic preconditioning
effects of 30-minOGDwere also explored. In this experiment,
hippocampal neurons were subjected to 30-min OGD at
10DIV, allowed to recover for 24-h and then subjected to
90-min OGD. At 24-h (i.e. 48-h after preconditioning), these
cells were prepared for MTT assay (n = 10–12 wells per
condition).

Extraction of miRNA from Brain and Neuronal Cultures

Total RNA (includingmiRNA) was extracted from hippocam-
pal neuron cultures using the mirVana isolation kit from
Ambion (Austin, TX, Lee et al. 2008). Briefly, cell cultures
had their media removed and were washed in ice cold diethyl
pyrocarbonate (Depc) 0.001 % treated PBS (Depc-PBS) be-
fore being exposed to lysis buffer (mirVana) for RNA
isolation.

Construction of Lentiviral Vectors Expressing miR-132

MiR-132 expressing lentiviral vectors were produced using
previously published approaches (see Scott et al. 2012a for
details).

Northern Blotting

Total RNA (2 μg) was mixed with an equal volume of gel
loading buffer II (Ambion). Samples were heated for 2 min at
95 °C and run on a denaturing 15 % poly acrylamide gel with
the following composition; 8 M UREA (Sigma, St. Louis,
MO, USA), 1× TBS (50 mM Tris.HCl and 150 mM NaCl),
15 % Acrylamide (40 % Acrylamide 19:1, Biorad), 0.05 % [v/
v] ammonium persulfate (Sigma) and 15 l TEMED (Sigma) in
15 ml nuclease free water. The samples were run at 30–45mA
and stopped when bromophenol blue dye front reached the
bottom of the gel. The gel was then bathed for 5 min in a
0.5 g/ml solution of ethidium bromide in 1× Tris/Borate/
EDTA (TBE, 89 mM Tris base; 89 mM Borate, 10 mM
EDTA, all Sigma). RNAwas transferred to an uncharged ny-
lon membrane (Hybond-N, GE Healthcare) by semi-dry tech-
nique for 60 min in 0.5× TBE at 400 mA. RNAwas UV fixed
to membranes at 254–302 nm for 1 min (Geldoc-it, UVP).
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DNA oligonucleotides, complementary to mature miR-132
were obtained from MWG biotech. Probes were radio-
labelled with 32P (PerkinElmer, Waltham, Ma, USA).
Reactions were performed 10 pmol/l, 5 mM r-32P-ATP,
10 % [v/v] kinase buffer (Perkin-elmer), 10 % [v/v] T4 PNK
(Ambion) in a 10-l reaction for 1 h at 37 °C. Reactions were
stopped with the addition of 1 l EDTA (10 mM).

NMDA and H2O2 Toxicity Model

Hippocampal neurons maintained up to 11 days were used for
NMDA toxicity experiments. Culture media was removed and
400 μl of conditioned media from parallel cultures was added
to eachwell. NMDA (0.05mM) or H2O2 (100μM)was added
to media for 1 h or 20 min, respectively under normal condi-
tions (37 °C in 5%CO2). Cells were washedwith 1× PBS three
times then stocked media returned to wells. Viability of the
cultures was assessed after 24 h recovery.

miRNA Real-Time Quantitative PCR

MiRNA was reverse transcribed using Taqman miRNA
Reverse Transcription Kit (Applied Biosystems, Leeds, West
Yorkshire, UK) and miRNA-specific RT primers (Applied
Biosystems). Real-time PCRs were performed in triplicate
using miRNA TaqMan 2× Universal PCR Master Mix, No
AmpErase UNG (Applied Biosystems) and miRNA specific
assay kits according to Applied Biosystems protocol. For each
condition n = 12 wells of hippocampal neurons. The highly
conserved RNU6B (Applied Biosystems) small nuclear non-
coding RNAwas used as an internal loading control.

Results

Characterization of Hippocampal OGD
and Preconditioning Model

We exposed cultured hippocampal neurons to 30, 90 and 180-
min of OGD at 11-days in vitro (DIV). MTTassays were used
initially to assess cell injury at 24-h recovery. The data showed
that following 90 and 180-min of OGD there were significant
reductions in MTT activity, no reduction in MTT activity was
s e e n f o l l o w i n g 3 0 m i n o f OGD ( F i g . 1 a ) .
Immunohistochemical staining with a MAP-2 antibody was
then used to assess neuron viability following 30, 90 and 180-
min OGD. There was no statistically significant difference in
the number ofMAP-2 positive neurons in control cultures and
cultures exposed to 30-minOGD at 24-h recovery. There were
however, significantly fewer MAP-2 positive neurons follow-
ing 90 and 180-min OGD compared with control cultures
(Fig. 1b, c). We next tested whether cultured neurons could
be pre-conditioned (PC) and protected from a severe OGD

(90 m) 24 h later. Neurons subjected to a preconditioning dose
of 30-min OGD 24-h prior to a second, otherwise lethal 90-
min OGD survived significantly better compared with those
subjected to 90-min OGD alone (Fig. 1D).

MicroRNA Expression Following Preconditioning OGD

We selected 16 miRNAs for analysis based on a number of
factors including, their expression levels in brain, published
and predicted gene targets and unpublished array data from
experiments carried-out within the lab. RT-PCR was used to
assess changes in miRNA expression following precondition-
ing with 30-min OGD. At 1-h following this insult only one
miRNA, miR-98, was significantly altered (Fig. 2). At 24-h
after PC OGD 10 of the 16 miRNAs studied were significant-
ly increased (miR-9, miR-21, miR-29b, miR-30e, miR-101a,
miR-101b, miR-124a, miR-132, miR-153, miR-204, Fig. 2).
No miRNAs were significantly decreased at 24-h post-OGD.

Lentiviral Mediated miR-132 Expression Is
Neuroprotective

We chose to further investigate the potential role of the CREB
regulated brain enriched miR-132. Lentiviral vectors express-
ing miR-132 with EGFP and control vectors expressing EGFP
alone transduced ∼80 % of hippocampal neurons and the
lentiviral-mediated expression of mature miR-132 was con-
firmed by Northern blot (see Schäbitz et al. 1997, 2000;
Nakazawa et al. 2003, 2008; Smirnova et al. 2005; Vo et al.
2005; Scott et al. 2012b). Hippocampal neurons transduced
with miR-132 were found to have significantly higher MTT
activity (∼20 %, p < 0.001) than controls following 90-min
(Fig. 3a) and 180-min of OGD (∼10 %, p < 0.05, Fig. 3b).
OGD leads to neuronal damage via excitotoxicity (NMDA)
and from reactive oxygen species. We this in mind, we exam-
ined whether miR-132 could provide protection from reactive
oxygen species or excitotoxicity by exposing hippocampal
neurons to H2O2 or NMDA. Intriguingly, cultured neurons
were not protected from H2O2-mediated death (Fig. 3c) but
survival was significantly increased (∼10 % as assessed by
MTT assays) in miR-132 transduced neurons following
NMDA exposure (P < 0.001; Fig. 3d).

Discussion

In the present study, we set out to elucidate the expres-
sion of several miRNAs following ischemia in vitro. To
this end, we performed OGD on hippocampal neurons to
mimic ischemia in vitro. Of the 16 miRNAs explored, 10
were significantly increased at 24-h following PC OGD.
The only other significant alteration was a decrease in
the expression of miR-98 at 1-h. These data hint that
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increased expression of these miRNAs may be involved
in the neuroprotective effects of ischemic PC. To explore
this, we selected the widely studied miR-132 and exam-
ined its potential protective effects against lethal OGD,
NMDA and H2O2. MiR-132 was selected for a number
of reasons; it has been shown to influence a wide variety
of neuronal functions including neurite outgrowth, syn-
apse structure, inflammation and nutritional stress (Kelly
et al. 2004b; Gogas 2006; Zhao et al. 2007; Wagner et
al. 2008; Strum et al. 2009; Shaked et al. 2009; Edbauer
et al. 2010; Magill et al. 2010). Intriguingly, miR-132 is
regulated by CREB (Klein et al. 2007; Nudelman et al.
2009; Scott et al. 2012a), which is involved in ischemic
PC neuroprotection (Ballestar and Wolffe 2001; Kelly et
al. 2002; Glover et al. 2004; Meller et al. 2005; Kosik
2006; Bushati and Cohen 2007; Kim et al. 2009; Lin et
al. 2009).

Several studies have attempted to elucidate the role of
miRNAs after ischemia. Lusardi et al. (2010) used a 15-min

middle cerebral artery occlusion (MCAo) as a PC insult to
induce ischemic tolerance to a subsequent MCAo delivered
24-h later. Lusardi et al. found that miR-132 was decreased at
24 h post MCAo mediated PC. Conversely, we found that
miR-132 was upregulated after OGD-PC in vitro at 24 h. An
important distinction between the two studies includes our use
of neurons ex vivo. This allowed for observation of miRNA
responses uniquely seen in the neurons, sans glia and other
cell types. Second, major differences in neuron type can be
found in the cortex and the hippocampus (from which our
tissue was drawn). We also found that miR-132 expression
was significantly reduced in a mouse model of ischemia.
More recently, Hwang et al. (2014) observed that miR-132
was downregulated in neurons of the CA1 in the hippocampus
and this effect was mediated by transcriptional repression
through REST (Kelly et al. 2004a; Miska et al. 2004;
Smirnova et al. 2005; Kim et al. 2007; Chahrour et al. 2008;
Hwang et al. 2014). Crucially, lentiviral-mediated overexpres-
sion of miR-132 protected neurons from ischemia both in

Fig. 1 PC protects neurons from OGD. a MTT assay highlighted that
there was little change in cell activity between control (no insult) cultures
and those subjected to 30 min of OGD (a). In contrast there is a marked
decrease in activity following 90- and 180-min OGD. b, c This correlated
with reduced numbers of neurons observed by MAP2 staining. d A 30-

min OGD was used to stimulate pre-conditioning and protected neurons
from a 90-min OGD performed 24 h later (d). Bars represent a mean of
eight independent experiments with one-way ANOVA and Bonferroni
post hoc test

Fig. 2 PC-OGD alters miRNA
expression profile. MiRNA
expression following 30-min
OGD was assessed by qRT-PCR
at 1 and 24 h after insult.
Expression was normalized
against the endogenous U6
snRNA then expressed relative to
control conditions. Bars represent
means of three independent ex-
periments, Student’s t test,
*p < 0.05; **p < 0.01)
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vitro. Further, Hong et al. (2015) found that miR-132 delivery
to cardiomyocytes reduced intracellular calcium increase and
the presence of apoptotic bodies after hypoxic injury through
targeting of the Na+ Ca2+ exchanger (NCX1) (Hong et al.
2015).

Following a sub-lethal pre-conditioning OGD stress
we found ten miRNAs (miR-9, miR-21, miR-29b,
miR-30e, miR-101a, miR-101b, miR-124a, miR-153,
miR-204, and the CREB-regulated miR-132) were in-
creased significantly. Since, CREB-regulated miR-132
was observed to increase significantly following pre-
conditioning (mild OGD) we investigated its function
further. We found that the lentiviral-mediated expression
of miR-132 protected neurons from OGD and NMDA
toxicity suggesting that its actions may target elements
of the excitotoxic pathway.

Studies have found that the Rho-GTPase, p250GAP,
modulates the NMDA receptor (via an interaction with
the NR2B subunit) and postsynaptic density-95 (PSD-
95) function and that miR-132 suppresses p250GAP ex-
pression (Nakazawa et al. 2003, 2008; Vo et al. 2005).
Because the NR2B subunit and PSD95 expression is
increased following ischemia and are associated with
poor outcome it has been suggested that p250GAP
may play a key role in cell survival following ischaemic
insult. This hypothesis is supported by data showing:

reduced p250GAP expression limits its role as a
GTPase-activator of Cdc42 and RhoA hydrolysis;
RhoA can mediate excitotoxic cell death via Ca2+-de-
pendent activation of the stress-activated protein kinase,
p38α (Semenova et al. 2007). Knock-down of Cdc42
using antisense oligonucleotides attenuates apoptosis in
hippocampal neurons via inhibition of c-jun-N-terminal
kinase 3 (JNK3) cascade (Zhao et al. 2007).

MeCP2 (Methyl CpG binding protein 2) has also been
highlighted as a miR-132-regulated gene (Klein et al.
2007). MeCP2 has generally been considered a global tran-
scriptional repressor due to its methyl binding domain and
transcriptional repressor domains (Ballestar and Wolffe
2001). A recent important study by Chahrour et al.
(2008) however showed that MeCP2 actually activates the
transcription of many genes (up to 85 %) as well as
repressing transcription of others (Chahrour et al. 2008).
Interestingly, MeCP2 expression in the hippocampal CA1
and CA3 fields is moderately upregulated at 24 h after
forebrain ischemia with no increase associated with the
dentate gyrus (Jung et al. 2002). MeCP2 exerts transcrip-
tional repression of BDNF by binding the promoter region.
Transcriptional inhibition is abolished upon membrane
stimulation and subsequent phosphorylation (Chen et al.
2003). Hence, over-expression of miR-132 could also lead
to protection of neurons via repression of MeCP2 transla-
tion and associated reduction in the regulation of BDNF.
BDNF was shown to reduce infarct volume resulting from
focal cerebral ischemia (Schäbitz et al. 1997, 2000).
Moreover, accumulation of BDNF is thought to contribute
to the protection provided by preconditioning insults in-
vivo against subsequent ischemia (Yanamoto et al. 2000a,
b). Together these results suggest that the significant neu-
roprotective effects associated with increased miR-132 ex-
pression reported in this study are due to important activa-
tors (p250GAP, Cdc42 and MecCP2) of the excitotoxic
pathway being targeted and repressed.

In summary, this study demonstrates that hippocam-
pal miRNA expression is altered by mild OGD in vitro.
We show that increased miR-132 expression following
sublethal OGD may contribute to the protective effects
of ischemic preconditioning and that virally driven ex-
pression of miR-132 protects neurons from severe OGD
and NMDA toxicity. Two confirmed gene targets of
miR-132, p250GAP and MeCP2 may underpin the ob-
served protection. Though, several other predicted miR-
132 targets including, BIM, GSK3β, cdc42 and Grin2B
have been shown to protect neurons from ischemia
(Kelly et al. 2004b; Gogas 2006; Zhao et al. 2007).
Gaining further insight into the role of individual
miRNAs in ischemic pathology may elucidate the mech-
anisms underlying neuronal cell death and also miRNA
based therapies for neurodegenerative disorders.

Fig. 3 MiR-132 reduces OGD and NMDA-induced neuronal death. a
Hippocampal neurons transduced with miR-132-EGFP survived 90-min
OGD or 180-min OGD (b) significantly better than EGFP neurons (Ctrl).
c miR-132 did not protect neurons from H2O2-mediated death but did
increase survival relative to controls following exposure to NMDA (d).
Columns represent mean of 12 observations ± SEM, Student’s t test with
***p < 0.001
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