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Abstract The neuron-restrictive silencer factor (NRSF) a
transcriptional regulator that function as a hub that coordinate-
ly regulates multiple aspects of neurogenesis, orchestrates
neural differentiation, and preserves the unique neural pheno-
type. NRSF also acts as an oncogene in neural tumorigenesis,
although its effect differs depending on the cell type and
tissues. Intriguingly, far more than above functions, potential
roles for NRSF and its target genes have also been implicated
in the pathogenesis and therapeutic mechanism of neurode-
generative diseases. NRSF acts as a flexible and complicated
regulator in nervous system, from transcriptional repressor to
activator or modulator, and plays a part in neuronal survival or
neuronal death. Here, we present the mechanisms proposed to
account for the multiple roles of NRSF in neurogenesis and
neurological diseases and discuss the therapeutic perspective
of recent advances. Themechanisms underlying this duality of
NRSF are helpful to understanding the physiological and
pathological conditions of neurons and provide new therapeu-
tic approaches to neurological disorders and diseases.
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Introduction

In 1995, two groups independently identified a gene
encoding a zinc finger protein that was suggested to
function as a master negative regulator of neurogenesis.
The transcription factor REST, an RE1-silencing tran-
scription factor (Chong et al. 1995), also known as
neuron-restrictive silencer factor (NRSF) (Schoenherr
and Anderson 1995) and X2 Box Repressor (XBR) [3]
blocks transcription of its target genes by binding to a
specific consensus 21 bp RE1 binding site/neuron-
restrictive silencer element (RE1/NRSE) that is present
in the target genes’ regulatory regions (Schoenherr et al.
1996; Valouev et al. 2008). Occasionally, a non-
canonical bipartite RE1/NRSE sequence has been de-
scribed, consisting in two half-sites separated by 10–16
base pairs (Johnson et al. 2007). Nowadays, more and
more studies have expanded the functions of NRSF
much beyond its initial role. At the molecular level,
NRSF acts cooperatively with other proteins to execute
its multiple and broad regulatory roles in neuronal dif-
ferentiation and development (Soldati et al. 2012; Covey
et al. 2012; Gao et al. 2011; Qureshi et al. 2010), such as
fine-tuning neural gene expression (Qureshi et al. 2010),
modulating synaptic plasticity (Rodenas-Ruano et al.
2012), and keeping maintenance of self-renewal capacity
of neural stem cells (NSCs) (Covey et al. 2012).
Moreover, NRSF has also been implicated as a suppres-
sor in non-neuronal tumors and as an oncogene in neu-
ronal tumors, such as neuroblastomas, medulloblastomas,
and pheochromocytomas (Negrini et al . 2013).
Intriguingly, dysfunction of NRSF and aberrations in
the regulation of NRSF target genes are closely related
to neurological diseases,especially in neurodegeneration
(Table 1). Consist with the gene-environment interactions
mechanism (Quinn et al. 2013), these findings show that
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NRSF plays diverse roles in multiple cellular processes in
nervous system.

The Biological Aspects of NRSF

As the master regulator of neural cell differentiation in
normal physiological condition, NRSF is highly expressed in
embryonic stem cells but reduced rapidly in neural progenitors
and maintained at very low levels after differentiation (Ooi
and Wood 2007; Ballas and Mandel 2005). The low expres-
sion of NRSF in mature neurons allows the transcription of a
large panel of NRSF target genes, which are necessary for the
acquisition of the unique phenotype of neural cells. PC12
pheochromocytoma cells are almost devoid of NRSF (Bruce
et al. 2006; D’Alessandro et al. 2008) in which NRSF as a hub
of the neurosecretory function (Zhang et al. 2014). In addition,
pancreaticβ-cells express almost undetectable levels of NRSF
(Ballas and Mandel 2005), allowing transcriptional activators
to bind and initiate the chromatin of NRSF target genes. In
contrast, in neural cell tumors, high levels of NRSF were
expressed in medulloblastomas (Fuller et al. 2005), neuroblas-
tomas (Singh et al. 2011), and multiform glioblastomas
(Kamal et al. 2012) and were correlated with the proliferation
and severity of these tumors (Kamal et al. 2012; Conti et al.
2012). However, in some epithelial cell types, such as in
human mammary carcinoma cells (Lv et al. 2010; Wagoner
et al. 2010), various colon carcinoma lines (Hatano et al.
2011) and in small-cell carcinomas (SCLCs) of the lung
(Kreisler et al. 2010; Coulson et al. 2000), NRSF was identi-
fied as a tumor suppressor and expressed in low levels.
Therefore, NRSF acts as an oncogene in neural tumors and
as a tumor suppressor of carcinomas in the breast, colon, and
lung. Taken together, NRSF plays dual, opposing roles in
different conditions, which depend not only on the cell type

and tissue specific, but also on the concentration of NRSF,
the chromatin architecture of the particular genes (Negrini
et al. 2013; Thiel et al. 2014). Thus, it is necessary for us
to realize the basic structure and binding partners of
NRSF (Ooi and Wood 2007) as well as the dynamics of
its expression.

The Dynamics of NRSF Expression

Although NRSF is a giant communication hub for the
neurons, precisely how NRSF itself is regulated still re-
mains an open question. Changes in its expression can be
due to both transcriptional and posttranscriptional pro-
cesses. At the same time, the dynamics of NRSF levels
in neural and non-neural tumors with respect to their cells
of origin could be due to miscellaneous regulatory mech-
anisms. In human embryonic kidney (HEK) cells and
neural progenitors, rapid NRSF turnover is mediated by
targeting to a proteasomal pathway (Ballas et al. 2005),
which is kept in equilibrium by the enzyme regulating its
ubiquitination, the ubiquitin ligase SCFβ-TRPC (beta-
transducin repeat containing E3 ubiquitin protein ligase)
(Guardavaccaro et al. 2008; Westbrook et al. 2008) in-
volving casein kinase 1 (Kaneko et al. 2014), and the
deubiquitinase HAUSP (the herpesvirus-associated ubiq-
uitin-specific protease, also known as USP7) (Huang and
Bao 2012; Huang et al. 2011a, b). TRF2 (telomere repeat-
binding factor 2) functions as a key component of the so
called telomere ‘shelterin’ complex in maintaining telo-
mere integrity at chromosome ends (D’Adda et al. 2003).
However, recent findings suggests that TRF2 binds to and
stabilizes NRSF thereby facilitating the physiological self-
renewal of neural progenitor cells and the pathological
uncontrolled proliferation of cancer cells (Ning et al.
2006; Zhang et al. 2008). As a consequence, reduced
TRF2 binding to NRSF, and increased SCFβ-TRPC activity,
target NRSF for proteasomal degradation and thereby
inhibit cancer stem cell proliferation, especially in glio-
blastoma (Zhang et al. 2009). What’s more, the β-catenin/
TCF system is reported to regulate the synthesis of NRSF
and play a critical role in cell proliferation (Tomasoni
et al. 2011). At the transcription level, a transcription
factor Yin Yang (YY1) can activate NRSF transcription
in SHSY5Y neuroblastoma cells (Jiang et al. 2008). In
addition, in the Wnt pathway, there are several genes
influence NRSF transcription via β-catenin (Nishihara
et al. 2003). The dysregulation of the hedgehog pathway
could induce changes in NRSF levels (Gates et al. 2010).
CTDSP1 (the RNA polymerase C-terminal domain small
phosphatase 1), a phosphatase, activity stabilizes NRSF in
stem cells and that ERK-dependent phosphorylation com-
bined with Pin1 (peptidylprolyl cis/trans isomerase)

Table 1 NRSF is associated with varies of neurological diseases

Neurological diseases Key references

Schizophrenia (Warburton et al. 2014; Loe-Mie et al. 2010)

Ischemic stroke (Noh et al. 2012; Calderone et al. 2003)

Huntington disease (Zuccato et al. 2007; Zuccato and Cattaneo
2007)

Epilepsy (Hu et al. 2011; Spencer et al. 2006)

Alzheimer (Lu et al. 2014; Tsai and Madabhushi 2014)

Parkinson’s disease (Yu et al. 2013; Ohnuki et al. 2010)

Mood disorder (Warburton et al. 2015)

Fetal alcohol syndrome (Cai et al. 2011)

Down’s syndrome (Bahn et al. 2002)

X-linked mental
retardation

(Tahiliani et al. 2007)
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activity promotes NRSF degradation in neural progenitors
(Nesti et al. 2014). Moreover, microRNAs (miRNAs) are
excellent candidates for regulating cellular phenotype (He
and Hannon 2004; Bartel 2004) (Table 2). They change
the expression of NRSF with a regulatory feedback mech-
anism, in which the reciprocal action of miR-9 (Laneve
et al. 2010) or miR-124a (Conaco et al. 2006) with NRSF
may be relevant for the maintenance of the neuronal
differentiation program. Finally, in addition to the regula-
tion of neuronal NRSF concentrations at the level of
protein stability, up-regulation of NRSF expression by
nutrient or neuronal activity has been proposed.
Transgenic mouse model that allows an inducible expres-
sion of NRSF in neurons would be very valuable to
clarify the dynamics of NRSF expression and its role in
nervous system.

The Relationship between NREF and its Isoforms

Due to alternative splicing, nrsf produces different tran-
scripts. REST4, a neuron-specific truncated form of
NRSF in rodent, could partly resist the silencing function
of NRSF (Shimojo et al. 1999; Tabuchi et al. 2002),
promoting neural gene expression and neurogenesis (Raj
et al. 2011; Uchida et al. 2010) as it lacks the C-terminal
repression domain of REST and is unable to interact with
CoREST (Andres et al. 1999; Ooi and Wood 2007). In
human, hREST4 protein, a truncated REST generated by
the alternative splicing of exon N62 from the REST gene,
was mainly expressed in neural tissues/cells as rodent
REST4 (Palm et al. 1999). The functions of REST4 in
the brain are much more complex. Recent studies

demonstrate that TRF2 interacts with hREST4 to protect
hREST4 from ubiquitin-mediated degradation by the pro-
teasome, hence positively regulating neural progenitor
formation and maintenance (Ovando-Roche et al.
2014). In addition, the network of REST4-mediated
genes in the mPFC during the early postnatal period
but not adult mice plays an important role in the devel-
opment of stress vulnerability (Uchida et al. 2010). The
neural-specific Ser/Arg repeat-related protein of
100 kDa (nSR100/SRRM4) directly promotes alternative
splicing of REST transcripts to produce a REST isoform
(REST4) with greatly reduced repressive activity, there-
by activating expression of REST targets in neural cells
which required for neurogenesis (Raj et al. 2011).
REST4 gives assistance to REST and plays a role in
neurological disorder, including epilepsy (Spencer et al.
2006), Parkinson’s disease (Yu et al. 2009), mood dis-
orders (Warburton et al. 2015), and fetal alcohol syn-
drome (Cai et al. 2011). Splicing of REST mRNA into
its REST4 form also occurs in tumor, such as small cell
lung cancer (SCLC) (Coulson et al. 2000) and breast
(Wagoner et al. 2010). In SCLC, the increasing expres-
sion of the NRSF isoform impart a neuroendocrine
phenotype on the cells (Coulson et al. 2000). In breast
cancer, at least in part via the alternative splicing to
REST4, REST function is lost (Wagoner et al. 2010).
Taken together, the balance of REST4 and REST is
important not only for neural differentiation and NPC
maintenance, but also for steady neurological network.
What’s more, NRSF and its splice variant may be at-
tractive therapeutic targets and represent specific clinical
markers (Coulson et al. 2000; Wagoner et al. 2010) for
these neurological diseases.

Table 2 NRSF regulate microRNA networks in the nervous system

miRNAs Description The relative physiological
or pathological roles

Key references

miR-9 NRSF inhibits the activity of the miR-9-2 promoter in undifferentiated
neuroblastoma cells the reciprocal action of miR-9 with NRSF may be
relevant for the maintenance of the program.

Neuronal differentiation (Laneve et al. 2010);
(Rockowitz et al. 2014)

miR-21 NRSF maintains self-renewal and pluripotency in mouse ES cells through
suppression of the microRNA miR-21.

The self-renewal and
pluripotency of mouse
embryonic stem

(Singh et al. 2008)

miR-124 High NRSF induces a decrease in expression of the miRNA miR-124,
increasing the expression level of the targets which stimulate cell
proliferation.

Brian cancer (Kamal et al. 2012; Conti et al.
2012; Fowler et al. 2011)

miR-132 NRSF specially binding and epigenetic remodeling at the miR-132 promoter
and silencing of miR-132 expression in selectively vulnerable
hippocampal CA1 neurons.

Ischemia (Hwang et al. 2014)

miR-137 Distinct isoforms of NRSF mediate differential expression at the internal
promoter of MIR137 gene thereby regulating the expression of distinct
mRNA isoforms encoding miR-137.

Schizophrenia (Warburton et al. 2014)
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The Role of NRSF in Neurogenesis

By maintaining neural progenitor cells in a self-renewing
state, NRSF plays a crucial role in both embryonic develop-
ment and adult neurogenesis (Ballas and Mandel 2005).
Perturbation of NRSF expression or function results in early
embryonic lethality (Chen et al. 1998) or tumors (Negrini et al.
2013). NRSF works as a key regulator of the fates of neural
stem cells and cancer cells. However, both neurogenesis and
tumorigenesis are complex and multifactorial process,
governed by a cascade of genetic and epigenetic events.
Fully understanding them requires consideration of the coop-
erative effects.

Originally, NRSF was proposed to be a master regulator of
neurogenesis (Schoenherr and Anderson 1995; Chong et al.
1995). Based on this original hypothesis, many studies focus
on performing the role of NRSF during the development of
nervous system. On the one hand, when embryonic stem cells
(ESC) differentiate in vitro to neural stem cells, NRSF expres-
sion is down-regulated (Ballas et al. 2005). miR-124 is highly
and specially expressed in neurons (Sempere et al. 2004). Its
expression is induced by falling levels of NRSF during differ-
entiation of neural progenitor (Yoo et al. 2009). By this way,
the induction ofmiR-124 remodels the terminal differentiation
by the repression of transcriptional repressor cofactors
(Visvanathan et al. 2007), initiation of neural-specific splicing
(Makeyev et al. 2007), and the repression of the neural pro-
genitor npBAF complex (Yoo et al. 2009). NRSF also controls
the differentiation and gene transcription of human and rat
neural stem cells along the neuronal lineage (Ekici et al. 2008;
Gao et al. 2011). Similarly, although the expression of the
pluripotency genes is decreased by the neural induction, in the
NRSF-deficient embryonic stem cells, the down-regulation of
pluripotency genes expression is delayed (Soldati et al. 2012).
What’s more, the reduced self-renewal capacity as well as
precocious neuronal differentiation has been tested in NRSF-
deficient neural progenitor cells (Covey et al. 2012). Finally,
reduced proliferation capacity (Gao et al. 2011) and depres-
sion of neuronal genes (Aoki et al. 2012) have been measured
in the brains of NRSF-deficient mice.

On the other hand, other researchers demonstrated that
depletion of NRSF from embryonic stem cells did not change
their differentiation status (Buckley et al. 2009; Jorgensen
et al. 2009a, b; Yamada et al. 2010; Soldati et al. 2012).
NRSF-deficient embryonic stem cells remained pluripotent
and were able to differentiate into cells of the three germ
layers mesoderm, endoderm, and ectoderm (Jorgensen et al.
2009b; Covey et al. 2012). NRSF regulates ESC pluripotency
in culture condition- and ESC line-dependent fashion, and
ESC pluripotency needs to be evaluated in a context depen-
dent manner. Extracellular matrix components, such as feeder
cells and laminin, can rescue the role of NRSF in ESC
pluripotency (Singh et al. 2012). Taken together, these data

demonstrate that NRSF is not required to maintain the
pluripotency state of embryonic stem cells while the neuronal
gene expression program is suppressed by NRSF in these
cells. The establishment and maintenance of neuronal identity
require both derepression of NRSF-regulated genes as well as
posttranscriptional down-regulation of non-neuronal tran-
scripts by microRNAs (Laneve et al. 2010; Conaco et al.
2006),such as a human miR-9-2 gene, expressed almost ex-
clusively in the brain (Dietrich et al. 2012; Zheng et al. 2009).
miR-9 has been implicated in nervous system development,
physiology, and pathology in several organisms (Greenway
et al. 2007; Yu et al. 2011), that is also under NRSF control.
miR-9-2 contribute to neural differentiation, neural fate deter-
mination, and cell cycle exit through the repression of a
number of neural transcription factors including TLX (an
orphan nuclear receptor), HES-1 (a Notch signaling effector),
FOXG1 (a forebrain-specific transcription factor) (Rockowitz
et al. 2014). TLX is critical for maintaining neural progenitor
cells (NPCs) in their undifferentiated state (Shi et al. 2004).
HES-1 is required for NSC homeostasis/maintenance (Bonev
et al. 2012), as its repression accelerates, while its overexpres-
sion inhibits, neurogenesis (Kageyama et al. 2008). FoxG1
maintains NPC self-renewal (Fasano et al. 2009) and sup-
presses the formation of early-born neurons (Hanashima
et al. 2004). In addition, previous research demonstrates the
existence of a feedback mechanism in which the reciprocal
action of miR-9 and NRSF (Rockowitz et al. 2014) may be
responsible for the maintenance of the neuronal differentiation
program. These results indicate that NRSF plays an important
role in neurogenesis by both directly targeting key neuronal
transcription factors and regulating the transcription of neuro-
nal miRNAs to controls neurogenesis synergistically by fine-
tuning the expression of individual components to maintain a
balance, which is necessary for the proper development of
multiple neuronal lineages and for maintaining some level of
developmental plasticity. On the other hand, what should be
highlighted is that the analysis of neural stem/progenitor cells
through either deleting of NRSF or overexpressing NRSF
revealed that NRSF is not the master regulator that is solely
responsible for the acquisition of the neuronal fate. Rather,
NRSF provides a regulatory hub that coordinately regulates
multiple tiers of neuronal development (Soldati et al. 2012).

The Role of NRSF in Tumorigenesis

In neural tumors, the role of NRSF is oncogenic. High NRSF,
present in relevant percentages of these tumors, such as me-
dulloblastomas (Fuller et al. 2005), neuroblastomas (Singh
et al. 2011), multiform glioblastomas (Kamal et al. 2012),
and pheochromacytoma (Tomasoni et al. 2011), stimulates
their proliferation and worsens prognosis. Several mecha-
nisms have been proposed to explain how high NRSF results
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in high proliferation. First of all, in medulloblastomas, NRSF-
dependent repression of the deubiquitylase USP37 (ubiquitin-
specific peptidase 37) decreased the levels of CDKNIB/p27, a
cyclin-dependent kinase inhibitor, thus decreasing its cell
cycle inhibition, resulting in an increase in cell proliferation
(Das et al. 2013). Second, TRF2 binds to and stabilizes NRSF
in nuclear foci that colocalize with PML (promyelocytic leu-
kemia) nuclear bodies in human neuroblastoma and glioblas-
tomas cells thereby facilitating the pathological uncontrolled
proliferation of cancer cells (Zhang et al. 2009, 2008). Third,
in glioblastomas, high NRSF induces a decrease in expression
of the miRNAmiR-124a (Kamal et al. 2012; Conti et al. 2012;
Fowler et al. 2011), thereby increasing the expression level of
the NRSF targets transcription factor SNAI-1 (Snail homolog
2) (Xia et al. 2012), a transcription factor that promotes cell
invasion and tumor metastases, and two small phosphatases,
Scp1 (Small C-terminal domain phosphatase 1) and PTPN12
(Protein-tyrosine phosphatase, non-receptor type 12) (Conti

et al. 2012). All three of these miR-124a targets stimulate cell
proliferation. What’s more, illustrates part of the signaling
loop operative in high-NRSF pheochromocytoma cells.
High levels of NRSF induce a decrease of tuberous sclerosis
complex 2 (TSC2), a hub that governs various intracellular
signaling pathways. Low TSC2 results in decreased turnover
and increased transfer to the nucleus of β-catenin (Nishihara
et al. 2003), which stimulates the transcription of oncogenes
such as cMyc and Cyclin D1 (Tomasoni et al. 2011).
Moreover, evidence for a role of TSC2 and β-catenin in
proliferation has been reported in medulloblastomas
(Baryawno et al. 2010) (Figs. 1 and 2).

In summary, various mechanisms have been identified to
support the oncogenic role of NRSF in neural tumors.
Interestingly, these mechanisms are not specific to the tumor
type in which they were first identified. Initial evidence sug-
gests that they may also operate in other types of neural
tumors (Huang et al. 2011a, b; Negrini et al. 2013). In contrast,

Fig. 1 The schematic of the relationships among REST, binding
partners, and its isoforms. Two repressor domains are located on the N-
and C-termini of REST (Ooi and Wood 2007). The repressor element 1
(RE1) sites are recognized by the zinc-finger domain of REST, and the
interaction with DNA is stabilized by the ATP-dependent chromatin-
remodeling enzyme, BRG1 (Ooi et al. 2006). REST-mediated gene
repression is achieved by the recruitment of two separate corepressor
complexes, mSin3 and CoREST (Naruse et al. 1999). The N-terminus of
REST interacts with the mSin3 complex, which contains two class I
histone deacetylases (HDACs), HDAC1, and HDAC2. In myocytes,
REST’s N-terminus also recruits the class II HDACs ,HDAC4, and
HDAC5 (Nakagawa et al. 2006). The C-terminus of REST interacts
with the CoREST complex, which contains HDAC1, HDAC2, BRG1,
the H3K4 demethylase LSD1, and the H3K9 methylase G9a (Roopra et
al. 2004a). The methyl-CpG2 binding protein MeCP2 has also been

found in the REST corepressor complex. CoREST binding might be
stabilized by its ability to bind DNA79 and/or by its interaction with
MeCP2 (Lunyak et al. 2002). The NADH-sensitive corepressor C-
terminal binding protein CtBP is recruited in the presence of low levels
of NADH, but dissociates from the REST complex when NADH levels
are high (Roopra et al. 2004b). In vitro, the N- and C-termini of REST
seem to form distinct repression domains that interact with different
corepressor complexes (Grimes et al. 2000). The diagram is not meant
to necessarily imply direct interactions. nSR100 mediates alternative
splicing switch from REST to REST4 splice isoforms in neurons
thereby promoting neural gene expression. TRF2 also interacts with
REST4 in human neural progenitors to protect hREST4 from ubiquitin-
mediated degradation by the proteasome for positively regulating neural
progenitor formation and maintenance
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transfection with neither NRSF nor the oncogene cMyc is suffi-
cient to induce neural stem cells to form a medulloblastoma;
when NRSF and cMyc are cotransfected, however, they do
induce tumors, although only if injected in the cerebellum, the
site of human medulloblastoma formation, as opposed to the
cerebral cortex. Alternatively, NRSF and the other factors could
operate in parallel, via distinct but synergistic pathways. The
complexity of tumorigenesis requires the cooperation of different
mechanisms that may be governed by a variety of additional
factors. Future studies should be aimed at revealing the compre-
hensive cell biological processes by which NRSF cooperates
with other factors to govern cell proliferation, cell transformation,
and tumor growth.

The Role of NRSF in Neurological Disorder Diseases

NRSF has been implicated in diverse neurological disorder
diseases, highlighting the importance of NRSF-mediated regula-
tion to the integrity of the cell, especially in neurodegeneration.

Ischemic insults promote NRSF specially binding and epige-
netic remodeling at the miR-132 promoter and silencing of miR-
132 expression in selectively vulnerable hippocampal CA1 neu-
rons. A substantial decrease in two marks of active gene

transcription, dimethylation of lysine 4 on core histone 3
(H3K4me2) and acetylation of lysine 9 on H3 (H3K9ac) at the
miR-132 promoter are induced by ischemia, documenting a role
for NRSF-dependent repression of miR-132 in the neuronal
death associated with global ischemia (Hwang et al. 2014).
Moreover, increased levels of NRSF are associated with a
down-regulation of the transcriptionally responsive genes
Gria2, which leads to increased calcium entry through GluR2-
lacking AMPA receptors and subsequent neuronal cell death
(Calderone et al. 2003). Polycomb group proteins serve as global
enforcers of epigenetically repressed states in an array of cell
types, including neurons (Zukin 2010). Recent studies indicate
that polycomb repressive complex 2 (PRC2) is recruited to RE1-
containing genes by NRSF via the non-coding RNA HOTAIR
(Tsai et al. 2010) and that PRC1 interacts withNRSF at RE1 sites
(Ren and Kerppola 2011). NRSF had opposite effects on PRC1
occupancy as well as on transcription at genes that contained
distal versus proximal RE1 elements in differentiating neurons
(Ren and Kerppola 2011). Moreover, polycomb proteins are
activated and afford neuroprotection in the setting of ischemic
preconditioning (Stapels et al. 2010). Casein Kinase 1 (CK1), an
upstream effector that bidirectionally regulates NRSF cellular
abundance, associates with and phosphorylates NRSF at two
neighboring, but distinct motifs within the C terminus of NRSF

Fig. 2 Mechanisms of high expression of REST induced proliferation in
neural tumors. REST-dependent repression of USP37 (ubiquitin-specific
peptidase 37) accelerates the turnover of p27 (a cyclin-dependent kinase
inhibitor), thus decreasing its cell cycle inhibition, resulting in an increase
in cell proliferation. TRF2 binds to and stabilizes REST, thereby
preventing its degradation and facilitating the pathological uncontrolled
proliferation of cancer cells, whereas activity of the ubiquitin E3 ligase
SCFβ-TrCP accelerates proteasomal degradation of REST. High REST
induces a decrease in expression of the miRNA miR-124a, thereby

increasing the expression level of the REST targets transcription factor
SNAI-1 (Snail homolog 2), Scp1(Small C-terminal domain phosphatase
1), localized in the nucleus, and PTPN12(Protein-tyrosine phosphatase,
non-receptor type 12), distributed primarily in the cytoplasm. In addition,
high levels of REST induce a decrease of TSC2 (tuberous sclerosis
complex 2). Low TSC2 results in decreased turnover and increased
transfer to the nucleus of β-catenin, which stimulates the transcription
of oncogenes such as cMyc and Cyclin D1
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critical for binding of β-rTCP and targeting of NRSF for
proteasomal degradation. Global ischemia in rats in vivo triggers
a decrease in CK1 and an increase in NRSF in selectively
vulnerable hippocampal CA1 neurons. CK1 activation protects
against ischemia-induced neuronal death via promoting β-rTCP
stability by targeting of NRSF for proteasomal degradation and
unsilencing of GluA2. However, NRSF also regulates an addi-
tional gene target, OPRM1 (opioid receptor 1 or MOR-1), by
directly inhibition via histone deacetylation and methylation in
the CA1 region of the hippocampus. Repression of Opmr1
seems to be neuroprotective, possibly because of an increased
GABA (γ-aminobutyric acid) release that reduces the level of
neuronal activity (Fig. 3a).

Potential roles for NRSF and its target genes have also been
implicated in the pathogenesis of Huntington disease. One of
the factors that contribute to the disease phenotype is the
inability of mutant huntingtin (Htt) protein to interact with
NRSF (Zuccato et al. 2003). Wild-type Htt sequesters NRSF
in the cytoplasm of mouse striatal neurons, thereby inhibiting
its function. NRSF is therefore prevented from binding to its
cognate cis RE1 regulatory elements. Htt does not seem to
interact with NRSF directly, but rather it is part of a complex
that contains HAP1 and NRSF-interacting LIM domain protein
(RILP), a protein that directly binds REST/NRSF and promotes
its nuclear translocation. REST/NRSF, dynactin p150Glued,
huntingtin, HAP1, and RILP form a complex involved in the
translocation of REST/NRSF into the nucleus and that HAP1
controls REST/NRSF cellular localization in neurons (Shimojo
2008; Shimojo and Hersh 2006). However, the mutant HD
protein cannot interact with NRSF, resulting in higher levels
of NRSF in the nucleus and repression of its target genes. One
such target is the neuronal survival factor, BDNF, low levels of
which are thought to contribute to neuronal degeneration in
Huntington disease (Zuccato et al. 2003; Shimojo and Hersh
2006). In addition, mHtt triggers a pathogenic cascade involv-
ing Sp1 activation, which leads to NRSF up-regulation and
repression of neuronal genes (Ravache et al. 2010). A
dominant-negative form of NRSF restored the BDNF level in
HD cells (Zuccato et al. 2007). Other studies suggest that NRSF
regulation is altered by polyglutamine (polyQ) toxicity, which
expansion at the N-terminus of huntingtin (Htt). mHtt has an
amino-terminal fragment (Nter) corresponding to the first 171
amino acids of human Htt with 142Q (thereafter called Nter-
142Q) or with 15Q as control (Nter-15Q). mHtt fragment of
this size has been shown to cause a neurological phenotype in
mice (Schilling et al. 1999), the Nter of mHtt induces aberrant
expression of NRSF (Ravache et al. 2010). The global level of
NRSF proteins is increased in the brain of the R6/1 mouse
model of HD (Smith et al. 2006). Also, NRSF can regulate its
own expression level through a double negative feedback loop
involving NRSF-dependent expression of a specific
microRNA, MiR-9, a microRNA that regulates NRSF expres-
sion level, is down-regulated in HD and may account for the

observed increase of NRSF expression (Packer et al. 2008).
Thus, mHtt and its Nter (an amino-terminal fragment) frag-
ments could trigger the activation of NRSF through three
different mechanisms: by increasing NRSF transcription, de-
creasing microRNA regulation, and increasing NRSF nuclear
translocation. Previous researches have shown that the expres-
sion of a dominant negative cDNA construct comprising the
eight zinc fingers that represent the DNA binding domain of
NRSF is able to reduce the binding of NRSF to its cognate
genomic binding sites, leading to a consequent increase in
transcription of BDNF and other NRSF-regulated genes
(Belyaev et al. 2004; Bruce et al. 2004; Greenway et al. 2007;
Zuccato and Cattaneo 2007). Decoys are double-stranded
oligodeoxynucleotides corresponding to the DNA-binding ele-
ment of a transcription factor and act to sequester it, thereby
abrogating its transcriptional activity. Delivery of the decoy in
cells expressing mutant Huntingtin leads to its specific interac-
tion with NRSF, a reduction in NRSF occupancy of RE1s and
rescue of target gene expression, including Bdnf (Soldati et al.
2011). A combination of virtual screening and biological ap-
proaches can lead to compounds reducing NRSF complex
formation, which may be useful in HD and in other patholog-
ical conditions (Conforti et al. 2013) (Fig. 3b).

Increased levels of NRSF are also important in rat hippo-
campal and cortical neurons in response to epileptic seizures
(Palm et al. 1998). To explain how the ‘ketogenic diet’ treat-
ment works for drug-resistant epilepsy, researchers demon-
strate that the glycolytic inhibitor 2-deoxy-D-glucose (2DG)
potently reduces the progression of kindling and blocks
seizure-induced increases in the expression of brain-derived
neurotrophic factor (BDNF) and its receptor, TrkB. This re-
duced expression is mediated by the transcription factor
NRSF, which recruits the NADH-binding co-repressor C-
terminal binding protein (CtBP) to generate a repressive chro-
matin environment around the BDNF promoter (Garriga-
Canut et al. 2006; Huang and McNamara 2006). Moreover,
the conditional NRSF knockout mice with a Cre-loxp system
to specifically delete NRSF in excitatory neurons of the post-
natal mouse forebrain exhibited a dramatically accelerated
seizure progression in an animal model of epilepsy, indicating
that NRSF functions as a repressor of epileptogenesis (Hu
et al. 2011). Taken together, above suggest that NRSF func-
tions as an intrinsic repressor of epileptogenesis and a low
expression level of NRSF in neurons is essential for maintain-
ing neuronal functions (Fig. 3c).

It has also been shown that NRSF expression protects
mature hippocampal neurons against hyperexcitability (Pozzi
et al. 2013). NRSF is almost absent from the nuclei of cortical
and hippocampal neurons of individuals with Alzheimer’s
disease and is found in autophagosomes together with
misfolded proteins. In the brains of healthy aged individuals,
nuclear NRSF both targets and suppresses several pro-
apoptotic genes, as well as certain genes that encode enzymes
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involved in the pathology of Alzheimer’s. During normal
aging, NRSF is induced in part by cell non-autonomous Wnt

signaling. In contrast, in the mouse brain, the conditional
deletion of NRSF expression increased degeneration and cell

Fig. 3 The multiple role of REST in neurological disorder diseases. a In
ischemia, ischemic insults promote up-regulation of REST, thereby ac-
celerating REST specially binding and silencing of miR-132 expression
in selectively vulnerable hippocampal CA1 neurons. A substantial de-
crease in dimethylation of lysine 4 on core histone 3 (H3K4me2) and
acetylation of lysine 9 on H3 (H3K9ac) also increase the repression of
miR-132 expression. Increased levels of REST are associated with a
down-regulation of the transcriptionally responsive genes Gria2, which
leads to increased calcium entry through GluA2-lacking AMPA receptors
and subsequent neuronal cell death. The increase in H3K9me2 and in
binding of MeCP2 to methylated DNA corresponds to an increase in
repressive GluA2 and a reciprocal potential decrease in transcription.
Moreover, global ischemia decreases CK1 and β-TrCP. CK1 associates
with and phosphorylates REST, thereby promoting β-TrCP-mediated
ubiquitination. CK1 activation protects against ischemia-induced neuro-
nal death. b In huntingtin disease (HD), wild-type huntingtin (wtHtt)
sequesters REST in the cytoplasm denying access of REST to its regula-
tory elements on its target genes and permitting activated gene expres-
sion. wtHtt interacts with REST indirectly: a complex that contains
p150Glued that binds HAP1 that, in turn, interacts with RILP. In HD,
mutant huntingtin (muHtt)/HAP1/p150Glued complex is disrupted lead-
ing to the release of REST, which is free to migrate to the nucleus and
consequently repress transcription of neuronal genes, including BDNF. In

addition, muHtt triggers a pathogenic cascade involving Sp1 activation,
which leads to REST up-regulation and repression of neuronal gene. c In
epilepsies, under normal circumstances, NADH generated by glycolysis
destabilizes the interaction of CtBP and REST, allowing transcription of
REST target genes such as brain-derived neurotrophic factor (BDNF) and
its receptor, TrkB, and maintaining normal neuronal excitability. The
glycolytic inhibitor 2-deoxy-D-glucose (2DG) inhibits glycolysis, reduc-
ing NADH concentrations. The corepressor CtBP is recruited to form the
REST-CtBP complex on REST target genes, reducing their transcription.
Lower expression of BDNF and TrkB leads to reduced neuronal excit-
ability, increasing seizure threshold, and inhibiting progression of kin-
dling. Furthermore, the derepression of BDNF is associated with the
activation of PLCγ and PI(3)K signaling pathways. d In Alzheimer’s
disease(AD) and aging, the loss of neuroprotective REST functions
contributes to neuronal vulnerability in the brains of those with
Alzheimer’s. Both the Wnt signaling and the REST induction of Patients
with AD are suppressed in, leading to neurodegeneration. REST is lost
from the nucleus and appears in autophagosomes together with patholog-
ical misfolded proteins. During normal ageing, REST is induced in part
by cell non-autonomous Wnt signaling. In the brains of healthy aged
individuals, increased expression of nuclear REST both targets and
suppresses several pro-apoptotic genes, as well as certain genes that
encode enzymes involved in the pathology of Alzheimer’s
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death of neurons (Lu et al. 2014) (Fig. 3d). Moreover, neuron-
specific conditional NRSF knockout mice were shown to be
more vulnerable to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), which is frequently used to in-
duce a Parkinson’s disease model in mice. Disturbance of the
homeostasis of NRSF and its target genes, gliogenesis, and
inflammation may contribute to the higher MPTP sensitivity
in NRSF/REST neuronal cKO mice (Yu et al. 2013). What’s
more, the apoptotic effect through cleaved-Caspase 3 induced
by ethanol is increased in the brains of neuron-specific con-
ditional NRSF knockout mice on neurons, providing new
evidence that NRSF can be a therapeutic target in fetal alcohol
syndrome (FAS) (Cai et al. 2011). Together, these data show
that NRSF is neuroprotective and essential for maintaining
neuronal viability. The neuroprotective activity is based on the
repression of genes that encode pro-apoptotic genes or genes
involved in the pathology of Alzheimer’s disease. Moreover,
NRSF increases the expression of FOXO transcription factors
that mediate oxidative stress resistance (Lu et al. 2014).
Interestingly, NRSF levels are increased in cortical and hip-
pocampal neurons of the aging healthy brain (Lu et al. 2014),
supporting the preservation of cognitive function during ag-
ing. NRSF was also found to repress the u-opioid receptor in
neuronal cells, and thus may have a role in opium addiction
(Kim et al. 2004). Similarly, NRSF was found to repress the
serotonin 1A receptor, which is implicated in depression and
anxiety (Lemonde et al. 2004). NRSF dysfunction may con-
tribute to the pathogenesis of a number of different neurode-
generative disorders. In addition to AD, NRSF was also
significantly depleted in frontotemporal dementia and demen-
tia with Lewy bodies. In each of these disorders, NRSF was
lost from the nucleus and appeared in autophagosomes to-
gether with pathological misfolded proteins, including A β,
phosphorylated tau, TDP-43, and a synuclein (Lu et al. 2014).
This may represent a common pathogenic mechanism that
links altered proteostasis to aberrant gene expression.

Taken together, these data support the view that the con-
centration of NRSF plays an important role in neurodegener-
ation and suggest that the NRSF concentration in adult neu-
rons has to be tightly regulated. These findings indicate that
under different conditions, in different cell types, and during
different stages of development, NRSF regulates different
networks of target genes. Understanding the mechanisms that
underlie the involvement of NRSF and its copartners in dis-
eases should identify putative therapeutic targets.

Clinical Perspectives

Progress of research on NRSF-dependent neurological disor-
der diseases, with identification of mechanisms that trigger
and sustain their growth, has already offered new perspectives
in terms of diagnostics, prognosis, and therapy.

To date, there is one laboratory test proposed for the
presurgical identification of low-NRSF carcinomas, which
uses the appearance in peripheral blood of NRSF-regulated
transcripts as biomarkers (Moss et al. 2009). Other, similar
tests could be developed in the near future. In terms of prog-
nosis, both neural and non-neural NRSF-dependent tumors
appear more aggressive than NRSF independent tumors of the
same organ. This conclusion is based on gene profiling studies
of surgically removed tumors, which identified specific mo-
lecular signatures and thus potentially useful prognostic
markers (Wagoner and Roopra 2012; Sanson et al. 2006),
combined with detailed analysis of pathology archives (Lv
et al. 2010; Taylor et al. 2012).

In glioblastomas, low TRF2 and high SCFβ-TRCP

levels accelerate NRSF turnover and thus play critical
roles in cell proliferation (Zhang et al. 2009). This find-
ing stimulated the search for agents that can specifically
increase TRF2 or decrease SCFβ-TRCP. These agents are
expected to induce fewer side effects than conventional
chemotherapeutic drugs (Zhang et al. 2009). Combining
a NRSF/TRF2-based treatment with low doses of
existing chemotherapeutic agents might further improve
the outcome in patients with glioblastoma. The identifi-
cation of SCFβ-TRCP as a regulator of NRSF stability
also provides a new perspective on the molecular mech-
anisms that regulate the fate of neural progenitor cells
and cancer cells. However, when considering SCFβ-TRCP

as a potential therapeutic target, it is important to recog-
nize that NRSF is not the only target of the SCFβ-TRCP

pathway. In a few cases, glioblastoma remission has been
reported following treatment with valproic acid (VPA),
an old drug used for decades in the treatment of epilepsy
that has recently been recognized as an inhibitor of class
I histone deacetylases, key NRSF effectors (Warburton
et al. 2015). The drug induces differentiation of tumor
cells can prevent their invasion into surrounding tissues
and may inhibit tumor angiogenesis. Despite the broad
substrate specificity of VPA, which hyperacetylates nu-
merous proteins including some not associated with epi-
genetic regulation, the toxicity of VPA can be kept to a
minimum (Taylor et al. 2012; Berendsen et al. 2012).
VPA, as well as a few analogs and other molecules that
block the action of NRSF, has been tested in medullo-
blastoma and glioblastoma cell lines with encouraging
results (Taylor et al. 2012; Berendsen et al. 2012). At
this stage, the combination of VPA or analogs with low
doses of chemotherapeutic drugs and/or radiation appears
a rational option that deserves investigation by well-
designed prospective clinical trials. Two other approaches
based on recent developments of NRSF studies also appear
promising: first, the therapeutic potential of miRNAs that so
far has been tested mostly in glioblastomas (Hummel et al.
2011), and second, the use of small peptides competing with
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full-length NRSF for RE-1 binding (Donev et al. 2008).
In the future, it is possible that the combinations of
histone deacetylase inhibitors with specific miRNAs
may be introduced in clinical settings (Hummel et al.
2011), and the use of small peptides could strengthen
immunotherapy in neuroblastomas by repressing the ex-
pression of membrane complement regulators such as
CD59 (Donev et al. 2008). Moreover, the research of
the factors that control the regulators of NRSF is another
method to mediate the expression of NRSF. For example,
recent findings identify DEAD-box RNA helicase
(DDX3) as an essential upstream regulator mediate
CK1 and Wnt–β-catenin signaling (Cruciat et al. 2013),
raising the possibility that DDX3 may serve to regulate
other CK1 targets such as NRSF. In addition to the
regulation of neuronal NRSF concentrations at the level
of protein stability, up-regulation of NRSF expression by
nutrient or neuronal activity has been proposed (Pozzi
et al. 2013; Garriga-Canut et al. 2006). What’s more,
Yalda Sedaghat et al. employ second-generation anti-
sense oligonucleotides (ASOs) to study the impact of
NRSF-mediated suppression on gene expression. They
suggested that the antisense approach may by a viable
strategy for selectively modulating NRSF activity in vivo
(Sedaghat et al. 2013).

There are hundreds of targets of NRSF, both direct and
indirect, and several could be involved in the stimulation or
repression of cell proliferation in tumors. The development of
a new NRSF-based therapy for tumor may be worthwhile, if
its use would allow decreases in chemotherapy doses and thus
attenuation of the present serious problems of drug resistance
and toxicity. What should be highlighted is that NRSF may
trigger distinct cellar pathways in different neurological dis-
eases to act as a stimulator or suppressor and to play a part in
neuronal survival or neuronal death. It has been reported that
NRSF-dependent silencing of miR-132 is causally related to
ischemia-induced neuronal death and that overexpression of
miR-132 in the CA1 of living rats affords robust protection
against ischemia-induced neuronal death in a clinically rele-
vant model of ischemic stroke (Hwang et al. 2014). In con-
trast, in Alzheimer’s disease, NRSF (Lu et al. 2014) and miR-
132 (Wong et al. 2013) both appear to have prosurvival
function.When point to a role for NRSF as a novel therapeutic
target to tumor and neurodegeneration, we should have a
comprehensive understanding depend on diversity molecular
regulative pathways. On the basis of precious research, one
strategy would be to activate Wnt signaling in aged individ-
uals in Alzheimer (Lu et al. 2014; Tsai and Madabhushi
2014). However, such activation is also implicated in the
development of various cancers, and so this approach would
probably require careful targeting of Wnt activation in the
brain (Anastas andMoon 2013). Alternative strategies include
finding either Wnt-independent NRSF activators or small

molecules that prevent the export of NRSF from the nucleus.
A deeper understanding of the molecular mechanisms that
govern NRSF activation in the aging brain will be crucial for
such efforts to be successful.

Concluding Remarks

NRSF provides a regulatory hub that coordinately regulates
multiple physiology and pathology of neuronal development
and neurological diseases in vitro and vivo. As one of the
parameters, long post-mortem delay that may have caused
ischaemic damaged and increased NRSF level in neurons.
More detailed description or universally accepted standard
of the experiments may help researchers to have a compre-
hensive understanding and comparison of NRSF in different
neurodegeneration and distinct mechanisms.

It is currently unclear how NRSF selectively represses
distinct target genes in different cellular contexts, and why
changes in NRSF expression or activity in many of these
diseases result in changes in expression of only a subset of
target genes. Even though the answers are still not known, it is
becoming clear that the NRSF-mediated regulation of its
target genes is not an all-or-none function and will depend
on the cellular context, on the amount of NRSF protein
present in the cell, and on the affinity of the NRSF protein
complex toward its specific target gene in the given cellular
environment, including the cell’s chromatin architecture. As
the concentration of NRSF during development and in adult
neuronal and endocrine cells is important for the biological
function of NRSF, studies addressing the regulation of NRSF
gene transcription and NRSF protein stability are essential to
understand the regulation of NRSF expression in neurons
during development. Gain of function experiments, i.e.,
should give us information about which concentration of
NRSF is tolerated by neurons without loss of their cell type-
specific phenotype and function.
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