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Abstract Amyotrophic lateral sclerosis (ALS) is a condition
primarily characterized by the selective loss of upper and
lower motor neurons. Motor neuron loss gives rise to muscle
tissue malfunctions, including weakness, spasticity, atrophy,
and ultimately paralysis, with death typically due to respira-
tory failure within 2 to 5 years of symptoms’ onset. The mean
delay in time from presentation to diagnosis remains at over
1 year. Biomarkers are urgently needed to facilitate ALS
diagnosis and prognosis as well as to act as indicators of
therapeutic response in clinical trials. MicroRNAs
(miRNAs) are small molecules that can influence posttran-
scriptional gene expression of a variety of transcript targets.
Interestingly, miRNAs can be released into the circulation by
pathologically affected tissues. This review presents therapeu-
tic and diagnostic challenges associated with ALS, highlights
the potential role of miRNAs in ALS, and discusses the
diagnostic potential of these molecules in identifying ALS-
specific miRNAs or in distinguishing between the various
genotypic and phenotypic forms of ALS.
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A Brief Overview of ALS

Although juvenile forms exist, amyotrophic lateral sclerosis
(ALS) is primarily an adult-onset neurodegenerative disorder
characterized by the progressive death of motor neurons in the
cortex, brain stem, and spinal cord. Consequently, an irrevers-
ible downhill deterioration of muscle functions manifested by
skeletal muscle weakness and wasting, dysphagia, dysarthria,
and respiratory impairment occurs. It is the third most com-
mon neurodegenerative conditions of “middle age”, affecting
individuals in the 40–60 years old age group (after dementia
and Parkinson’s disease). In addition, a significant proportion
of cases presents with cognitive involvement, including exec-
utive function impairment or frontotemporal dementia (FTD)
(Goldstein and Abrahams 2013). Death typically occurs with-
in 2–5 years after onset, usually as a result of respiratory
failure. Riluzole, the only FDA-approved compound to treat
ALS, only slows disease progression and extends survival for
2 to 3 months. ALS has a low incidence of 1–2 cases per
100,000 per year, but the cumulative lifetime risk has been
shown to be as high as 1 in 338 (Johnston et al. 2006). The
incidence rate increases with age, with a peak incidence rate
observed in the 55–75 years old age group that can reach 13/
100,000 (Chio et al. 2013). With the aging of the global
population, a likely increase in diagnosed cases of ALS is
foreseen.

Approximately 5–10 % of ALS cases are the familial form
with a Mendelian pattern of inheritance. To date, 13 genes and
loci of major effects have been identified (reviewed in
(Leblond et al. 2014)). The most commonly mutated loci in
adult-onset ALS are: SOD1, FUS (Kwiatkowski et al. 2009;
Vance et al. 2009), TAR DNA-binding protein 43 (TDP-43)
(Kabashi et al. 2008; Sreedharan et al. 2008), and C9ORF72
(Hosler et al. 2000; Morita et al. 2006; Vance et al. 2006;
Valdmanis et al. 2007; DeJesus-Hernandez et al. 2011; Renton
et al. 2011; Gijselinck et al. 2012). Mutations in C9ORF72
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account for about 40 % of familial cases and 5–7 % of
sporadic cases. Mutations in SOD1 account for about 20 %
of familial cases and 2–7 % of sporadic cases. FUS mutations
account for approximately 5 % of familial cases and less than
1 % of sporadic cases, while TARDBP mutations account for
approximately 3 % of familial cases and 1.5 % of sporadic
cases. The majority of ALS cases are sporadic (sALS) with no
clear genetic linkage; the etiology of which remains unknown.
A growing list of potential environmental risk factors for ALS
has been proposed, including exposure to cyanobacteria,
heavy metals, pesticides, intense physical activity, head injury,
cigarette smoking, electromagnetic fields, and electrical
shocks (Gawel et al. 1983; Deapen and Henderson 1986;
Johansen 2000; Hakansson et al. 2003; Morahan and
Pamphlett 2006; Qureshi et al. 2006; Steenland et al. 2006;
Johnson and Atchison 2009; Sutedja et al. 2009; Weisskopf
et al. 2009; Vanacore et al. 2010; Callaghan et al. 2011;
Bradley et al. 2013); although at present, there is no
ascertained causal link between environmental toxicants and
ALS pathogenesis. Some of these risk factors for ALS deserve
more attention. For instance, while initial reports revealed that
Gulf War veterans may be at increased risk for ALS (Haley
2003; Horner et al. 2003; Weisskopf et al. 2005), recent
studies with longer follow-up and thorough analysis called
for additional studies that can address the limitations of the
first studies such as lack of clinical data and low statistical
power (Barth et al. 2009; Beard and Kamel 2014). Another
interesting observation is the high prevalence for ALS in
Guam (Kurland and Mulder 1954; Mulder and Kurland
1987) where a particular case of ALS-like conditions (ALS/
Parkinsonism dementia complex) appear to be linked to the
neurotoxic nonprotein amino acid, beta-N-methylamino-L-
alanine (BMAA) (Spencer et al. 1987; Bradley and Mash
2009). BMAA is consumed by Chamorros through multiple
dietary sources including cycad flour, flying foxes (a type of
fruit bat), and other animals that feed on cycad seeds (Cox and
Sacks 2002; Banack and Cox 2003; Murch et al. 2004).
Finally, a recent epidemiological study revealed that more
cases of ALS were associated with prior diagnosis of autoim-
mune disease raising the possibility of shared genetic or
environmental risk factors (Turner et al. 2013).

The specific mechanisms underlying the selective degen-
eration of motor neurons also remain elusive. Nonetheless, the
general consensus within the field is an agreement that the
cause of ALS is multifactorial, and a number of possible
pathological mechanisms have been put forward.
Excitotoxicity, oxidative stress, aberrant protein aggregation,
defective axonal transport, mitochondrial dysfunction, and
altered RNA metabolism have notably been implicated in
one way or another in the molecular and/or cellular pathways
leading to ALS (Barber and Shaw 2010; Bogaert et al. 2010;
Cozzolino and Carri 2012; Blokhuis et al. 2013; Fischer-
Hayes et al. 2013). The number of proposed contributing

factors reinforces the fact that ALS is a complex disorder
wherein multiple pathways converge to give rise to the selec-
tive death of motor neurons.

It seems that the anatomical origin of the first dying motor
neurons can originate either from the frontal cortex, the brain
stem, or multiple regions within the spinal cord. This trans-
lates into a number of clinical or phenotypic presentations of
ALS: Limb-onset ALS (symptoms first presenting in an arm/
or leg) is the most common presentation accounting for 70 %
of the incidence. Bulbar-onset ALS (first presentation involv-
ing speech, swallowing functions, and/or pseudobulbar fea-
tures) is the second most common presentation at 25 %. Both
limb- and bulbar-onset patterns include features of upper and
lower motor neuron involvement (see Table 1) and require the
presence of both in more than two regions of the body tomake
at least a probable diagnosis (Brooks et al. 2000). ALS with
cognitive impairment (ALSci) or frontotemporal demential
(ALS-FTD) represent phenotypes with multisystem involve-
ment. Less common variants include primary lateral sclerosis
with primarily upper motor neuron (UMN) involvement, pro-
gressive muscular atrophy, with primarily lower motor neuron
(LMN) involvement (Gordon et al. 2006). In all cases, symp-
toms progress to include more extensive involvement of all
body regions, with death resulting from respiratory compro-
mise in the vast majority. While the clinical picture of ALS
can be identified in its more advanced stages, a significant
challenge remains the early and efficient diagnosis of these
various forms supporting the need to identify clinically rele-
vant biomarkers.

Diagnostic Challenges Associated with ALS

Early diagnosis and management in specialized ALS clinics
providing multidisciplinary patient care has been shown to
positively impact quality of life and prolong survival of ALS
patients (Andersen et al. 2012). Unfortunately, several inher-
ent challenges associated with early diagnosis of ALS exist. In
a recent paper, more than half of the ALS patients received an
alternative diagnosis, and each patient saw an average of three
different physicians before ALS diagnosis was confirmed
(Paganoni et al. 2014). The diagnosis and subsequent moni-
toring of ALS is based on clinical assessment that follows the
EI Escorial criteria (Brooks et al. 2000). This involves the use
of a combination of UMN and LMN signs to establish levels
of diagnostic certainty. Although the disease is easily recog-
nized in its full-blown presentation, retrospective reviews
have highlighted a delay from symptom onset to diagnosis
that has remained unchanged for more than a decade and that
ranges from 8.0 to 15.6 months (Cellura et al. 2012). The
delay can be longer (2.5 years) for limb-onset patients, for
slow progression disease (up to 45 months), or for people in
rural areas where there are fewer neurologists (Williams et al.
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2013; Nzwalo et al. 2014; Sato et al. 2014). False diagnosis
occurs as well and can range from 8 to 44 % (Belsh and
Schiffman 1996; Davenport et al. 1996; Traynor et al. 2000).
These challenges can direct patients towards the wrong treat-
ments or even lead to unnecessary surgery. Indeed, there are
reports highlighting how frequent ALS patients can undergo
surgeries that were not required (Srinivasan et al. 2006;
Kraemer et al. 2010). It is also important to point out that
the delay observed for definitive diagnosis of ALS can push
the patient beyond the window of therapeutic opportunity.
Any new drug therapy for ALSwould probably have its major
impact in the early phase of the disease further reinforcing the
need for early diagnosis. Overall, clear advantages are associ-
ated with an earlier diagnosis of ALS and identifying bio-
markers to reach this goal is of great interest. The only
treatment available, riluzole, an inhibitor of glutamate release,
is a disease-modifying (neuroprotective) therapy for patients
with ALS. In four large randomized controlled trials, riluzole
extended survival or prolonged time to ventilation need of
patients by an average of 2–3 months (Bensimon et al. 1994;
Lacomblez et al. 1996; Miller et al. 2012) over the duration of
the trial. Earlier diagnoses with robust biomarkers could ben-
efit this therapeutic approach.

The Chase for ALS Biomarkers

Over the last two decades, tremendous efforts have beenmade
worldwide to find reliable biomarkers for ALS. Interesting
correlations have been observed and a plethora of candidates
has been proposed as potential biomarkers. Reviewed by
Robelin et al. (Robelin and Gonzalez De Aguilar 2014),
biomarkers related to excitotoxicity, oxidative stress, inflam-
mation, neurodegeneration, and others have been investigated.
Unfortunately, none of these biomarkers has yet to translate
into a clinically relevant tool. Several reasons can explain,

albeit in part, these observations including contradictory re-
sults or weak statistical power in selected studies. Examples of
selected biomarkers are reviewed here. In relation to
excitotoxicity-associated biomarkers, while several molecules
have been shown to be cytotoxic, the glutamate-induced
excitotoxicity hypothesis has been well characterized as un-
derlying the cascade of events that leads to motor neuron
death. Glutamate release and reuptake imbalance can lead to
disproportionate glutamate-induced calcium influx which
subsequently triggers a cascade leading to neurotoxicity and
death (Bogaert et al. 2010). Elevated glutamate concentration
in the cerebrospinal fluid (CSF) could thus represent an inter-
esting biomarker. Although elevated glutamate concentrations
have been reported in CSF of ALS patients (Rothstein et al.
1991), other studies have showed elevated CSF glutamate
concentrations only in a subset of them (Shaw et al. 1995;
Spreux-Varoquaux et al. 2002), whereas other studies have
shown that glutamate levels remained unchanged (Perry et al.
1990; Camu et al. 1993). Using a more sensitive and specific
method, Fiszman et al. (Fiszman et al. 2010) revealed elevated
glutamate levels in 28 out of 29 patients with definite, prob-
able, or possible ALS. The same authors found no difference
in glutamate concentrations when the three clinical forms of
the disease were compared and concluded that glutamate
levels may not influence the degree of diagnosis certainty or
lesion extension. Besides glutamate, other metabolites present
in the CSF have diagnostic potential. Using high-throughput
techniques, including metabolomics of the CSF, as well as
leveraging the 309 identified metabolites by the Human
Metabolome Project (www.hmdb.ca), some groups revealed
promising combinations of metabolites as diagnostic markers
for ALS (Pradat and Dib 2009; Wuolikainen et al. 2009;
Blasco et al. 2010; Wuolikainen et al. 2011; Wuolikainen
et al. 2012).

Regarding inflammatory factors, while ALS is not primar-
ily perceived as an inflammatory or immune-mediated

Table 1 Lower motor neuron and upper motor neuron signs in four CNS regions

Brain stem Cervical Thoracic Lumbosacral

Lower motor neuron signs

Weakness, atrophy,
fasciculations,
hyporeflexia

Jaw, face tongue, palate, larynx Neck, arm, hand, diaphragm Back, abdomen Back, abdomen, leg, foot

Upper motor neuron signs

Pathologic spread of
reflexes, clonus,
weakness, emotional
lability, loss dexterity

Clonic jaw jerk, gag reflex,
exaggerated snout reflex,
(pseudobulbar features),
forced yawning, spastic tone,
pathologic DTRs

Pathologic DTRs, spastic tone,
clonic DTRs, Hoffman
reflex, preserved reflex in
weak and wasted limb

Pathologic DTRs,
spastic tone, loss
of superficial
abdominal reflexes

Pathologic DTRs, spastic tone,
clonic DTRs, preserved reflex
in weak and wasted limb,
extensor plantar responses

DTRs deep tendon reflexes
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disease, immune mechanisms appear to play a role in this
pathogenesis. In both ALS patients and animal models, in-
flammatory responses are observed (for reviews (McGeer and
McGeer 2002; Bowerman et al. 2013)). A plethora of factors
linked to inflammation can be followed in the periphery as
potential biomarkers (reviewed in (Robelin and Gonzalez De
Aguilar 2014)). Unfortunately, there is still inconsistency
across laboratories, and published studies have included only
a limited number of patients. An additional issue revolves
around the lack of specificity for a given biomarker to dis-
criminate between ALS and other types of neurodegenerative
diseases (Bowser et al. 2011; Kiernan et al. 2011; Robelin and
Gonzalez De Aguilar 2014). Immune cells partake in the
inflammatory process and may represent the future for bio-
markers since they can present unique molecular signatures
for specific diseases. Particularly, the group of Weiner
(Butovsky et al. 2012) demonstrated that ALS patients have
analogous monocytes (CD14+CD16−) which exhibited an
ALS-specific microRNA inflammatory signature similar to
the one observed in the ALS mouse model, linking the animal
model to the human disease. In parallel, the group of De Felice
revealed a unique microRNA signature in leukocytes from
ALS patients (De Felice et al. 2012; De Felice et al. 2014).
According to these studies, the underlying role of microRNAs
in ALS does warrant a closer investigation.

MicroRNAs Underlying Neurodegenerative Diseases

MicroRNAs (miRNAs) are short evolutionarily conserved
non-coding RNA molecules involved in post-transcriptional
regulation of gene expression. This regulation is achieved via
pairing of miRNAs with complementary sequences located on
targeted mRNAs (Bartel 2009). MiRNA/mRNA binding
leads to downregulation of the corresponding mRNA and/or
protein levels due to mRNA destabilization or translational
inhibition. Recent evidence gained through simultaneous
mRNA and proteomic/ribosomal profiling suggests that the
former is dominant in mammalian cells (Baek et al. 2008;
Selbach et al. 2008; Guo et al. 2010). Approximately 60 % of
all protein-coding genes are thought to be regulated by
miRNAs (Friedman et al. 2009) and such vast regulation
allows miRNAs to be involved in a variety of cellular and
pathophysiological processes (Bartel 2009). Accordingly,
multiple miRNAs have been reported as deregulated in neu-
rodegenerative diseases. MiR-34a and members of the miR-
20a family were shown to regulate the expression of tau and
amyloid precursor protein, respectively, two key factors linked
to Alzheimer’s disease (AD) pathogenesis (Hebert and De
Strooper 2009; Dickson et al. 2013). Additional members of
the miR-34 family of miRNAs, mir-34b and miR-34c, were
deregulated in early stages of brain samples collected from
patients diagnosed with Parkinson’s disease (PD) (Minones-

Moyano et al. 2011). Selected miRNAs, such as miR-9, have
been reported as deregulated in different neurodegenerative
diseases including AD and Huntington’s disease (HD)
(Cogswell et al. 2008; Packer et al. 2008), while miR-29a
was differentially expressed in PD and HD (Johnson et al.
2008; Margis et al. 2011). Interestingly, the underlying roles
of key proteins involved in miRNA biogenesis have also been
explored in selected CNS diseases. A transgenic mice model
for Dicer, a key enzyme involved in miRNA synthesis,
displayed a neurodegenerative phenotype as well as tau
hyperphosphorylation when Dicer expression was specifically
ablated from the forebrain (Hebert et al. 2010). Another study
demonstrated altered miRNA biogenesis, notably through
altered Dicer expression, in two models of HD transgenic
mice (Lee et al. 2011). MiRNAs are thus involved in several
CNS diseases, and it is not surprising to find them regulating
expression of key processes in ALS.

Deciphering the Roles of miRNAs in ALS

Several research groups acted as pioneers in the early charac-
terization of miRNA involvement in ALS. Confronted with
challenges that included sufficient patient enrollment for the
various subforms of ALS, research performed in recent years
has nevertheless yielded a clearer picture of the likely involve-
ment of miRNAs in ALS as well as their potential usefulness
as biomarkers for this condition. Several studies have notably
leveraged the SOD1-G93A mouse model for ALS (Gurney
et al. 1994). A study performed in this model of familial ALS
and subsequently validated in human ALS spinal cord tissues
notably demonstrated strong expression of miR-155 (Koval
et al. 2013). Furthermore, downregulation of miR-155 in ALS
mice using oligonucleotide-based miRNA inhibitors or anti-
miRs significantly prolonged survival. Profiling primary mi-
croglia cell cultures purified from the model also revealed a
plethora of differentially expressed miRNAs including miR-
22, miR-155, miR-125b, and miR-146b (Parisi et al. 2013).
The group notably highlighted the miR-125b-based modula-
tion of TNFα in ALS. A recent study using the SOD1-G93A
model reported strong expression of miR-29 in ALS brain and
spinal cord even though its knockdown did not lead to signif-
icant improvements in ALS-associated clinical endpoints
(Nolan et al. 2014).

Studies on human samples have also been conducted and
have revealed the potential importance of miRNAs in ALS.
First, a postmortem analysis of tissues isolated from the spinal
cord at the lumbar level by the group of Michael Strong
(Campos-Melo et al. 2013) revealed that the expression of
numerous miRNAs was altered in ALS patients. Pathway
analysis showed that these miRNAs were implicated in ner-
vous system functions and cell death. The use of two predic-
tion algorithms revealed three miRNAs (miR-146a*, miR-
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524-5p, and miR-582-3p) capable of interacting with the 3′
UTR of the human low molecular weight neurofilament
(NEFL) mRNA. A subsequent study from the same group
revealed two additional miRNAs, miR-b1336 and miR-
b2403, capable of stabilizing NEFL transcripts in ventral
lumbar spinal cord samples obtained from ALS patients
(Ishtiaq et al. 2014). The presence of intraneuronal neurofila-
mentous aggregates is a neuropathological hallmark of ALS,
and reduced NEFL mRNA levels have been observed in
degenerating spinal motor neurons (Bergeron et al. 1994;
Wong et al. 2000; Menzies et al. 2002). The discovery of this
new set of NEFL-associated miRNAs has put the light on an
additional layer of NEFL expression regulation in spinal mo-
tor neurons in ALS.

Motor neurons from the frontal cortex are also affected in
ALS, and miRNA-related research to understand the role of
these molecules in these cells is slowly emerging. Samples
isolated form postmortem frontal cortex tissues of three ALS
patients notably revealed an upregulation of miR-29a, miR-
29b, and miR-338-3p (Shioya et al. 2010). However, due to a
significant inter-individual variation, results were not subse-
quently validated by quantitative RT-PCR. Nevertheless,
miR-338-3p upregulation in ALS patients has been also ob-
served in blood leukocytes, CSF, serum, and spinal cord (De
Felice et al. 2014). It is important to point out that skeletal
muscle tissue represents another interesting source of potential
biomarkers. Skeletal muscle mitochondrial dysfunction is be-
lieved to play a role in the progression and severity of ALS,
and Russell et al. (Russell et al. 2013) showed that miR-23a,
miR-29b, miR-206, and miR-455 expressions were increased
in skeletal muscle of ALS patients. Histone deacetylase 4
(HDAC4) is an important mediator neural activity action on
muscle gene expression, and HDAC4 expression is dramati-
cally induced in this tissue in response to denervation in ALS
mice (Cohen et al. 2007). MiR-206 has been proposed as a
potential regulator of HDAC4. Bruneteau et al. (Bruneteau
et al. 2013) investigated the role of the miRNA-206-HDAC4
axis and showed that miR-206 was upregulated in ALS long-
term survivors but it did not correlate with disease progression
or reinnervation.

Clearly, several miRNAs seem to underlie the pathogenesis
associated with ALS. It is only logical to wonder if any of
those could potentially be leveraged as non-invasive circulat-
ing biomarkers to diagnose ALS and its various subsets.

MicroRNAs as Appealing Biomarkers for ALS

Interestingly, living neurons and other CNS cells secrete
miRNAs and other small non-coding RNAs into the extracel-
lular space packaged in exosomes, microvesicles, or lipopro-
tein complexes. In addition, several studies have successfully
isolated and quantified miRNAs from a variety of human

body fluids including plasma or serum, urine, and saliva
(Mitchell et al. 2008; Park et al. 2009; Hanke et al. 2010).
Other factors positioning miRNAs as appealing biomarkers
notably include their significant stability in body fluids as well
as the relative ease of their detection given their well-
conserved sequences (Chen et al. 2008; Jin et al. 2013).
These characteristics, coupled with the rapidly evolving im-
provements in technologies that allow for detection of RNA
species from small amounts of biological material, have con-
tributed to the strong interest dedicated towards the study of
extracellular RNAs as potential biomarkers for CNS disorders
including multiple sclerosis, AD, PD, and ALS (Vella et al.
2008; Galimberti et al. 2014; Honardoost et al. 2014). In a
recent study, using the ALS mouse model SOD1-G93A, miR-
206, involved in the maintenance of neuromuscular connec-
tivity in ALS, was flagged as a potential circulating biomarker
candidate as it exhibited strong upregulation in the serum of
mice and ALS patients (Williams et al. 2009; Toivonen et al.
2014). MiR-206 upregulation was almost statistically signifi-
cant in the presymptomatic stages of SOD1-G93A mice mak-
ing it an interesting biomarker candidate for early diagnosis of
ALS. A drawback associated with miR-206 as an ALS bio-
marker is the fact that similar increases have been observed in
a wide range of conditions and pathologies including the
Duchenne Muscular Dystrophy (Roberts et al. 2013), AD,
cerebral ischemia (Jeyaseelan et al. 2008; Shioya et al.
2010), schizophrenia (Hansen et al. 2007), and in cytotoxic
insult from exposure to environmental toxins (Zhang and Pan
2009). This further reinforces the importance and challenges
of identifying ALS-specific circulating biomarkers to properly
discriminate ALS from other CNS conditions. Recent work
demonstrated that let-7 andmiR-92 could notably differentiate
ALS patients from patients diagnosed with relapsing-
remitting multiple sclerosis, but not secondary progressive
multiple sclerosis suggesting the latter possesses features
present in other neurodegenerative diseases (Gandhi et al.
2013).

TDP-43 aggregates are observed in most ALS cases
(Neumann et al. 2006; Ince et al. 2011; Al-Chalabi et al.
2012), and identifying a biomarker associated with this target
has been explored by several research teams. Freischmidt
et al. (Freischmidt et al. 2013) reported altered expression
levels of five out of nine TDP-43-binding miRNAs in CSF
and serum samples of sALS cases including miR-143-5p/3p.
However, these authors found a poor correlation between CSF
and serum levels of these miRNAs suggesting an independent
regulation of TDP-43-binding microRNAs in the serum and
CSF. Nonetheless, as proposed by these authors, these find-
ings might be relevant for an easily accessible biological
assessment of TDP-43 levels as well as of miRNAs regulating
its expression.

With the aim to find blood miRNAs specific to ALS and
that correlates between CSF and serum, the group of De Felice
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(De Felice et al. 2012) first investigated the changes in
miRNA expression profiles in leukocytes from ALS patients
using a microarray strategy. Several miRNAs were differen-
tially expressed including miR-149, miR-328, miR-338-3p,
miR-451, miR-583, miR-638, miR-665, and miR-1275. As
mentioned previously, miR-338-3p overexpression was re-
ported in frontal cortex tissues collected from three ALS
patients (Shioya et al. 2010). Subsequent work was undertak-
en in a large cohort and showed an overexpression of miR-
338-3p in blood leukocytes, CSF, serum, and spinal cord
obtained from sALS patients (De Felice et al. 2014). MiR-
308-3p expression was higher in ALS patients compared to
healthy patients as well as to patients suffering from other
neurodegenerative disorders like PD, AD, and HD.
Interestingly, miR-338-3p might relate with the higher gluta-
mate levels observed in CSF of ALS patients described above.
Indeed, one putative targets of deregulated miR-338p is the
membrane-bound protein SLC1A2 which is the principal
transporter that clears the excitatory neurotransmitter gluta-
mate from the extracellular space at synapses in the CNS.

Mutations and decreased expression of this protein are asso-
ciated with certain forms of ALS (Rothstein et al. 1995).

Around the same time, the group ofWeiner (Butovsky et al.
2012) demonstrated that recruitment of inflammatory mono-
cytes into the CNS played an important role in ALS progres-
sion. A thorough characterization ofmonocyte populationwas
undertaken, and a unique miRNA signature within
CD14+CD16− monocytes isolated from ALS patients with
the SOD1 familial form was identified. This signature was
similar to the one found in Ly6Chi monocytes from the mouse
SOD1 model (Butovsky et al. 2012). MiRNAs such as miR-
27a, miR-155, miR-142-5p, miR-223, and miR-532-3p were
highly expressed in ALS patients compared to healthy con-
trols or patients diagnosed with multiple sclerosis. MiR-27a
could differentiate multiple sclerosis from ALS patients even
though this miRNA is also known to be modulated in carci-
nogenesis and other pathological processes. (Gottardo et al.
2007; Mertens-Talcott et al. 2007; Wang et al. 2008; Guttilla
andWhite 2009; Liu et al. 2009). Nonetheless, the same group
showed that three miRNAs: miR-27b, miR-146a, and

Table 2 Differentially expressed miRNAs in ALS patients

miRNAs Sample Patients Site of disease onset Method References

miR-27a↑, miR-55↑,
miR-142-5p↑, miR-223↑, and
miR-532-3p↑ miR-27b↑,
miR-146a↑, miR-532-3p↑

Blood/monocytes
CSF

18 sALS (%) B (18), C (55), L (27) qRT-PCR (Butovsky et al. 2012)
4 fALS (%) L (100)

10 sALS (%) B (10), C (30), L (50),
U (10)

TaqMan real-time PCR

5 fALS (%) L (60), U (40)

miR-149↓, miR-328↓,
miR-338-3p↑, miR-451↓,
miR-638↓, miR-665↓,
miR-1275↓

Blood/leukocytes 8 sALS No mention Microarray, qRT-PCR
TacMan

(De Felice et al. 2012)
14 sALS

miR-29a↑, miR-29b↑,
miR-338-3p↑

Frontal cortex 3 No mention Microarray RT-PCR (Shioya et al. 2010)
6

miR-146a*↑, miR-524-5p↓,
miR-582-3p↓

Spinal cord 5 sALS 2 B, 1 S, 1 UL,
and 1 U

TaqMan miRNA
microarray, qRT-PCR

(Campos-Melo et al. 2013)

miR-132-3p↓, miR-132-5p↓,
miR-143-3p↓, miR-143-5p↓↑,
let-7b↓-

Serum, CSF 22 sALS No mention qRT-PCR (Freischmidt et al. 2013)

miR132-5p/3p↓, miR-574-5p/3p↓ LCLs 3–8 fALS No mention qRT-PCR (Freischmidt et al. 2013)

miR-24-2*↑, miR-142-3p↑,
miR-142-5p↑, miR-146b↑,
miR-155↑, miR-1461↑

Spinal cord 16 No mention TaqMan miRNA assay (Koval et al. 2013)

miR-338-3p↑ Blood/leukocytes,
CSF, serum,
spinal cord

72 sALS (%) B (33), L (67) qRT-PCR (De Felice et al. 2014)
10 sALS (%) B (20), L (80)

7 sALS (%) B (30), L (70)

miR-sb659*↓, miRb1123↑,
miR-sb1217*↑, miR-b1336↓,
miR-b2403↓, miR-b2948↑,
miR-b3265↑, miR-sb3998↑,
miR-b4652↓, miR-b5539↑

Spinal cord 3 sALS 2 B and 1 UL Small RNA library
qRT-PCR

(Ishtiaq et al. 2014)
5 sALS 2 B, 1 L, and 2 U

miR-106b↑, miR-206↑ Serum 12 No mention qRT-PCR (Toivonen et al. 2014)

Studies highlighting deregulatedmiRNAs in primary humanALS samples collected from different sources. The diagnostic relevance of thesemodulated
miRNAs is discussed in the text

B bulbar, C cervical, f familial, L limb, LCLs immortalized lymphoblast cell lines, s sporadic, U unknown, UL upper limb
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miR532-3p that were commonly elevated in CSF samples of
ALS patients, in monocytes and microglia from SOD1 mice
and from human ALS patients with the sporadic and familial
forms (Butovsky et al. 2012). This finding highlights that a
combination of miRNAs could represent a more plausible
signature instead of only one miRNA.

Need for Biomarkers that can Differentiate the Subforms
of ALS and ALS-like Forms

Differentially expressed miRNAs in ALS patients are sum-
marized in Table 2. It is important to mention that several
studies did not specify the subforms of ALS associated with
the patient population investigated as well as it did not attempt
to establish any correlations between altered miRNAs and
subforms of ALS. Only the studies of Freischmidt
(Freischmidt et al. 2013) and Butovsky (Butovsky et al.
2012) highlighted differences between genotypic forms of
familial ALS. It is probably too early as the potential of
miRNAs as biomarker has just been undertaken, but the
identification of miRNA-specific footprints for each ALS
subform will be beneficial to direct the patients toward the
appropriate therapeutic regimen.

Although ALS presents as a motor disorder, it is now
well recognized as a multisystem disease with neuropsy-
chological impairments in an estimated 20–50 % of pa-
tients. Furthermore, there are ALS-like forms including
Kennedy’s disease or primary lateral sclerosis. Despite
advances in histopathology techniques, neurophysiology
and neuroimaging diagnosis is made clinically “at the
bedside”. The variability in clinical findings early in the
course of ALS and the lack of biological diagnostic marker
make absolute diagnosis difficult and compromise the cer-
tainty of diagnosis in clinical practice, therapeutic trials,
and other research purposes. Furthermore, genotypic and
phenotypic variability support the concept of ALS as a
spectrum of disease, and it is realistic to expect that previ-
ous trials, not differentiated between the various types of
ALS, resulted in negative outcomes. In fact, there remains
only one treatment, to date, approved for treatment of ALS
(riluzole), which did show trend to be somewhat more
effective in those with bulbar-onset pattern. Targeting
treatment in research and clinical trials to specific
subforms of ALS, particularly early in disease course, is
a promising strategy to discovery of effective treatments.

Outlook

ALS is a neurodegenerative disorder for which therapeutic
and diagnostic options remain limited. While early diagnosis
of ALS is crucial to best manage this condition, biomarkers

are lacking to allow rapid identification or distinguish between
its various subforms. It is not surprising that miRNAs, with
their capabilities of silencing a broad array of transcripts and
their appearances in various body fluids, have garnered great-
er interest from the ALS community for their potential roles
and clinical usefulness. Looking ahead, a detailed assessment
of circulating miRNAs associated with the different forms of
ALS as well as a careful monitoring of modulated miRNAs
over time in ALS patients will provide crucial insights on the
diagnostic relevance of these molecules in ALS. It is expected
that the identification of ALS-associated miRNA signatures,
whether for early diagnosis of patients or to assess therapeutic
response, will be of significant help to better manage patients
diagnosed with ALS.
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