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Abstract Inducers of mitochondrial biogenesis are widely
under investigation for use in a novel therapeutic approach
in neurodegenerative disorders. The ability of Gemfibrozil, a
fibrate, is investigated for the first time to modulate mitochon-
drial pro-survival factors involved in the mitochondrial bio-
genesis signaling pathway, including peroxisome proliferator-
activated receptor coactivator-1α (PGC-1α), nuclear respira-
tory factor (NRF-1), and mitochondrial transcription factor A
(TFAM) in the brain. Gemfibozil is clinically administered to
control hyperlipidemia. It secondarily prevents cardiovascular
events such as cardiac arrest in susceptible patients. In this
study, pretreatment of animals with gemfibrozil prior to ische-
mia–reperfusion (I/R) resulted in a sexually dimorphic out-
come. While the expression of NRF-1 and TFAM were
induced in gemfibrozil-pretreated met-estrous females, they
were suppressed in males. Gemfibrozil also proved to be
neuroprotective in met-estrous females, as it inhibited

caspase-dependent apoptosis while in males it led to hippo-
campal neurodegeneration via activation of both the caspase-
dependent and caspase-independent apoptosis. In the
mitogen-activated protein kinase (MAPKs) pathway, gemfi-
brozil pretreatment induced the expression of extracellular
signal-regulated kinases (ERK1/2) in met-estrous females
and reduced it in males. These findings correlatively point to
the sexual-dimorphic effects of gemfibrozil in global cerebral
I/R context by affecting important factors involved in the
mitochondrial biogenesis, MAPKs, and apoptotic cell death
pathways.
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Abbreviations
AIF Apoptosis-inducing factor
DAB Diaminobenzidine
ER-α Estrogen-related receptor-α
ERK1/2 Extracellular signal-regulated kinases
I/R Ischemia–reperfusion
JNK C-Jun N-terminal kinases
MAPK Mitogen-activated protein kinase
MCAO Middle cerebral artery occlusion
mtDNA Mitochondrial DNA
NRF Nuclear respiratory factor
PARP Poly (ADP-ribose) polymerase
PBS Phosphate-buffered saline
PGC-1α Peroxisome proliferator-activated receptor

coactivator-1α
TFAM Mitochondrial transcription factor A
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TUNEL Terminal deoxynucleotidyl transferase-
mediated dUTP nick end-labeling

4VO Four-vessel occlusion model

Introduction

Mitochondrial biogenesis is activated in different patholog-
ical conditions including critical illness (Carre et al. 2010),
hypoxia (Gutsaeva et al. 2008), hypoxic–ischemic brain
injury (Yin et al. 2008), oxidant injury (Rasbach and
Schnellmann 2007), as well as focal (Chen et al. 2001),
and global cerebral ischemia (Chen et al. 2010a), as a
defensive and compensatory response to the insult.
Induction of mitochondrial biogenesis has been proposed
as a therapeutic approach in some pathological conditions,
such as brain ischemic stroke (Lagouge et al. 2006; Dong et
al. 2007; Wenz 2009).

Fibrates such as benzafibrate and fenofibrate are a group
of commonly used lipid-lowering agents and have been
found to induce mitochondrial biogenesis in skeletal muscle
and within the liver (Nagai et al. 2002; Wenz et al. 2008).
However, the potential for fibrates to induce mitochondrial
biogenesis within the brain has not yet been investigated.
Currently, research has focused on fibrates to investigate
their potential to protect against various cerebral disorders.
It has been demonstrated that fibrates, as peroxisome
proliferator-activated receptor (PPAR)-α agonists, induce
both preventive and acute neuroprotection through either
cerebral or vascular mechanisms (Bordet et al. 2006). It
has also been reported that phenofibrate, a PPAR-α activa-
tor, protects against cerebral injury by antioxidant and anti-
inflammatory mechanisms (Deplanque et al. 2003; Xu et al.
2007; Wang et al. 2010). In this regard, there are limited data
supporting or opposing such ability for another widely used
fibrate, gemfibrozil. Guo and collaborators have reported
that prophylactic use of gemfibrozil in middle cerebral ar-
tery occlusion (MCAO) model of ischemic stroke has led to
both beneficial and deleterious results (Guo et al. 2009),
indicating that further investigations may be meritorious to
unravel whether prophylactic application of gemfibrozil
against cerebral ischemia is beneficial.

PGC-1α has been identified as a major regulator of
mitochondrial biogenesis in vivo (Wu et al. 1999). PGC-
1α interacts and coactivates different transcription factors
such as NRF-1 and NRF-2 (Wu et al. 1999; Baar 2004), as
well as estrogen-related receptor-α (ER-α) (St-Pierre et al.
2006), and PPARs including PPAR-α (Vega et al. 2000;
Baar 2004). NRFs are known to regulate the expression of
most nuclear genes involved in mitochondrial biogenesis
such as mitochondrial transcription factor A (TFAM).
TFAM directly regulates the replication and transcription
of mtDNA, as well as genes encoding subunits of

respiratory complexes (Wu et al. 1999; Nadal-Casellas et
al. 2010). PGC-1α, NRF-1, and TFAM are considered as
mitochondrial pro-survival factors involved in the mito-
chondrial biogenesis.

Many diseases of CNS display sexual dimorphism, with a
predilection for one gender (Sacco 2001; Van Den Eeden et
al. 2003). In addition, gender has been found to influence
treatment outcome (Hurn and Macrae 2000; Hariz et al.
2003). Such differences may be attributed to circulating
sex hormones (Azcoitia et al. 2003), as well as the inherent
gender differences (Du et al. 2004). Gender dimorphism has
been previously noted in mitochondrial oxidative metabo-
lism within the liver of rats (Justo et al. 2005; Nadal-
Casellas et al. 2010). Additionally, it has been found that
sex hormones influence the expression of mitochondrial
biogenesis-signaling factors (Rodríguez-Cuenca et al.
2007). However to date, mitochondrial pro-survival factors
involved in the mitochondrial biogenesis signaling pathway
have not been studied in the male and female brains, spe-
cifically in the cerebral ischemia–reperfusion (I/R) context,
which is a sexually dimorphic brain pathology.

Sex-dependent differences have also been reported
within ischemia-induced cell death pathways (Nuñez et
al. 2001). Caspase-independent apoptosis seems to be
the major neural cell death pathway in response to
ischemia within males whereas, in females, it is the
caspase-dependent apoptosis (McCullough et al. 2005;
Lang and McCullough 2008).

The MAPK pathway including c-Jun N-terminal kinases
(JNK), ERK1/2, and p38, upstream of mitochondrial bio-
genesis and cell death pathways, are reported to be stimu-
lated following ischemia (Irving and Bamford 2002; Wright
2007; Lira et al. 2010). When activated, MAPKs coordinate
a broad range of intracellular activities from metabolism,
motility, mitosis, inflammation, differentiation, cell survival,
and even cell death (Roux and Blenis 2004). Recent papers
support the hypothesis that neuronal apoptosis and cerebral
ischemia induce the robust activation of MAPK cascades.
Although extracellular signal-regulated kinases pathways
promote cell survival and proliferation and c-Jun N-
terminal protein kinases/p38 pathways induce apoptosis in
general, the roles of MAPK cascades in neuronal death and
survival seem to be complicated and altered by the type of
cells and the magnitude and timing of insults (Nozaki et al.
2001). Intriguingly, gender-related differences in the activa-
tion of MAPKs have also been found, and these may con-
tribute to the observed sexual dimorphism of brain disorders
as well (Zhang 2002).

The present study, therefore, aimed to investigate for the
first time the ability of gemfibrozil to induce major mito-
chondrial pro-survival factors involved in the mitochondrial
biogenesis-signaling pathway in the male and female hip-
pocampus exposed to global cerebral I/R. Gemfibrozil is
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administered routinely to control hyperlipidemia, and it
prevents cardiovascular events in susceptible patients.
Due to the absence of sufficient evidences regarding
the neuroprotective/neurodegenerative effects of gemfi-
brozil, the present study also examined its therapeutic
potential in global cerebral I/R, mainly concentrating on
the mitochondrial apoptotic cell death and the upstream
MAPKs signaling proteins within the hippocampus of
both sexes.

Materials and Methods

Animals

Six-month-old male and female Wistar rats, with body weight
ranging from 270 to 310 g, were housed in standard cages
under controlled temperature (22±2 °C), humidity, and a 12 h
light/dark cycle (light on 07:00–19:00), with food and water
provided ad libitum. Female rats were selected in the met-
estrous phase of the estrous cycle using vaginal smears, previ-
ously described by Marcondes et al. (2002). Experimentation
was approved by the Ethics Committee of Shahid Beheshti
Medical University in accordance with National
Institutes of Health guide for the care and use of labo-
ratory animals (NIH publications no.80-23, revised
1978). All efforts were made to minimize animal suf-
fering, and to reduce the number of animals used.

Experimental Groups

Animals of both genders were randomly divided into three
experimental groups: sham, ischemic, and treatment (n012/
group). The rats within the treatment groups were pretreated
with gemfibrozil (Sigma; 30 mg/kg p.o.) once daily for 7 days
through a feeding needle (Guo et al. 2009). One hour after the
final dose, animals were subjected to 10 min of ischemia using
the four-vessel occlusionmodel (4VO), as previously described
by Pulsinelli and Brierley ( 1979). In ischemic groups, animals
were pretreated with vehicle (5 ml/kg of 0.5 % carboxymethyl
cellulose), then subjected to ischemia. Animals in the sham
groups were managed according to the protocol of 4VO model
and underwent anesthesia and surgery without occluding blood
vessels. Additional animals, both male and female, were uti-
lized for the apoptosis-inducing factor (AIF) assessment in the
nuclear fraction for each experimental group (n05). Females
were also subjected to ischemia and sacrifice when they were at
their met-estrous. The reason that female rats were selected in
the met-estrous phase of their cycle was to diminish the
variation in data and to reduce the probable intervention
of circulating estradiol in female experimental groups.

Abbreviations used in graphs for experimental groups
are SM for sham male, IM for ischemic male, TM for

treatment male, SF sham female, IF ischemic female,
TF treatment female.

A few number of animals of both sexes were also spec-
ified to receive “gemfibrozil only treatment.” However, their
results regarding the measured parameters in this study were
not significantly different from their respective sham groups
(data not shown).

Surgery

Rats underwent transient forebrain global ischemia as de-
scribed by Pulsinelli and Brierley (1979). This model is a
clinically relevant one, approved to model the ischemic–
hypoxic damage within the brain following cardiac arrests.
Briefly, on the first day, rats were anesthetized by chloral
hydrate (400 mg/kg). A sterile string was loosely placed
around each common carotid artery (CCA) without inter-
rupting carotid blood flow, and the incision was sutured.
Both vertebral arteries were permanently electrocoagulated.
EEG electrodes were fixed bilaterally at the skull on the
parietal cortex. On the second day, under chloral hydrate
anesthesia, both CCA were occluded for 10 min. The 4VO
rats were only included if electroencephalogram (EEG) was
flattening during ischemia (Diler et al. 2002). Seventy-two-
hour reperfusion was initiated by opening the carotid clamps
after 10 min of ischemia. Sham surgery involved exposure
of common carotid and vertebral arteries. Rectal tempera-
ture was monitored (Citizen-513w) and kept at 37 °C by
surface heating and cooling during surgery.

Sacrifice and Tissue Preparation

After 72-h reperfusion, each group (n012) was split into
two subgroups. The animals within the first subgroup (n06)
were perfused transcardially with phosphate-buffered saline
(PBS) (pH 7.4), followed by 4 % paraformaldehyde in
0.1 M phosphate buffer (pH 7.4) under chloral hydrate
anesthesia (400 mg/kgi.p.). The brains were then removed
and post-fixed in 4 % paraformaldehyde for 24 h and sub-
sequently embedded in paraffin for histopathologic studies.
In the second subgroup, animals (n06) were killed by CO2

asphyxiation. Rats were decapitated, brains removed, and
CA1 subfield of the hippocampus isolated on ice and frozen
in liquid nitrogen and stored at −80 °C for Western blot
analysis. The same procedure was performed for animals
specified for evaluation of nuclear AIF expression.

Terminal Deoxynucleotidyl Transferase-Mediated dUTP
Nick End-Labeling (TUNEL)

Whole brain tissue embedded in paraffin was used for
further histopathologic preparations. Coronal sections (4–
5 μm thickness) of hippocampal formation were prepared,
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and terminal deoxynucleotidyl transferase-mediated dUTP
nick end-labeling (TUNEL) was performed using the in situ
cell death detection kit, POD (Roche Applied Science,
Germany). Tissue sections were deparaffinized in xylene,
rehydrated, and immersed in 3 % hydrogen peroxide to
block the endogenous peroxidase activity. After rinsing with
PBS, sections were treated with proteinase K solution at 37 °
C for 30 min to enhance the staining, incubated for 60 min at
37 °C with 50 μl of TUNEL reaction mixture, and then
incubated for 30 min at 37 °C with 50 μl of converter-POD.
Sections were rinsed in PBS, then incubated for 10 min at
15–25 °C with 50 μl of DAB substrate solution and rinsed
again with PBS. Counter staining was achieved with 0.5 %
methyl green. Tissue was incubated in DNase solution for
10 min at 15–25 °C for positive staining. Sections were then
dehydrated and coverslipped for analysis under light mi-
croscopy. Negative controls were performed by omission
of the enzyme solution step. To obtain the mean percentage
of apoptotic cells to normal cells within the CA1 subfield of
the hippocampus, the number of TUNEL-positive pyrami-
dal neurons was counted on three adjacent ×400 microscop-
ic images.

Preparation of Total Protein Extracts

The CA1 region of hippocampi were dissected on ice in ice-
cold 125 mmol/L Tris–HCl, pH 7.4, containing 320 mmol/L
sucrose, 2 mmol/L sodium orthovanadate, 20 mmol/L sodi-
um diphosphate decahydrate, 20 mmol/L DL-a-glycerophos-
phate, 0.1 mmol/L phenylmethylsulfonyl fluoride, and
5 mg/mL each of antipain, aprotinin, and leupeptin (homog-
enization buffer). Total protein extract was collected by
centrifugation at 13,000×g for 5 min. The samples were
stored at −80 °C until needed for Western blot analysis
(Niimura et al. 2006).

Preparation of Nuclear Protein Extracts for Assessment
of Nuclear AIF

Tissues were homogenized with 300 ml lysis buffer
[10 mmol/L N-2-hydroxyethylpiperazine-N_-2-ethanesul-
fonic acid (pH 7.9), 1 mmol/L EDTA, 1 mmol/L EGTA,
10 mmol/L KCl, 1 mmol/L dithiothreitol, 0.5 mmol/L phe-
nylmethylsulfonyl fluoride, 0.1 mg/ml aprotinin, 1 mg/ml
leupeptin, 1 mg/ml Na-p-tosyll-lysine-chloromethyl ketone,
5 mmol/L NaF, 1 mmol/L NaVO4, 0.5 mmol/L sucrose, and
10 mmol/L Na2MoO4]. After 15 min, Nonidet P-40 (Roche,
Mannheim, Germany) was added to reach a concentration of
0.5 %. The tubes were gently vortexed for 15 s, and nuclei
were collected by centrifugation at 8,000×g for 5 min. The
pellets were resuspended in 100 ml buffer supplemented
with 20 % glycerol and 0.4 mol/L KCl and gently shaken
for 30 min at 4 °C. Nuclear protein extracts were obtained

by centrifugation at 13,000×g for 5 min, and aliquots of the
supernatant were stored at −80 °C. All steps were carried out
at 4 °C (Garcia-Bueno et al. 2008).

Western Blotting

Western blotting was used to measure the protein expression
of PGC-1α (ABCAM; 1 μg/ml), NRF-1 (Santa Cruz; 1/1000)
and TFAM (BioVision; 0.5 μg/ml) as indicators of mitochon-
drial biogenesis. The expressions of cleaved caspase-3 and
cleaved poly (ADP-ribose) polymerase (PARP)-1, as well as
nuclear AIF (Cell Signaling Technology; 1/1,000) were mea-
sured as markers of caspase-dependent and caspase-
independent apoptosis, respectively. Phospho-p38 MAP ki-
nase, p38 MAP kinase, phospho-JNK (Cell Signaling
Technology; 1/1,000), JNK, phospho-ERK1/2, and ERK1/2
(ABCAM; 1/1,000) were used for evaluation of MAPK sig-
naling pathway in hippocampi, as previously published by
Jalalvand et al. (2008).

Briefly, the supernatant was collected and assayed for
protein concentration using the Bradford method (Bradford
1976). Standard plots were generated using bovine serum
albumin. Lysates equivalent to 30 μg of protein were re-
solved on SDS–10 % polyacrylamide gel electrophoresis
and transferred to nitrocellulose membrane (Porablot,
Macherey–Nagel, Germany). In consequent steps, horserad-
ish peroxidase-conjugated secondary antibodies were used
as follows: rabbit and mouse IgG-HRP-linked antibodies
(Cell Signaling; 1/10,000). Blots were revealed by ECL
advanced kit (Amersham Biosciences). To normalize for
protein content, blots were stripped and then probed with
anti β-actin and anti-lamin B antibodies (Santa Cruz
Biotechnology; 0.5 μg/ml and 1/1000, respectively). The
density of bands was quantified using NIH Image J, and
the ratio to β-actin or lamin B was calculated.

Statistical Analysis

The number of neurons within the hippocampus was ana-
lyzed using a non-parametric method, Kruskal–Wallis test.
Western blot data was analyzed by a one-way analysis of
variance (ANOVA) followed by Tukey’s HSD for multiple
comparisons, using SPSS 16.0 package programs. Data are
expressed as mean±SEM, and statistical significance was
set at P<0.05.

Results

Histopathological Evaluation

The CA1 region of hippocampus is considered a region of
high susceptibility to global cerebral injury. Using the
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TUNEL staining methodology, we were able to detect apo-
ptotic nuclei within our experimental groups, shown in
Fig. 1. No evidence of TUNEL reactivity, hence no apopto-
tic cells were found in the CA1 region of the hippocampus
within our sham animals of both male and met-estrous
female groups (Fig. 1a, d).

Surprisingly, there was no difference in the percentage of
apoptotic nuclei within the CA1 region of the hippocampus

between the ischemic male and respective sham groups
(Fig. 1b). However, a significant number of apoptotic nuclei
were detected by TUNEL positivity within male rats pre-
treated with gemfibrozil before I/R injury (P<0.05)
(Fig. 1c).

On the other hand, within the ischemic met-estrous fe-
male group, there was a significant increase in the number
of TUNEL-positive neurons in the CA1 region of the

A

B

C

D

E

F

G 

Fig. 1 Representative
hippocampi sections stained
with TUNEL. a, d, b show
hippocampal CA1 field of male
and female sham groups, and
male ischemic group,
respectively. Male ischemic
group stained negative for
TUNEL-positive neurons (b).
Neurons were moderately
TUNEL-stained in gemfibrozil-
pretreated male ischemic group
(arrows) (c). The large number
of TUNEL-positive neurons
detected in female ischemic
group (arrows) (e), were sig-
nificantly decreased in their re-
spective gemfibrozil-pretreated
group (f). Magnification, ×400.
The graph represents the quan-
titative percentage of TUNEL-
positive neurons in the hippo-
campal CA1 region of animals
in each experimental group (g).
Values are mean±SEM; Krus-
kal–Wallis test; *P<0.05; ***P
<0.001. Abbreviations used in
graphs for experimental groups:
SM sham male, IM ischemic
male, TM treatment male, SF
sham female, IF ischemic fe-
male, TF treatment female

J Mol Neurosci (2013) 50:379–393 383



hippocampus (Fig. 1e) (P<0.001). Interestingly, by pretreat-
ment with gemfibrozil, the number of TUNEL-positive neu-
rons was reduced significantly in met-estrous female rats
compared with the met-estrous female ischemic control
group (P<0.001) (Fig. 1f).

The quantitative results of the TUNEL test are repre-
sented in Fig. 1g. These results suggest that males were
resistant to 10 min of global cerebral I/R injury, whilst
met-estrous females showed widespread neurodegeneration
in the hippocampal CA1 region under the same conditions.
Interestingly, gemfibrozil pretreatment resulted in a sexually
dimorphic outcome, providing neuroprotection within met-
estrous females but resulting in neurodegeneration in males.

Mitochondrial Pro-survival Factors Involved
in the Mitochondrial Biogenesis Signaling Pathway

PGC-1α Expression

PGC-1α is considered as a master regulator of mitochondri-
al biogenesis and a potent antioxidant (Wu et al. 1999). We
found the expression level of PGC-1α to be significantly
higher in female sham groups in comparison to the male
sham groups. However, the overall pattern of expression of
PGC-1 α in the experimental groups of both genders was
similar.

As shown in Fig. 2, I/R caused a significant increase in
the expression of PGC-1α compared with the sham groups
of both sexes. This increase was higher in met-estrous
females compared with males (P<0.001 and P<0.01, re-
spectively). Administration of gemfibrozil was associated
with a non-significant drop of PGC-1α expression in both
sexes; however, its expression was higher than that in the
respective sham groups.

NRF-1 Expression

NRF-1, another major player in the mitochondrial signaling
pathway, showed a similar pattern of expression to PGC-1α in
response to I/R.We found that NRF-1 expression was induced
in I/R groups compared with the respective sham groups
(P<0.01 and P<0.001 in males and females, respectively).
Interestingly, gemfibrozil pretreatment resulted in a converse
pattern of NRF-1 expression in both genders. In males, NRF-1
expression reduced significantly (p<0.01) compared with the
ischemic groups whilst, within met-estrous females, NRF-1
expression increased considerably (P<0.01) (Fig. 3).

TFAM Expression

TFAM expression was significantly different between the
sexes in our experimental groups (Fig. 4). Within the male
rats, we observed a significantly higher level of TFAM

β-actin 44 KD

PGC-1α 90 KD

A

B

Fig. 2 Western blot analysis to measure the expression of PGC-1α in
the hippocampus tissues derived at 72 h after 10 min global cerebral
ischemia in male and female experimental groups. a Immunoblot
bands of PGC-1α and β-actin. b The densities of corresponding bands
were measured, and the ratio to β-actin was calculated and represented
as arbitrary units on the graph for each experimental group (n06). Bars
indicate the mean±SEM; one-way ANOVA; *P<0.05; **P<0.01;
***P<0.001. Abbreviations used in graphs for experimental groups:
SM sham male, IM ischemic male, TM treatment male, SF sham
female, IF ischemic female, TF treatment female

β-actin 44 KDa

NRF-1 68 KDa

A

B

Fig. 3 Western blot analysis to measure the expression of NRF-1 in
the hippocampus tissues derived at 72 h after 10 min global cerebral
ischemia in male and female experimental groups. a Immunoblot
bands of NRF-1 and β-actin. b The densities of corresponding bands
were measured, and the ratio to β-actin was calculated and represented
as arbitrary units on the graph for each experimental group (n06). Bars
indicate the mean±SEM; one-way ANOVA; **P<0.01; ***P<0.001.
Abbreviations used in graphs for experimental groups: SM sham male,
IM ischemic male, TM treatment male, SF sham female, IF ischemic
female, TF treatment female
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expression in the sham group compared with female sham
(P<0.001). TFAM expression was significantly decreased
within ischemic male rats in comparison to met-estrous
females (P<0.05). In contrast, within the met-estrous female
ischemic group, TFAM expression was increased to a signif-
icant extent compared with the respective sham group
(P<0.01).

In addition, TFAM expression was further increased in
the gemfibrozil-pretreated met-estrous females in compari-
son to both ischemic (P<0.01) and sham groups (P<0.001).
Conversely, gemfibrozil pretreatment in males resulted in a
further decrease in TFAM expression compared with both
male ischemic (P<0.05) and sham groups (P<0.001). Taken
together, these results suggest that gemfibrozil pretreatment
provides protection to met-estrous females partially through
induction of NRF-1 and TFAM whilst, in males, gemfibrozil
pretreatment was associated with neurodegeneration, prob-
ably via repression of the same factors of the mitochondrial
biogenesis signaling pathway.

Caspase-Dependent Apoptosis

Cleaved Form of Caspase-3

Caspase-3 is an executive caspase in the caspase-dependent
apoptotic cell death (Jänicke et al. 1998). As shown in

Fig. 5, the results regarding the expression of cleaved form
of caspase-3 in the experimental groups of this study were in
accordance with the TUNEL assay results, represented in
Fig 1. While there were no significant differences between
male ischemic and sham groups, within met-estrous
females, the expression of cleaved caspase-3 was signifi-
cantly increased in response to I/R compared with the sham
group (P<0.05). In contrast, pretreatment of rats with gem-
fibrozil resulted in a significant induction of activated
caspase-3 in males (P<0.01), but an extensive decrease
within met-estrous females compared with both ischemic
(P<0.001) and sham groups (P<0.01). These results further
support the observed sexual-dimorphic outcome of gemfi-
brozil pretreatment.

Cleaved PARP-1

PARP-1 is cleaved by activated caspase-3 in the caspase-
dependent apoptotic pathway into 24- and 89-kDa frag-
ments (Soldani and Scovassi 2002). The results of cleaved
PARP-1 (89 kDa fragment) followed almost the same pat-
tern of expression as the cleaved caspase-3 (Fig. 6). These
results further confirmed the activation of caspase-
dependent apoptosis in the met-estrous female ischemic
group, and the beneficial role of gemfibrozil pretreatment

TFAM

β-actin

27 KDa

44 KDa

A

B

Fig. 4 Western blot analysis to measure the expression of TFAM in
the hippocampus tissues derived at 72 h after 10 min global cerebral
ischemia in male and female experimental groups. a Immunoblot
bands of TFAM and β-actin. b The densities of corresponding bands
were measured, and the ratio to β-actin was calculated and represented
as arbitrary units on the graph for each experimental group (n06). Bars
indicate the mean±SEM; one-way ANOVA; *P<0.05; **P<0.01;
***P<0.001. Abbreviations used in graphs for experimental groups:
SM sham male, IM ischemic male, TM treatment male, SF sham
female, IF ischemic female, TF treatment female

Cleaved cas3

β-actin

17 KDa

44 KDa

B

A

Fig. 5 Western blot analysis to measure the expression of cleaved
caspase-3 in the hippocampus tissues derived at 72 h after 10 min
global cerebral ischemia in male and female experimental groups. a
Immunoblot bands of cleaved caspase-3 and β-actin. Changes in the
expression of 17 kDa fragment of cleaved caspase-3 are considered. b
The densities of corresponding bands were measured, and the ratio to
β-actin was calculated and represented as arbitrary units on the graph
for each experimental group (n06). Bars indicate the mean±SEM;
one-way ANOVA; *P<0.05; **P<0.01; ***P<0.001. Abbreviations
used in graphs for experimental groups: SM sham male, IM ischemic
male, TM treatment male, SF sham female, IF ischemic female, TF
treatment female
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via inhibition of this pathway. Interestingly, while gemfi-
brozil pretreatment protected met-estrous females of the
present study, it worsened the males’ condition through
activation of caspase-dependent apoptosis.

Caspase-Independent Apoptosis

Nuclear AIF Expression

Nuclear translocation of AIF is a sign of activated caspase-
independent apoptotic cell death (Matsumori et al. 2005;
Carre et al. 2010). Therefore, in this study, we measured
the nuclear expression of AIF using Western blot analysis.
As represented in Fig. 7, nuclear expression of AIF in the
male ischemic group was not affected by comparison to
sham groups, however, AIF expression was induced signif-
icantly in ischemic met-estrous female rats compared with
their respective sham group (P<0.01). These results support
the activation of caspase-independent apoptotic pathway in
ischemic conditions within met-estrous female rats.

The expression of nuclear AIF in gemfibrozil-pretreated
males was consistent with our previous observations of neuro-
degeneration, such that it enhanced apoptosis compared with
both male sham (P<0.05) and ischemic groups (P<0.05).

On the other hand, results of nuclear AIF expression
within met-estrous female gemfibrozil pretreated groups contradicted our previous findings such that, by treating

met-estrous female rats with gemfibrozil, we observed an
enhancement of nuclear AIF expression in comparison to
both the ischemic (P<0.05) and sham groups (P<0.05).

MAPKs Signaling Pathway

To further unravel the molecular mechanisms of the sexually
dimorphic outcome of gemfibrozil pretreatment, we exam-
ined the expression of p38 MAPK, ERK1/2, and JNK and
their phosphorylated states using Western blot analysis.
Although controversial, it has been shown that activation
of p38 MAPK and JNK mostly trigger apoptotic cell death
(Sugino et al. 2000; Ma et al. 1999). On the other hand,
ERK1/2 activation has been demonstrated to have anti-
apoptotic properties in I/R conditions.

P38 MAPK Activation

The ratio of phosphorylated (p)-p38/p38 followed a similar
pattern of expression in experimental groups of both sexes.
P38 MAPK expression was induced in the ischemic groups
compared with sham, however, we observed a decreased
expression within gemfibrozil-pretreated males and met-
estrous females (P<0.05 and P<0.001, respectively) com-
pared with their respective ischemic groups. It was notice-
able that the same pattern of expression in the experimental
groups of both genders was associated with two different
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β-actin 44 KDa
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PARP-1 116 KDa

Fig. 6 Western blot analysis to measure the expression of cleaved
PARP-1 in the hippocampus tissues derived at 72 h after 10 min global
cerebral ischemia in male and female experimental groups. a Immu-
noblot bands of cleaved PARP-1 and β-actin. Changes in the expres-
sion of 89 kDa fragment of cleaved PARP-1 are considered. b The
densities of corresponding bands were measured, and the ratio to β-
actin was calculated and represented as arbitrary units on the graph for
each experimental group (n06). Bars indicate the mean±SEM; one-
way ANOVA; **P<0.01; ***P<0.001. Abbreviations used in graphs
for experimental groups: SM sham male, IM ischemic male, TM treat-
ment male, SF sham female, IF ischemic female, TF treatment female
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Fig. 7 Western blot analysis to measure the expression of AIF in
nuclear fraction of hippocampus tissues derived at 72 h after 10 min
global cerebral ischemia in male and female rats. a Immunoblot bands
of AIF and Lamin B. b The densities of corresponding bands were
measured, and the ratio to Lamin B was calculated and represented as
arbitrary units on the graph for each experimental group (n05). Bars
indicate the mean±SEM; one-way ANOVA; *P<0.05; **P<0.01;
***P<0.001. Abbreviations used in graphs for experimental groups:
SM sham male, IM ischemic male, TM treatment male, SF sham
female, IF ischemic female, TF treatment female
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outcomes: neurodegeneration in males and neuroprotection
in met-estrous females (Fig. 8).

JNK Activation

The ratio of p-JNK/JNK was not affected in any male
experimental groups, as shown in Fig. 9. However,
dietary administration of gemfibrozil for 7 days prior
to induction of global cerebral ischemia in females
attenuated phosphorylated levels of this protein signifi-
cantly (P<0.05).

ERK1/2 Activation

The expression ratio of p-ERK1/2/ ERK1/2 further sup-
ported our observed sexual dimorphism between the sexes.
In males, I/R injury led to a slight but not significant
increase in this ratio. However, the ratio decreased signifi-
cantly when gemfibrozil was used prior to I/R (P<0.01). In
contrast, within female rats, a significant reduction of the
p-ERK1/2/ ERK1/2 ratio was detected compared with the
respective sham groups (P<0.05). In addition, this reduction
was reversed significantly within the female gemfibrozil
pretreated group (P<0.001) (Fig. 10).

Discussion

The novel findings of this study are as follows:

1. TUNEL assay confirmed that the CA1 region of the
hippocampus was more susceptible to ischemia and
showed extensive apoptotic cell death within met-
estrous female rats after 10 min of ischemia compared
with male rats, which were almost resistant to injury.

2. Gemfibrozil pretreatment led to a sexually dimor-
phic outcome conferring protection to met-estrous
females against global cerebral I/R insult, while
detrimental within male rats resulting in hippocam-
pal CA1 neurodegeneration.

3. Gemfibrozil induced the expression of NRF-1 and
TFAM; mitochondrial pro-survival factors in the mito-
chondrial biogenesis-signaling pathway within the hip-
pocampus of met-estrous females, while repressing
them within males.

4. Gemfibrozil also modulated apoptotic cell death path-
ways, as well as JNK and ERK1/2, the upstream
MAPKs, in a sexually dimorphic manner; in met-
estrous females, it inhibited caspase-dependent apopto-
sis, while in males it induced both caspase-dependent
and caspase-independent apoptosis.

p-p38

p38

β-actin
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Fig. 8 Western blot analysis to measure the expression of activated
p38 (the ratio of phosphorylated (p)-p38 to p38) in hippocampus
tissues derived at 72 h after 10 min global cerebral ischemia in male
and female experimental groups. a Immunoblot bands of p-p38, p38,
and β-actin. b The densities of corresponding bands were measured,
and the ratio of activated p38 to β-actin was calculated and represented
as arbitrary units on the graph for each experimental group (n06). Bars
indicate the mean±SEM; one-way ANOVA; *P<0.05; ***P<0.001.
Abbreviations used in graphs for experimental groups: SM sham male,
IM ischemic male, TM treatment male, SF sham female, IF ischemic
female, TF treatment female
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Fig. 9 Western blot analysis to measure the expression of activated
JNK (the ratio of phosphorylated (p)-JNK to JNK) in hippocampus
tissues derived at 72 h after 10 min global cerebral ischemia in male
and female experimental groups. a Immunoblot bands of p-JNK, JNK,
and β-actin. b The densities of corresponding bands were measured,
and the ratio of activated JNK to β-actin was calculated and repre-
sented as arbitrary units on the graph for each experimental group (n0
6). Bars indicate the mean±SEM; One-way ANOVA; *P<0.05.
Abbreviations used in graphs for experimental groups: SM sham male,
IM ischemic male, TM treatment male, SF sham female, IF ischemic
female, TF treatment female
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Petito et al. found a significant percentage of apoptotic
neurons in CA1 region of male rats after 10 min of 4VO I/R
injury (Petito et al. 1997). We expected the same results in our
male rats as well. But, in parallel to another similar study
performed in our lab (Mohagheghi et al. 2012), we observed
that despite flattening of EEG, as a confirmation of ischemia
induction in these animals, there was not any noticeable
morphologic damage in our male ischemic group at least at
this time point. However, significant induction of PGC-1α
and NRF-1 and reduction of TFAM, as well as modulation of
cleaved PARP-1 and ERK1/2 detected in ischemic males
compared with the sham indicated that molecular pathways
were in fact influenced by I/R injury; however, their morpho-
logic representation was not detectable, at least at this time
point. Time course analyses are certainly required to provide
evidences for such cause–effect relationships and to decide
whether the observed results are just endpoints simply corre-
lating with the damage or protection.

Significantly higher susceptibility of met-estrous females
to the same I/R injury compared with males was in parallel to
our previous study, and the report of Carswell et al. (1999),
showing consistently that female stroke-prone spontaneously
hypertensive rats which underwent ischemia during met-
estrous developed larger infarcts than their respective males

in MCAOmodel of stroke (Carswell et al. 1999). Currently in
our lab, we are examining conditions that provide sublethal
injury in female rats (shorter ischemia) and more severe injury
in males (to induce substantial damage).

Mitochondrial biogenesis is enhanced in cells under dif-
ferent conditions such as during high energy demand (Wu et
al. 2002; Handschin et al. 2003) and in response to increased
oxidative stress (Wei et al. 2001; Onyango et al. 2010).
According to recent evidences, mitochondrial biogenesis is
altered by mitochondrial dysfunction in many pathological
settings (Yin et al. 2008; Onyango et al. 2010), and its
stimulation is suggested to be neuroprotective in conditions
such as brain ischemic stroke (Lagouge et al. 2006; Dong et
al. 2007; Wenz 2009).

Coordinated actions of nuclear and mitochondrial genomes
and transcription factors, specifically PGC-1α, NRF-1, and
TFAM regulate mitochondrial biogenesis (Wu et al. 1999). In
our study, the expression of PGC-1α and NRF-1 in ischemic
groups of both sexes were induced compared with their re-
spective sham groups. Induction of PGC-1α in response to
oxidative stress and ischemic insult has been demonstrated
previously (Yin et al. 2008; Onyango et al. 2010). However,
the expression of TFAM, the downstream protein in mito-
chondrial biogenesis signaling pathway, showed an apprecia-
ble sexually dimorphic behavior in sham and ischemic groups
of both sexes. Justo et al. have reported sort of relationship
between estradiol and TFAM level, such that protein levels of
TFAM were four times greater in the liver of females rats
selected randomly in their estrous cycle, compared with males
(Justo et al. 2005). Estradiol level in met-estrous female rats is
lower than when they are selected randomly (Carswell et al.
1999). Hence, with low levels of estradiol in female sham
group of this study, a low level of TFAM expression is evident,
which may explain the sensitivity of females to ischemia
compared with males during the met-estrous period of the
female reproductive cycle. This is the first report indicating
that gemfibrozil pretreatment in met-estrous females induced
NRF-1 and TFAM significantly compared with the sham and
ischemic groups while, in males, it repressed their expression.

It was of interest that PGC-1α did not follow the same
pattern of NRF-1 and TFAM expression in the mitochondrial
biogenesis signaling pathway. Gustaeva et al. have claimed that
mitochondrial biogenesis-signaling factors follow a time-
dependent pattern of expression after hypoxia. mRNA expres-
sion of PGC-1α and NFR-1 in the mice brain subcortex in-
creased after 6 h of hypoxia, remaining elevated at 24 h and
returned to control level by 48 h. At the same context, TFAM
mRNA expression increased at the end of hypoxia, remained
elevated at 24 h, and returned to baseline by 48 h (Gutsaeva et
al. 2008). In another report, induction of transient global ische-
mia in rats resulted in augmentation of PGC-1α expression at
1 h, as well asmitochondrial number at 4 h after transient global
ischemia in the hippocampal CA1 subfield (Chen et al. 2010b).
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Fig. 10 Western blot analysis to measure the expression of activated
ERK1/2 (the ratio of phosphorylated (p)-ERK1/2 to ERK1/2) in hip-
pocampus tissues derived at 72 h after 10 min global cerebral ischemia
in male and female experimental groups. a Immunoblot bands of p-
ERK1/2, ERK1/2, and β-actin. b The densities of corresponding bands
were measured, and the ratio of activated ERK1/2 to β-actin was
calculated and represented as arbitrary units on the graph for each
experimental group (n06). Bars indicate the mean±SEM; one-way
ANOVA; *P<0.05; **P<0.01; ***P<0.001. Abbreviations used in
graphs for experimental groups: SM sham male, IM ischemic male, TM
treatment male, SF sham female, IF ischemic female, TF treatment
female
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Experiments of the present study were performed at 72 h
after induction of global cerebral ischemia. Therefore, one
assumption which obviously needs to be demonstrated is that
gemfibrozil pretreatment may have influenced the expression
of PGC-1α transiently in earlier time points. Subsequently, it
has resulted in a more persistent modulation of NRF-1 and
TFAMwhichwere still detectable at the time point of our study.
The other interpretation is that gemfibrozil pretreatment prob-
ably modulate mitochondrial biogenesis-signaling pathway in
both sexes without affecting PGC-1α expression. It is reported

that, in some cases, induction ofmitochondrial biogenesis is not
dependent on PGC-1α. For example, estradiol has been able to
stimulate transcription of NRF-1 and increase mitochondrial
biogenesis through a direct transcriptional effect mediated by
ER-α in cancer cell lines (Mattingly et al. 2008). Also, regula-
tion of mitochondrial respiratory chain biogenesis by estrogens/
estrogen receptors has not been dependent on PGC-1α, but
NRF-1 is instead the main player (Chen et al. 2009).

In this study, we have just examined the expression
pattern of three major mitochondrial pro-survival proteins

: MAPKs;       : Mitochondrial pro-survival factors;       : Apoptotic cell death

Male rats Met-estrous female rats

Normal CA1 histology CA1 neurodegeneration

CA1 neurodegeneration CA1 neuroprotection

Global Cerebral Ischemia (10 min, 4VO, 72 h post ischemia)

Gemfibrozil Pretreatment (30 mg/kg, Orally, Once daily, 7 days)

Cleaved Cas-3 +

Cleaved PARP-1 +

Nuclear AIF +

P38 +

ERK 1/2 -

PGC1-α+

NRF-1 +

TFAM +

P38 +
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Fig. 11 The graphical abstract represents major changes of the studied
molecules affected by global cerebral ischemia–reperfusion and gemfi-
brozil pretreatment, resulting in the final outcome of male

neurotoxicity, female neuroprotection in the CA1 region of hippocam-
pus; plus sign induction; minus sign reduction
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involved in the mitochondrial biogenesis signaling pathway.
So with these limited data, we cannot make a firm conclu-
sion regarding mitochondrial biogenesis. Undoubtedly,
looking at mitochondrial structure, dynamic or function
using other approaches will be required to further confirm
whether induction of NRF-1 and TFAM by gemfibrozil in
met-estrous females and their suppression in males under-
going I/R injury has been connected to the induction or
suppression of mitochondrial mass and number as well as
other indicators of mitochondrial biogenesis.

Considering several studies indicating to a sex-dependent
difference in apoptotic neural cell death pathways, notably
in the cerebral ischemic context (Zhang et al. 2003; Park et
al. 2005; Zhu et al. 2006), and in order to assess the thera-
peutic potential of gemfibrozil in such context, we also
looked at apoptotic cell death in our experimental groups.
Extensive susceptibility of met-estrous females revealed by
the high percentage of TUNEL-positive neurons was further
confirmed by the significantly higher expression of both
cleaved caspase-3 and PARP-1, as well as nuclear AIF in
ischemic females compared with sham, suggesting activa-
tion of both caspase-dependent and caspase-independent
apoptosis in their hippocampus.

Parallel to the TUNEL assay results, pretreatment of groups
with gemfibrozil led to induction of caspase-dependent and –
independent apoptosis in males after I/R insult whilst, in met-
estrous females, gemfibrozil proved to be protective partially
via inhibition of the caspase-dependent apoptotic pathway.
Since caspase-dependent and caspase-independent pathways
are almost interrelated (Cregan et al. 2004), the significant
induction of AIF observed in gemfibrozil-pretreated met-
estrous females may result from inhibition of the caspase-
dependent pathway, leading to the induction of the caspase-
independent pathway. It is reported previously that caspase-
dependent apoptotic pathway is the major pathway leading to
cell death in females. Therefore, it seems that, in gemfibrozil-
pretreated females of our study, ischemia was not detrimental
due to gemfibrozil interference of caspase-independent path-
way (Lang and McCullough 2008).

MAPKs pathway including JNK, ERK1/2, and p38, at the
upstream of both mitochondrial biogenesis and cell death
pathways, are reported to be stimulated following ischemia
(Irving and Bamford 2002; Wright 2007; Lira et al. 2010).
Extracellular signal-regulated kinases pathways promote cell
survival and proliferation, and c-Jun N-terminal protein
kinases/p38 pathways induce apoptosis in general. However,
the roles of MAPK cascades in neuronal death and survival
seem to be complicated and altered by the type of cells and the
magnitude and timing of insults (Nozaki et al. 2001).

P38 is suggested to regulate the expression of PGC-1a,
stabilizing this protein and increasing its ability to function
as a coactivator in the mitochondrial biogenesis signaling
pathway. In fact, mitochondrial biogenesis following

oxidant injury is reported to be mediated by p38 activation
of PGC1-a (Rasbach and Schnellmann 2007).

There is another study providing evidence that MAPKs
including ERK promote mitochondrial biogenesis in part
through PGC-1β expression (Gao et al. 2011). JNK and
ERK are also demonstrated to contribute in the Nrf-2 medi-
ated induction of mitochondrial biogenesis and the subse-
quent neuroprotective effects exerted in the context of
Parkinson’s disease (Tufekci et al. 2011).

Based on studies suggesting gender-related differences in
MAPKs activation and their possible contribution to sexual
dimorphisms in the brain (Zhang 2002), we also sought to
investigate how MAPKs are affected in the context of the
present study.

While the expression of JNK was not affected in most of
experimental groups, its significant reduction in gemfibrozil-
pretreated met-estrous females was consistent with the protec-
tion observed in this group. JNK is reported to be involved in
neuronal apoptosis (Sugino et al. 2000). The expression of
activated p38 followed a similar pattern within the met-estrous
female and male groups. Activated p38 is demonstrated to be
associated with apoptosis (Sugino et al. 2000). While alter-
ation of activated p38 expression in female experimental
groups was consistent with the protective effects of gemfibro-
zil pretreatment in females, this was not the case with males.
Such difference may be due to p38 not taking part in the
observed neuroprotection/degeneration, or activated p38 may
have activated opposite pathways in both genders. The precise
molecular mechanism involved in conferring either protection
or degeneration with the same pattern of activated p38 expres-
sion within males and females need to be further investigated.

Our findings regarding the expression of ERK1/2 in the
experimental groups of both sexes were also consistent with
the known role of ERK1/2 in promoting cell survival (Irving
and Bamford 2002; Nozaki et al. 2001). Such sex-dependent
expression of ERK1/2 in this study is in accordance with
reports indicating that ERK1/2 activation is affected by estro-
gen and that ERK inhibitors have removed neuroprotection of
estrogens (Belayev et al. 1996; Lebesgue et al. 2009).

Interestingly, the molecules investigated here in the global
cerebral I/R context, including NRF-1 and TFAM, the mito-
chondrial pro-survival factors in the mitochondrial biogenesis
signaling pathway, caspase-3 and PARP-1 in the apoptotic cell
death pathway, as well as ERK1/2 and JNK in the MAPKs
signaling pathway, in accordance with the TUNEL assay, all
indicate to the sexually dimorphic effects of gemfibrozil,
being neuroprotective in met-estrous females while neurotox-
ic in males. Undoubtedly, further investigations are necessary
to clarify the exact causal and mechanistic links between the
mitochondrial pro-survival factors, as well as the apoptotic
cell death and MAPKs signaling pathways detected here.

In 1976, Dr. Kurtz and his colleagues performed an exten-
sive toxicological study on gemfibrozil, mainly focusing on
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the liver. They reported remarkable mitochondrial enlarge-
ment with variable distortion of their normal cristae in hepa-
tocytes. The alterations of liver weights and the hepatocellular
hypertrophy in response to gemfibrozil consumption were
found to be more prominent in males than females (Kurtz et
al. 1976). Another study provides interesting evidence indi-
cating that individual fibrates induce mitochondrial dysfunc-
tion via different molecular mechanisms. Gemfibrozil is
suggested to induce respiratory function impairment due to
opening of the mitochondrial transition pore. It remains to be
clarified to what extent direct mitochondrial actions contribute
to the beneficial and the adverse effects associated with clin-
ical fibrate administration (Brunmair et al. 2004).

There are a few studies indicating that pharmacokinetic
parameters of gemfibrozil including its absorption, metabolism,
and excretion are not affected by gender in human and animals
(Cayen 1985; Knauf et al. 1990; Dix et al. 1999; Borges et al.
2005). In the present study, we did not perform a pharmacoki-
netic analysis to determine whether the differential sex-
dependent effects of gemfibrozil were related to different effects
of gemfibrozil in males versus females, or to its pharmacoki-
netic issues. However, due to extremely limited information
which exists on the absorption, distribution, metabolism, and
excretion of gemfibrozil, this issue awaits to be examined.

Considering that fibrates and other PPAR-α activators have
been proved to affect metabolism of steroid hormones (Xu et
al. 2001a, b, c; Fan et al. 2004; Lebesgue et al. 2009) and the
close interrelation which exist between ER-α, PGC-1α, and
PPAR-α in the mitochondrial biogenesis signaling pathway
(Huss et al. 2004), in our lab, we have started investigating
whether the sex-dependent outcome of gemfibrozil pretreat-
ment in global cerebral I/R context regarding mitochondrial
biogenesis signaling pathway, cell death, and JNK and ERK1/
2 of MAPKs is mediated via estrogen- and testosterone-
dependent mechanisms. Figure 11 summarizes the molecular
changes detected in the context of present study.
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