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Abstract Astrocyte glucose metabolism functions to main-
tain brain activity in both normal and stress conditions.
Dysregulation of astrocyte glucose metabolism relates to
development of neuronal disease, such as multiple sclerosis
and Alzheimer’s disease. In response to acute stress, beta2-
adrenergic receptor is activated and initiates multiple signal-
ing events mediated by Gs, Gi, arrestin, or other effectors
depending on specific cellular contexts. In astrocytes, beta2-
adrenergic receptor promotes glucose uptake through
GLUT1 and accelerates glycogen degradation via coupling
to Gs and second messenger cAMP-dependent pathway.
Beta2-adrenergic receptor may regulate other steps in astro-
cyte glucose metabolism, such as lactate production or
transduction. Inappropriate regulation of beta2-adrenergic
receptor activity can disrupt normal glucose metabolism,
and leads to accelerate neuronal disease development. It
was demonstrated that the absence of beta2-adrenergic re-
ceptor in astrocytes occurred in multiple sclerosis patients,

and the increased beta2-adrenergic receptor activity relates
to Alzheimer’s disease. A clear view of beta2-adrenergic
receptor-mediated signaling pathways in regulating astro-
cyte glucose metabolism could help us to develop neuronal
diseases treatment by targeting to the beta2-adrenergic
receptor.
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Introduction

Astrocytes are star-shaped brain glial cells with important
functions including physical structuring of the brain, blood–
brain barrier formation, modulation of synaptic transmis-
sion, and nutrient support to adjacent neurons. Residing
close to microvasculature and neuronal axons, astrocytes
are poised ideally to supply axons with metabolic intermedi-
ates, such as glutamate, GABA, and probably lactates,
which are essential for neuron function under normal or
stress conditions. In resting state, the brain consumes 20 %
of total body oxygen in contrast to its 2 % relative weight,
suggesting the importance of oxidative phosphorylation in
glucose metabolism of both astrocytes and neurons (Genc et
al. 2011). However, in response to detrimental factor or
urgent situation, such as hypoxia condition with reduced
oxygen in blood, astrocytes can also switch to anaerobic
pathway and produce then transfer lactate to around axons.
Both oxidative and aerobic glucose metabolism in astro-
cytes are tightly regulated by concerted actions of neuronal
transmitter, nutrient, and other factors, and dysfunction of
glucose metabolism regulation may lead to development or
acceleration of many neuronal diseases, such as multiple
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sclerosis, Parkinson’s disease, and Alzheimer’s disease (AD,
Hunt et al. 2007; Laureys et al. 2010).

Beta2-adrenergic receptor (β2AR) is one of the major
receptors of endogenous “fight or flight response hormone,”
norepinepherine, which regulates multiple steps of glucose
metabolism in astrocytes (Cohen et al. 1997; Carnevale et al.
2007). Numerous studies have shown expression of beta-
adrenergic receptor in both gray and white matters by radio-
ligand binding and immunohistochemistry, in which β2AR
is the dominant component of human white matter astro-
cytes (Aoki 1992; Sutin and Shao 1992; Zeinstra et al.
2000). A recent research with specific receptor subtype
knockout mice, with radio ligand binding together with
RT-PCR, also demonstrated expression of all three types of
beta-adrenergic receptors in astrocytes (Liu et al. 1992;
Salm and McCarthy 1992; Shao and Sutin 1992; Mantyh
et al. 1995; Zeinstra et al. 2000; Catus et al. 2011).

Being the first radiolabeled and cloned other than rho-
dopsin, β2AR is the best characterized G protein-coupled
receptor in signaling and biochemical studies, which is
highlighted by recent advanced works such as crystal struc-
ture of β2AR–Gs protein complexes, multiple conforma-
tions of β2AR with different ligands, and its numerous
downstream signaling at cellular level (Robishaw et al.
1986; Daaka et al. 1997; Hall et al. 1998; Xiao et al. 2010;
Hara et al. 2011; Kahsai et al. 2011; Kobilka 2011; Rasmussen
et al. 2011). Generally, with endogenous ligand norepinepher-
ine stimulation, β2AR primarily couples to Gs proteins, suc-
cessively activates adenylyl cyclase, and produces cAMP
(Robishaw et al. 1986). The increased cellular concentration
of cAMP functions as the “second messenger”; activates
cascade connection, such as PKA and CREB; and results in
a “first wave” of biological effects (Fig. 1). The activated PKA
conversely phosphorylates β2AR, uncoupled it from Gs then
switches the receptor to couple to Gi (Daaka et al. 1997; Xiao
et al. 1999). The switching mechanism ofβ2AR fromGs to Gi
during persistent agonist stimulation has important anti-
apoptotic effects in cardioprotection (Zhu et al. 2001; Xiao
et al. 2006).

Concurrent with its phosphorylation by PKA, β2AR is
also phosphorylated by one or two specific GRKs on its c-
terminal or intracellular third loop depending on its specific
cellular contexts (Wilkins and Scolding 2008). The phos-
phorylated receptor recruits beta-arrestins, terminates Gs
signaling at one side, and initiates a “second wave” of
signaling by scaffolding different downstream molecules,
such as Src, ERK, and PDE (Lin et al. 1999; Luttrell et al.
1999; Perry et al. 2002; Nelson et al. 2008). The arrestin-
mediated β2AR signaling regulates multiple cellular activi-
ties, which is signified by recent research in β2AR regulation
of DNA damage in stress response pathway (Hara et al. 2011).
Unless general G or arrestin mediated pathway for all GPCRs,
it is also reported that specific downstream signals are initiated

by β2AR in specific physiological conditions. β2AR can
directly interact with NHERF through its c-terminal, regulat-
ing Na+/H+ exchange (Hall et al. 1998). In recent research of
Alzheimer’s disease, activatedβ2AR interacts with presenilin-
1, stimulates γ-secretase activity, and accelerates amyloid
plaque formation (Ni et al. 2006). Thus, as the most important
endocrine receptor, β2AR may regulate distinct cellular func-
tions due to variation in the abundance of its downstream
effectors in specific organs or cell types. In this minireview,
we will examine current knowledge of β2AR function and in
regulating astrocyte glucose metabolism and its relevance to
neuronal disease, which may shed light for future studies.

β2AR Regulate Glucose Transport Through GLUT1

Glucose is regarded as the main carbon source of brain
energy metabolism. During rest conditions astrocytes and
neuron uptake glucose from the blood with similar rate.
After being taken up by astrocytes, glucose can be metabo-
lized through glycolysis or be stored via glycogen synthesis.
Once there is intense neuronal activity or stress signal,
astrocytes increase glucose uptake rate while the neuron
does not change, suggesting a tight regulation of glucose
transport in astrocytes (Pellerin et al. 2007; Chuquet et al.
2010).

β2AR first regulates glucose transport from the blood
vessel cells into astrocytes (Fig. 1). As early as 1990, Hsu
et al. observe a marked increase of 14C-labeled glucose
transport induced by beta2 and beta3 adrenergic receptor
agonist isoproterenol after 30 min incubation, accompanied
with an activation of adenylyl cyclase (Hsu and Hsu 1990).
Further studies with specific β2AR agonist zinterol and
beta3 adrenergic receptor agonist CL316243 revealed that
beta3 adrenergic receptor regulates early time points while
β2AR functions at later time of glucose transport (Sato et al.
2007; Gibbs et al. 2008). The fact that two adenylate cyclase
inhibitors DDA and SQ22536 block β2AR-mediated glu-
cose transport suggests that β2AR regulates glucose trans-
port through coupling to Gs and activation of adenylate
cyclase pathway. Just recently Catus et al. did a thorough
research on three beta-adrenergic receptor functions in reg-
ulation of glucose transport with subtype specific receptor
knockout animals. They demonstrated that activation of
beta2 receptor upregulated glucose transport (Catus et al.
2011). Application of GLUT inhibitor cytochalasin B blocks
beta-adrenergic receptor-mediated glucose transport, sug-
gesting that β2AR likely regulate glucose transport through
directly affecting GLUT1 activity. Neurons express GLUT3,
while astrocytes mostly express GLUT1 (Pellerin et al.
2007; Genc et al. 2011). This glucose subtype specificity
determines their different regulatory property, which may
explain the glucose uptake rate change occurring in astrocytes
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but not neurons under stress. Whether do β2AR regulate
GLUT1 function through phosphorylation, membrane an-
choring, or protein expression needs further scrutinized
inspection.

β2AR in Astrocyte Glycogenesis and Lactate
Metabolism

Astrocytes are the primary glycogen stores in the brain, and
40 % glucose taken up by astrocytes enters into glycogen
synthesis (Prebil et al. 2011), which is majorly promoted by
alpha adrenergic receptor (Hertz and Gibbs 2009; Hutchinson
et al. 2011) in physiological conditions. Neurons can also
synthesize glycogen while this activity is inhibited to prevent
the harmful effects of glycogen to these cells. Thus, astrocyte
glycogen is the only glycogen source in the brain and is
necessary to maintain neuronal activity in case of energy
deprivation, hypoxia, ischemia, or too much neuronal activity.
With a low blood glucose concentration or stress condition,
glycogen stored in astrocytes undergoes glycogenlysis in re-
sponse to glucagon or epinephrine, not only providing energy
for it own consumption but also generating glucose or lactate
to supply peripheral axon demand. Binding of β2AR in astro-
cytes either by norepinephrine or isoproterenol leads to cou-
pling the receptor to Gs and activation of adenylyl cyclase
(Fig. 1). The activated adenylyl cyclase increases intracellular
cAMP and promotes glycogenlysis through a PKA-mediated
phosphorylation cascade (Brown et al. 2003, 2005; Dienel et
al. 2007). The PKA activates phosphorylase kinase, which, in
turn, phosphorylates glycogen phosphorylase b at Ser14, rear-
ranges residues region 10-22 into a stable alpha helical con-
formation, increases phosphorylase activity up to 25 %, and
enhances further AMP activation. The activated phosphory-
lase cleaves glycogen at α-1-4 position and substitutes with a
phosphoryl group, generating glucose-1-phosphate (G1P).
The conversion of phosphorylase b to phosphorylase a by
PKA controls the rate-limiting step of glycogen degradation
to monomers (Johnson et al. 1978; Sorg and Magistretti 1991;
Fillenz et al. 1999; Magistretti and Pellerin 1999; Allaman et
al. 2000; Wender et al. 2000; Zaccolo et al. 2006; Brown and
Ransom 2007; Walls et al. 2009).

G1P is isomerized to glucose-6 phosphate (G6P) by
phosphoglucomutase. Most of G6P are converted to pyruvate
via glycolysis as the concentration of glucose-6-phosphatase
is quite low in astrocytes (Dringen and Hamprecht 1993;
Magistretti and Pellerin 1999). Pyruvate can either go through
oxidative phosphorylation in the mitochondria to provide ATP
for astrocytes’ usage or be converted to lactate through anaer-
obic metabolism. The significance of anaerobic metabolism as

energy supply is highlighted by the fact that 50 % glucose
versus 5 % oxygen increase is taken up by astrocytes under
stress condition (Fox et al. 1988). Astrocytes express specific
LDH5 which prefers converting pyruvate to acetate whereas
neurons only have LDH1 that favors the reverse reaction.
There is an astrocyte–neuron lactate shuttle hypothesis
(ANLSH model) that lactate generated by astrocytes
can be provided to adjacent neurons for emergent demands.
Although several computational studies questioned the effi-
ciency of the glucose utilization in the process, experimental
and computational evidence supports the functional impor-
tance of the hypothesis (Jolivet et al. 2010; Mangia et al. 2011;
Bouzier et al. 1998; Genc et al. 2011; Newman et al. 2011).
For example, exogenous lactate serves as the main substrate
for C6 glioma cell oxidative metabolism monitored by
NMR (Bouzier et al. 1998); the MCT inhibitor that blocks the
lactate transport impairs learning memory and in silico
preference of ANLSH model in hypoxia-induced condi-
tion (Bouzier et al. 1998; Genc et al. 2011; Newman et al.
2011).

β2AR has been identified to regulate anaerobic metabo-
lism and lactate production. With human exercise test, it is
found that infusion of epinephrine increases blood lactate
concentration. The nonselective beta-adrenergic receptor
blocker propranolol attenuates oxygen–carbohydrate index
while beta1 adrenergic receptor antagonist metoprolol
has no effect. These results suggest that β2AR not beta1
adrenergic receptor regulates this nonoxidative metabolism
(Seifert et al. 2009). β2AR probably regulates lactate produc-
tion by accelerating glycogenlysis, while it is also possible
that it can directly regulate LDH or lactate transport. It is
reported that both of β2AR agonists isoproterenol and clen-
buterol elevate LDH4 and LDH5 expression in ventricular
myocytes (Kaundal et al. 2007). Whether or not a similar
effect of beta2 adrenergic receptor functions in regulation of
astrocyte specific LDH expression is never examined. It
is also not known whether LDH can be phosphorylated
downstream of β2AR activation, which provide another
level of potential β2AR regulatory mechanism in lactate
production.

The lactate produced by astrocytes will be transported
outside of the astrocytes through monocarboxylate trans-
porters (MCTs). Astrocytes are abundant with MCT1 and
MCT4 while neurons are enriched with MCT2. It is known
that MCT1 and MCT4 prefer to releasing lactate outside
while MCT2 prefer uptaking lactate, which supports the
ANLSH model (Pellerin et al. 1998; Bergersen 2007; Genc
et al. 2011). In neurons, norepinepherine stimulates MCT2
expression through PI3K/Akt pathway. Conversely, the
same stimulation may also increase the expression of
MCT1 or MCT4 in astrocytes through β2AR. Such hypoth-
esis is waiting for further evidences (Chenal and Pellerin
2007).

Fig. 1 Signaling cascade by beta2 adrenergic receptor and its regula-
tion on astrocyte glucose metabolismR
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Dysregulation of β2AR in Astrocyte Glucose Metabolism
Relates to Development of Multiple Sclerosis
and Alzheimer’s Disease

There are signs indicating the association of astrocyte glu-
cose metabolism dysfunction with neuronal diseases, such
as multiple sclerosis, Alzheimer’s disease and Parkinson’s
disease(Steele and Robinson 2012; Alexander 2002;
Freemantle et al. 2006; Maragakis and Rothstein 2006). As
perhaps the most important neuronal transmitter receptor,
β2AR regulates the transition of astrocytes from rest to active
state to respond to acute stress, and to accomplish the fine-
tuning metabolic interactions between astrocytes and around
neurons. In most cases, astrocyte β2AR expression is upregu-
lated in areas of the CNS or optic nerve injury (Mantyh et al.
1995; Hodges-Savola et al. 1996). However, clinical studies
revealed that β2AR is absent in plaques and alba of multiple
sclerosis patients’ postmortem brain sections compared with
nonneurologic disease patients, through both immunohisto-
chemistry and quantitative autoradiography with [3H]-labeled
dihydroalprenolol (De Keyser et al. 1999; Zeinstra et al.
2000). This observation indicates that β2AR may involve in
a rescuing mechanism during neuronal injury, and the lack of
β2AR in astrocyte cells may cause or accelerate multiple
sclerosis development.

Inflammatory cell infiltration, glial cell hyperplasia plaque
formation, axon damage and loss are all involved in multiple
sclerosis development (Frohman et al. 2005; Wilkins and
Scolding 2008). β2AR has been extensively reviewed by
several recent papers for its importance in immune inflamma-
tory astrocyte responses (Laureys et al. 2010). Yet, recent
research found that drugs suppressing the inflammatory re-
sponse, such as IFN-beta and CD52, were unable to prevent
chronic neurological damage in multiple sclerosis (Coles et al.
1999; Kidd et al. 1999; Confavreux et al. 2000). These results
suggest that other mechanisms, such as glucose metabolism
disorder, also play important roles in multiple sclerosis devel-
opment. When hypoglycemia or nerve activity becomes
strong, glycogenolysis in astrocytes plays as an important
energy supplier for axons (Fillenz et al. 1999). Extending
away from their cell bodies, axons depend on local production
of ATP to maintain ion gradients and sustain energy supply. In
the white matter, primary axonal energy metabolism takes
place at abut of astrocytes and Ranvier nodes (Brown 2007).
Lack of β2AR in multiple sclerosis patients causes disorder of
astrocyte glucose transportation and glycogenlysis, and
decreases the energy supply to axons. The energy deprivation
of axons will decrease its ATP synthesis, yielding insufficient
energy to fulfill Na+–K+ pump requirements. The failure of
Na+–K+ pump finally leads to excessive Na+ influx and un-
controlled depolarizations, followed by the opening of
voltage-sensitive Ca2+channels and reverse operation of the
Na+–Ca2+ exchanger, namely intake Ca2+ and the discharge

Na+. The rise in axonal Ca2+ then leads to microtubule break-
down and unwanted apoptosis (Gaskin et al. 1975; Ransom
and Fern 1997; Stys and Jiang 2002). Thus deficiency of
β2AR in astrocytes causes dysregulation of astrocyte glucose
metabolism, and finally contributes to progressive axonal
degeneration and multiple sclerosis development.

Dysregulation of glucose metabolism may also contribute
to neuron degeneration of Alzheimer’s disease. Positron
emission tomography studies demonstrate that glucose up-
take is impaired in Alzheimer’s disease patients (Minoshima
et al. 1994; Freemantle et al. 2006). The observation that
disruption of glucose metabolism precedes the amyloid
plaque formation suggests a relation of astrocytes glucose
metabolism in AD development (Small et al. 2000).

As environmental factors such as acute stress are impor-
tant risk factors of Alzheimer’s disease, there is no doubt
that dysregulation of β2AR has important impact on
Alzheimer’s disease development. It was initially identified
that both β2AR and β1AR showed smaller but significant
(25 %) increases in aggressive Alzheimer’s disease subjects
versus both nonaggressive Alzheimer’s disease patients and
controls (Russo-Neustadt and Cotman 1997). In neurons,
activation of β2AR associates with presenilin-1, enhances γ-
secretase activity, and promotes amyloid plaque formation (Ni
et al. 2006). Conversely, amyloid beta can directly interact
with β2AR, induces PKA-dependent AMPA receptor hyper-
activity, and promotes β2AR internalization and degradation
(Wang et al. 2010, 2011). All these results indicate that hy-
perreactive β2AR relates to AD and β2AR selective blockers
have therapeutic potential for Alzheimer’s disease treatment.
The concept is supported by a recent study that beneficial
effects are seen from β2AR selective antagonist application
with an induced acute stress mouse model (Yu et al. 2010).

The hyperreactive β2AR in neurons seems to contradict
to the observation of hypometabolic glucose state in the
brain of Alzheimer’s disease patients (Wang et al. 2011).
A possible explanation is that acute stress induces signifi-
cant β2AR downregulation in neurons and astrocytes. After
activation, β2AR should be phosphorylated by GRKs or
PKA, binding to beta arrestin and internalized. Some inter-
nalized receptor will be recycled to the cell membrane,
while some will be targeted to lysozyme for degradation.
A superactive receptor may also have rapid inactivation
kinetic, and a long-term stress may induce more receptor
degradation that can account for lowered glucose activity in
the brain of Alzheimer’s disease patients. Till now, two
polymorphisms of β2AR are identified to associate with
sporadic late onset of Alzheimer’s disease. One is G16R,
and the other is Q27E (Yu et al. 2008). The R16 polymor-
phism has enhanced agonist-mediated desensitization, and
E27 polymorphism displays increased agonists signaling in
the vasculature. As β2AR signaling and desensitization are
cell specific and also depend on intracellular regulators’
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abundance, such as PKA, GRK, and arrestin, a thorough
study of the effects of these mutations on β2AR degradation
and desensitization in astrocytes is in need. The impact of
β2AR internalization on glucose metabolism and its relation
to Alzheimer’s disease should also be examined.

Conclusions and Perspective

The “fight or flight hormone receptor” β2AR play important
roles in regulating astrocyte glucose metabolism in acute
stress. Together with other factors, dysregulation of β2AR
will disrupt fine-tuning glucose metabolism in astrocytes
and may contribute to the development of neuronal disease
such as multiple sclerosis and Alzheimer’s disease. In astro-
cytes, β2AR is demonstrated to be an important regulator of
glucose uptake and glycogen degradation. Lack of β2AR in
multiple sclerosis patients may destroy energy supply from
astrocytes to axons, contributing to neuronal degeneration
and multiple sclerosis development. While in Alzheimer’s
disease, hyperactivity of β2AR or desensitized β2AR poly-
morphism is identified in promoting amyloid beta formation
and neuronal degeneration. Studies of β2AR and its poly-
morphism in desensitization and downregulation in astro-
cytes likely elucidate its function relevance, which may
reconcile the contradiction of observed less glucose metabo-
lism with higher β2AR activity in the brain of Alzheimer’s
disease patients.

β2AR has been demonstrated to regulate cellular activity
through coupling to different effectors, such as Gs, Gi, beta
arrestin, NHERF, and presenilin, depending on specific
cellular contexts. Compared with the heart and skeletal
muscle systems, the combination signaling and function of
β2AR in astrocyte cell glucose metabolism are less investi-
gated. The β2AR molecular regulatory target of glucose
transport in astrocytes and whether or not β2AR involves in
lactate transport and aerobic oxidation through regulation of
LDH expression and activity of MCTs await further investi-
gation. Current available tools of B2AR accumulated in the
past three decades of research, including specific receptor
knockout and trans-gene models, multiple ligands with differ-
ent receptor activation properties, and knowledge of the fine-
tuning downstream regulatory mechanisms, provide good
opportunities for a better understanding of its function in
astrocytes glucose metabolism and relation to neuronal dis-
ease. Such understanding will lay out the foundation for
further development and usage of specific beta2 receptor
ligands in preventing or therapeutic treatment of neuronal
disease, such as multiple sclerosis and Alzheimer’s disease.
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