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Abstract Microtubule-associated protein tau is the most
commonly misfolded protein in human neurodegenerative
diseases, where it becomes hyperphosphorylated and
filamentous. Mutations in MAPT, the tau gene, cause
approximately 5% of cases of frontotemporal dementia.
They are frequently accompanied by parkinsonism. The
existence of MAPT mutations has established that dysfunc-
tion of tau protein is sufficient to cause neurodegeneration
and dementia. However, most tauopathies are not inherited
in a dominant manner. The hyperphosphorylated sites are
similar between diseases, but filament morphologies and
tau isoform compositions vary. This is consistent with the
existence of multiple tau conformers and recent findings
have provided experimental support for this concept.
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Historical Overview
Alois Alzheimer reported the case of Auguste Deter in 1907

(Alzheimer 1907). His was the first description of the
combined presence of extracellular plaques and intracellular
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neurofibrillary tangles. Kraepelin subsequently named the
disease after his pupil. In the same year as Alzheimer,
Oskar Fischer described 12 cases of senile dementia with
neuritic plaques (Fischer 1907; Goedert 2009). Four years
later, Alzheimer discovered the association of argyrophilic
intracytoplasmic inclusions and ballooned neurons with
frontotemporal degeneration (FTD), in what is now known
as Pick’s disease (PiD) (Alzheimer 1911). This revealed the
existence of a second type of intraneuronal inclusion and
established that different inclusions can characterize distinct
clinical entities (Fig. 1).

By electron microscopy, plaques and tangles are made of
abnormal filaments. Although Michael Kidd described the
paired helical filament (PHF) as the major structural
component of the neurofibrillary tangle and the abnormal
neurites surrounding plaques in the 1960s (Kidd 1963), its
molecular nature was only uncovered in the 1980s (Brion et al.
1985; Goedert et al. 1988; Wischik et al. 1988). By the early
1990s, it was clear that the PHF is made of all six brain tau
isoforms, each full length and hyperphosphorylated
(Grundke-Igbal et al. 1986; Lee et al. 1991; Goedert et al.
1992a). By this time, tau had also been found in the
pathological deposits of PiD, progressive supranuclear palsy
(PSP), corticobasal degeneration (CBD) and argyrophilic
grain disease (AGD) (Goedert et al. 2006). In contrast to
Alzheimer’s disease (AD), the abnormal deposits of PiD, PSP,
CBD and AGD are found in both nerve cells and glial cells
(Komori 1999). Based on its involvement in many maladies,
it is now clear that tau is the most commonly misfolded
protein in human neurodegenerative diseases (Table 1).

Tau Isoforms

Tau is a microtubule-associated protein (MAP) that is
believed to stabilise microtubules and to promote micro-
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Fig. 1 The abnormal deposits that Alzheimer described. a Neuritic
plaques made of (3-amyloid (blue) and neurofibrillary tangles made of
tau (brown) in Alzheimer’s disease. b Pick bodies and neurites made
of tau (brown) in Pick’s disease

tubule assembly. Of the neuronal MAPs, it is one of the
most abundant. Six tau isoforms are expressed in the adult
human brain by alternative mRNA splicing from a single
MAPT (Goedert et al. 1989a, b; Andreadis et al. 1992). They
differ from each other by the presence or absence of 29- or
58-amino acid inserts located in the amino-terminal half and
an additional 31-amino acid repeat in the carboxy-terminal
half (Fig. 2a). Inclusion of the latter produces the three
isoforms with four repeats each; the other three isoforms
have three repeats each. The repeats and some adjoining
sequences constitute the microtubule-binding domains of tau
(Ennulat et al. 1989; Lee et al. 1989). Similar levels of three-
and four-repeat tau isoforms are expressed in adult human
cerebral cortex (Goedert and Jakes 1990).

Assembly of Tau

Tau assembles into filaments through its tandem repeat
region, with the amino-terminal half and the carboxy
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Table 1 Diseases in which tau inclusions have been described

Alzheimer’s disease

Amyotrophic lateral sclerosis/parkinsonism-dementia complex
Argyrophilic grain disease

Chronic traumatic encephalopathy

Corticobasal degeneration

Diffuse neurofibrillary tangles with calcification

Down’s syndrome

Familial British dementia

Familial Danish dementia

Frontotemporal dementia and parkinsonism linked to chromosome 17
caused by MAPT mutations

Gerstmann—Strdussler—Scheinker disease
Guadeloupean parkinsonism

Mytotonic dystrophy

Niemann—Pick disease, type C

Non-Guamanian motor neuron disease with neurofibrillary tangles
Pantothenate kinase-associated neurodegeneration
Pick’s disease

Postencephalitic parkinsonism

Prion protein cerebral amyloid angiopathy
Progressive subcortical gliosis

Progressive supranuclear palsy

SLCY9AG6-related mental retardation

Subacute sclerosing panencephalitis

Tangle-only dementia

White matter tauopathy with globular glial inclusions

terminus forming the “fuzzy coat” of the filament
(Wischik et al. 1988). Following assembly, a proportion
of tau becomes truncated at the amino terminus, which
appears to be necessary for its ubiquitination (Morishima-
Kawashima et al. 1993). Following the death of tangle-
bearing cells, the pathological material remains in the
extracellular space in the form of the so-called “ghost
tangles” which consist largely of the ubiquitinated repeat
region of tau. It follows that in AD, the ubiquitination of
tau filaments is a late, secondary event.

Methods have been developed for forming PHF-like
filaments from purified full-length tau (Goedert et al. 1996;
Pérez et al. 1996; Kampers et al. 1996). They are based on
the interaction of non-phosphorylated tau protein with
negatively charged substances, such as sulphated glycosa-
minoglycans and RNA. The characteristics of these
filaments closely resemble those of tau filaments from AD
brain. However, the mechanisms causing soluble tau protein
to assemble into insoluble filaments in brain cells remain to
be discovered.
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Fig. 2 a MAPT and the six tau
isoforms expressed in adult
human brain. MAPT consists of
16 exons (E). Alternative
mRNA splicing of E2 (red), E3
(green) and E10 (yellow) gives
rise to the six tau isoforms
(352441 amino acids). The
constitutively spliced exons (E/,
E4, E5, E7, E9, Ell, EI2 and
E13) are indicated in blue. EO,
which is part of the promoter,
and E14 are non-coding (white).
E6 and E8 (violet) are not
transcribed in human brain. E4a
(orange) is only expressed in the
peripheral nervous system. The
repeats of tau (R/—R4) are
shown, with three isoforms
having four repeats each (4R)
and three isoforms having three
repeats each (3R). Each repeat is
31 or 32 amino acids in length.
The exons and introns are not
drawn to scale. b Mutations in
MAPT in frontotemporal
dementia and parkinsonism
linked to chromosome 17
(FTDP-17T). Thirty-seven
coding region mutations in E1,
E9, E10, E11, E12 and E13

of MAPT and seven intronic
mutations flanking E10

are shown

A

Exons: 0

RS5H, R5L4H

Hyperphosphorylation of Tau

The abnormal hyperphosphorylation that characterizes
PHF-tau appears to precede filament assembly and renders
PHF-tau unable to interact with microtubules (Bramblett
et al. 1993; Yoshida and Ihara 1993). It is common to all
diseases with tau filaments. Much effort has gone into the
mapping of phosphorylation sites in normal and abnormal
tau and the identification of candidate protein kinases and
phosphatases. In particular, proline-directed kinases, pro-
tein kinases that phosphorylate the KxGS motifs in the
microtubule-binding repeat region and protein phosphatase
2A have been implicated in the phosphorylation and
dephosphorylation of tau protein (Drewes et al. 1992,
1997; Hanger et al. 1992; Goedert et al. 1992b; Kobayashi
et al. 1993). It remains to be seen if the abnormal
hyperphosphorylation of tau is either necessary or suffi-
cient for filament assembly.
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Isoform Composition of Tau Filaments

The existence of filamentous deposits made of hyper-
phosphorylated tau raises the question why there are
multiple tauopathies rather than a single disease. The
answer to this question may reside in the fact that different
brain regions and, to some extent, distinct cell types, are
affected in the human tauopathies. These differences
correlate to some extent with the presence of specific
tau isoforms in the abnormal filaments. Thus, all six
brain isoforms are present in the tau filaments of AD
(Goedert et al. 1992a). In the process leading to AD,
neuronal tau inclusions appear first in the locus coeruleus
from where they appear to spread to the transentorhinal
cortex, the hippocampal formation and the neocortex
(Braak and Braak 1991; Braak and Del Tredici 2011). In
contrast to AD, four-repeat isoforms are characteristic of
the tau filaments of PSP and CBD (Flament et al. 1991;
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Ksiezak-Reding et al. 1994; Spillantini et al. 1997), and
three-repeat isoforms characterize the tau filaments of PiD
(Delacourte et al. 1996). These differences in isoform
composition are also reflected by the presence of distinct
tau filament morphologies (Crowther and Goedert 2000).
This is reminiscent of mammalian and yeast prions, for
which different strains have been described, based on the
existence of separate conformers of assembled proteins
(Colby and Prusiner 2011).

Tauopathy can be transmitted experimentally (Clavaguera
et al. 2009). Injection of brain extract from human mutant
P301S tau-expressing mice (with silver-positive inclusions)
into the brain of human wild-type four-repeat tau-expressing
mice (without silver-positive inclusions) induced the assem-
bly of wild-type tau into silver-positive inclusions and the
spreading of pathology from the site of injection to
neighbouring brain regions. The induction of tau pathology
was dependent on the presence of insoluble human P301S
tau. In parallel, the intercellular transfer of tau inclusions has
been demonstrated in cell culture (Frost et al. 2009). This
ongoing work has revealed the existence of mechanisms
resembling those by which prions spread through the
nervous system (Goedert et al. 2010). The pattern of
spreading pathology raises the possibility that the disease
process may initiate in a single nerve cell, with implications
for sporadic disease. If disease initiates at one site and
spreads by propagation, it may be due to stochastic rather
than predictable events, making it impossible to predict with
certainty who will be affected by sporadic tauopathy.

Genetics

Molecular studies gave a complete description of the PHF
and provided important clues regarding the mechanisms
underlying its formation. However, they did not say
anything about the relevance of tau dysfunction for the
neurodegenerative process. As a result, tau-positive inclu-
sions were frequently considered to be nothing more than
epiphenomena of little or no consequence. What was
required was genetic evidence linking dysfunction of tau
protein to neurodegeneration and dementia. In 1994, a
dominantly inherited form of FTD with parkinsonism was
linked to chromosome 17q21-22, a region that contains
MAPT (Wilhelmsen et al. 1994). This was followed by the
identification of additional forms of FTD linked to this
region, resulting in the denomination “frontotemporal
dementia and parkinsonism linked to chromosome 17”
(FTDP-17) for this class of disease. Some cases of FTDP-
17 were found to exhibit tau-positive inclusions in either
nerve cells or in both nerve cells and glial cells (Spillantini
et al. 1998a). In 1998, the first mutations in MAPT were
reported in what is now known as FTDP-17T (Poorkaj et al.
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1998; Hutton et al. 1998; Spillantini et al. 1998b). By June
2011, 44 pathogenic MAPT mutations had been identified
(Fig. 2b). Not all cases of FTDP-17 are accounted for by
MAPT mutations. Since 2006, it has been known that
FTDP-17 can be caused by mutations in either MAPT or the
progranulin gene (Baker et al. 2006; Cruts et al. 2000).

MAPT mutations account for about 5% of cases of FTD
and are believed to cause disease through a gain of toxic
function mechanism. Most mutations are located in
exons 9-12 (which encode the repeats) and the adjacent
introns. Mutations fall into two largely non-overlapping
groups: those with a primary effect at the protein level
and those influencing the alternative splicing of tau pre-
mRNA. Mutations acting at the protein level change or
delete single amino acids in tau, reducing the ability of
tau to interact with microtubules (Hasegawa et al. 1998;
Hong et al. 1998). This partial loss of function of tau may
be necessary for causing its abnormal aggregation. Some
mutations also promote the assembly of tau into filaments
(Nacharaju et al. 1999; Goedert et al. 1999). Mutations
with a primary effect at the RNA level are intronic or
exonic and increase the alternative mRNA splicing of
exon 10 of MAPT. This changes the ratio of three- to four-
repeat isoforms, resulting in the relative overproduction
of four-repeat tau and the formation of filamentous
inclusions made of four-repeat tau (Hutton et al. 1998;
Spillantini et al. 1998b).

Cases with MAPT mutations exhibit abundant filamen-
tous inclusions made of hyperphosphorylated tau in either
nerve cells or in both nerve cells and glial cells. Known
mutations do not give rise to additional phosphorylation
sites, implying that hyperphosphorylation of tau is not the
primary event in FTDP-17T. Clinical and neuropathological
phenotypes similar or identical to those of PiD, PSP, CBD
and AGD have been described (Ghetti et al. 2011). A given
mutation can lead to different clinical syndromes in an
individual family. Thus, mutation P301S in exon 10 of
MAPT caused behavioural-variant FTD in a father and CBD
in his son (Bugiani et al. 1999), supporting the view that
FTD and CBD are part of the same disease spectrum
(Kertesz et al. 2000).

Haplotypes H1 and H2 characterize MAPT in popula-
tions of European descent. They result from a 900-kb
inversion/non-inversion (H1/H2) polymorphism (Stefansson
et al. 2005). Because of the suppression of HI/H2
recombination and normal inter-H1 recombination, there
are multiple H1 subhaplotypes but only one common H2
haplotype. The latter protects against PSP. Inheritance of the
HI1 haplotype is a risk factor for PSP and CBD (Williams
and Lees 2009). Of the most common H1 subhaplotypes,
Hlc is associated with disease risk, which localises to a
regulatory region in intron 0 of MAPT and which can be
explained by one single-nucleotide polymorphism (rs242557)
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(Pittman et al. 2005; Rademakers et al. 2005). This has been
confirmed in a genome-wide association study of PSP, which
also implicated proteins involved in vesicle trafficking,
white matter function and the unfolded protein response
(Hoglinger et al. 2011). The association of H1 with PSP
had a stronger odds ratio than that for the ApoE €3/¢4
genotype as a risk locus for AD.

Heterozygous microdeletions in the chromosomal region
which defines the HI and H2 haplotypes give rise to mental
retardation, hypotonia and a characteristic face (Koolen et al.
2006; Sharp et al. 2006; Shaw-Smith et al. 2006). Besides
MAPT, the deleted region comprises five other genes
(corticotrophin-releasing hormone receptor 1, intramembrane
protease 5, NP 689679.1, NP 787078.1 and KIAA1267).
Deletions occur on the H2 haplotype through low-copy
repeat-mediated non-allelic homologous recombination.

An association has also been described between the H1
haplotype and idiopathic Parkinson’s disease (PD) (Pastor
et al. 2000; Simon-Sanchez et al. 2009), a disease without
tau inclusions. Unlike PSP, the association with PD is
limited to the H1/H2 inversion polymorphism, without
involvement of the H1 subhaplotypes (Vandrovcova et al.
2009). The elevated disease risk conferred by the Hlc allele
appears to promote MAPT transcription and incorporation
of exon 10, resulting in increased levels of four-repeat tau
(Myers et al. 2007).

Future Directions

Much has been learned about the tau inclusions that
characterize human neurodegenerative diseases. In FTDP-
17T, a toxic property of tau causes disease. The same may
be true of other diseases with tau inclusions. Despite these
advances, major questions remain. It is, thus, important to
know if the inclusions contribute to pathogenesis or if they
are innocent or even beneficial bystanders. A related
question concerns the molecular events that lead from
conformational changes in tau to the spreading of pathology,
neuronal dysfunction and cell death. Answers to these
questions may well lead to the development of mechanism-
based therapeutic strategies for the tauopathies (Gozes 2010;
Morris et al. 2011).
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