
Immunotherapy for Tauopathies

Jiaping Gu & Einar M. Sigurdsson

Received: 15 April 2011 /Accepted: 7 June 2011 /Published online: 8 July 2011
# Springer Science+Business Media, LLC 2011

Abstract Pathological tau protein is found in Alzheimer's
disease and related tauopathies. The protein is hyper-
phosphorylated and/or mutated which leads to aggregation
and neurotoxicity. Because cognitive functions correlate
well with the degree of tau pathology, clearing these
aggregates is a promising therapeutic approach. Studies
pioneered by our laboratory and confirmed by others have
shown that both active and passive immunizations targeting
disease-related tau epitopes successfully reduce tau aggre-
gates in vivo and slow or prevent behavioral impairments in
mouse models of tauopathy. Here, we summarize recent
advances in this new field.
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Introduction

In the past decade, immunotherapy has become very
attractive for clearing abnormal protein aggregates in

various diseases. A majority of these studies has focused
on Alzheimer's disease (AD), which is the most common
form of dementia affecting the elderly population. Two
major pathological hallmarks of AD brains are extracellular
senile plaques containing amyloid-β (Aβ) deposits and
intracellular neurofibrillary tangles (NFTs) containing
aggregated tau proteins. Most AD immunotherapy studies
have focused on targeting Aβ because its initial pathology
may precede tau lesions. Both active and passive immuniza-
tions to clear Aβ have shown encouraging results in animal
studies (Schenk et al. 1999; Bard et al. 2000; Janus et al.
2000; Morgan et al. 2000; Sigurdsson et al. 2001, 2004;
DeMattos et al. 2001; Das et al. 2003; Lemere and Masliah
2010). These approaches successfully reduce Aβ burden
in various transgenic mouse models and improve cogni-
tive functions. The promising results in mouse studies
led to a series of clinical trials in AD patients (reviewed
in Lemere and Masliah 2010). However, less robust
effects have been observed in these human studies but it
should be noted that many of these trials are in their early
stages focusing on safety. In the first active immunization
trial, AN1792, clearance of Aβ plaques from the brain did
not appear to slow the progression of dementia (Holmes et
al. 2008). The two most advanced passive immunization
trials using humanized monoclonal antibodies, bapineuzu-
mab from Elan and solanezumab from Lilly, have also
found very limited effects on prevention of disease
progression (Kerchner and Boxer 2010; Siemers et al.
2010). It may be too late to start Aβ immunotherapy once
cognitive impairments are pronounced. However, the
outcome of larger phase III trials with these Aβ antibodies
is eagerly awaited, as those should be able to detect more
subtle benefits.

The other main target for immunotherapy in AD is the
tau protein, and it is the key target in other tauopathies. It is
mostly expressed in neurons and normally binds to and
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stabilizes microtubules and thereby promotes axonal trans-
port. Abnormal tau protein forms aggregates, leading to the
formation of paired helical filaments (PHFs), which are the
major components of NFTs. These aggregates are implicated in
the pathology of a variety of neurodegenerative diseases
collectively called tauopathies. In AD, tau is not mutated but
hyperphosphorylated, while various mutations of tau proteins
are known to cause frontotemporal dementia (FTD) (Goedert
and Jakes 2005). The mutations and/or hyperphosphorylation
of tau promote its aggregation into PHFs and eventually
NFTs. It is unclear which type of aggregate is the most toxic
but it is reasonable to expect the smaller aggregates to be
more toxic based on their larger surface area compared to
NFTs. The overall effect is disruption of microtubule integrity
and axonal transport that leads to synaptic loss and eventually
neuronal death. Importantly, tau pathology correlates better
than amyloid-β pathology with cognitive impairments in
patients (Wilcock and Esiri 1982; Arriagada et al. 1992).
Considering that tau and Aβ pathologies may have synergetic
effects resulting in neurodegeneration (Frautschy et al. 1991;
Sigurdsson et al. 1996, 1997; Gotz et al. 2001; Lewis et al.
2001; Ribe et al. 2005; Pearson and Powell 1989; Delacourte
et al. 2002; Roberson et al. 2007), tackling both pathologies is
likely to lead to a more efficacious treatment.

A few tau immunotherapy studies have been reported
recently showing positive effects of such approaches in animal
studies, suggesting its feasibility for treating tauopathies. We
will briefly review these recent developments and mention as
well more preliminary findings reported at various conferences.

Animal Studies of Tau Immunotherapy

In 2007, our laboratory published the first study on an
active immunization approach targeting pathological tau
proteins in a tangle mouse model (JNPL3) that over-
expresses human tau protein with the P301L mutation
(Asuni et al. 2007). This mutation was originally identified
in FTD patients as a causative factor in the disease, and the
homozygous mice we employed exhibit pre-tangles, NFTs,
neuronal loss, and motor deficits (Lewis et al. 2000). The
functional impairments are thought to be related to tau
aggregation in the spinal cord, brain stem, and perhaps the
motor cortex as well. As an immunogen, we selected a
highly immunogenic 30 amino acid fragment (Tau379-408)
of the tau protein containing two phosphorylated sites
(P-Ser396, 404), which are prominent in tauopathies. The mice
elicited a robust immune response against the immunogen,
administered in alum adjuvant, and the antibodies purified from
the immunized mice recognized tau aggregates on brain
sections from patients, suggesting their selectivity for
pathological tau. Immunized mice exhibited significantly less
tau pathology in multiple brain regions, including motor

cortex, dentate gyrus, and brain stem. Likewise, biochemical
analysis of the left hemisphere showed a shift from insoluble
tau to soluble tau. Importantly, the treated animals performed
significantly better in tests of motor function than control
mice, and there was a good correlation between tau pathology
and performance on the tasks. Detailed cognitive assessment
could not be performed in these animals as most of those tests
require extensive maze navigation and, therefore, intact motor
abilities. Nevertheless, this study demonstrated the efficacy
and feasibility of tau immunotherapy.

Subsequently, in 2010, Boimel and colleagues reported
on the beneficial effects of a similar active tau immunization
approach (Boimel et al. 2010). In their study, an analogous
transgenic mouse model was used, which expresses a double
mutated tau (K257T/P301S). They used as immunogen a
mixture of three phosphorylated tau segments, Tau 195-213
(P-Ser202, 205), Tau 207-220 (P-Thr212, Ser 214), and
Tau 224-238 (P-Ser 238), which are also prominent in
tauopathies. A substantial immune response was observed, and
the antibodies detected pathological tau protein. Their phospho-
tau approach also successfully reduced tau aggregates in
multiple brain regions, including cortex, hippocampus, and
brain stem. Effects of the therapy on tau fractions on Western
blots or on animals' function were not assessed. Interestingly,
decreased immunohistochemical detection of the lysosomal
proteases cathepsin D and L was observed in the immunized
mice, which perhaps may be a consequence of diminished
tau pathology.

As mentioned above, the major disadvantage of the
JNPL3 model is that their tangle-related motor impairments
make it impossible to thoroughly assess their cognitive
status, and if it is impacted by tau immunotherapy. To look
into this important issue, we considered first the htau
model, which overexpresses all six isoforms of human tau
on a mouse tau knockout background. It was previously
described to develop AD-like tauopathy, with hyperphos-
phorylated tau proteins forming aggregates in cortical and
hippocampal regions (Andorfer et al. 2003). At the time it
was unclear if these mice would develop memory impair-
ments but recent findings indicate that they indeed do
(Polydoro et al. 2009). Compared to the homozygous
JNPL3 model, the htau mice have a later age of onset and
slower progression of tau pathology which nicely follows a
similar timeline as in AD but increases the length and cost
of therapeutic studies. To address this issue, our laboratory
developed a novel transgenic tauopathy model, htau/PS1,
by crossing htau mice with presenilin-1 (PS1) mutant
M146L mice to generate htau/PS1 model on a mouse tau
knockout background. The htau/PS1 mice exhibit earlier
onset and faster progression of tau pathology (Boutajangout
et al. 2010b), and we are studying the mechanism behind
this phenomenon. As importantly, these mice develop
substantial cognitive impairments without motor deficits
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and, therefore, are ideally suited to assess cognitive benefits
of tau immunotherapy. The same immunogen, Tau 379-408
(P-Ser396, 404), as in the JNPL3 study elicited a strong
antibody response in the htau/PS1 model without any
evident detrimental effects. Like in the JNPL3 model, the
tau immunotherapy in the htau/PS1 model resulted in
reduced tau pathology on brain sections and Western blots.
Furthermore, three cognitive tests, radial arm maze, object
recognition, and closed field symmetrical maze, all showed
clearly that the therapy completely prevented cognitive
impairments in this model. A good correlation among
antibody titer, the amount of tau aggregates in the brain,
and performance in cognitive test was also demonstrated in
this study, suggesting that the prevention of memory
deficits was directly related to antibody-mediated clearance
of tau aggregates (Boutajangout et al. 2010b).

These two recent studies by us and Rosenmann's group
further support the efficacy and feasibility of active
immunization targeting pathologically hyperphosphorylated
tau proteins. Several other groups are also exploring tau
immunotherapy, with preliminary findings reported at
recent conferences. Novak reported at the 2009 and 2010
ICAD conferences in Vienna and Hawaii that vaccination
with a recombinant misfolded truncated tau protein or an
unspecified phospho-tau immunogen, respectively, reduced
tau pathology and delayed behavioral impairments in a rat
tangle model (Novak 2009, 2010). Theunis and colleagues
presented at the 2011 AD/PD meeting in Barcelona that
liposome-based vaccines carrying an unspecified phospho-
tau epitope lead to a strong and specific antibody response
against phosphorylated tau protein in P301L mice, with
preliminary data suggesting therapeutic efficacy (Theunis
et al. 2011) Liposome-based Aβ vaccine had previously
been reported to elicit antibody response and restore
memory deficits in APP/PS1 mice (Muhs et al. 2007). At
the same conference, Troquier and colleagues showed that
active tau immunization with a tau fragment phosphory-
lated at position 422 (P-Ser422) reduced tau pathology and
improved memory in THY-Tau22 transgenic mouse model
(Troquier et al. 2011). These mice express double mutated
human tau (G272V/P301S) under a Thy1.2 promoter and
have tau pathology and memory deficits without motor
dysfunction (Schindowski et al. 2006). A third report at
this meeting by Higuchi indicated that an unspecified form
of tau vaccination slowed progression of tau pathologies in
transgenic tangle mice (Higuchi 2011).

Passive immunization with monoclonal tau antibodies is
also being employed. Our laboratory initially studied
passive tau immunization with PHF1, a mouse monoclonal
that recognizes an epitope encompassing P-Ser396, 404
(Otvos et al. 1994), which is within the region we used as an
immunogen in our reports (Asuni et al. 2007; Boutajangout
et al. 2010b). At ICAD 2010, we showed that JNPL3 mice

treated intraperitoneally with PHF1 have reduced tau
pathology and improved motor function compared to
controls (Boutajangout et al. 2010a), and a manuscript based
on these findings was recently published (Boutajangout et al.
2011). Subsequently, Kayed and colleagues demonstrated at
the 2010 SFN meeting in San Diego that a novel tau
oligomer-specific monoclonal antibody, administered by the
same route in the same JNPL3 model, reduced tau oligomer
load and improved motor test performance (Castillo et al.
2010). Further support for the passive approach came at the
2011 AD/PD meeting, at which Morgan and colleagues
indicated that intracerebral injection of tau-5, a monoclonal
antibody against a non-phosphorylated epitope in the middle
region of tau, effectively and acutely reduced intracellular
tau pathology (Morgan et al. 2011).

Safety of tau immunotherapy has not been thoroughly
studied but is of a concern as with any other self
immunogen, particularly considering the adverse reactions
in the Aβ immunotherapy trials (Orgogozo et al. 2003;
Kerchner and Boxer 2010). In our two active studies and
the PHF1 passive study, we have not observed any obvious
side effects (Asuni et al. 2007; Boutajangout et al. 2010a, b,
2011). Importantly, astrogliosis, which is a sensitive marker of
neurotoxicity, does not seem to be increased in association
with the clearance of the tau aggregates in these studies.
However, Rosenmann and colleagues examined previously if
injections of recombinant tau protein can induce an autoim-
mune response. Indeed, it appeared to lead to delayed
neurological deficits when administered with two strong
adjuvants (Rosenmann et al. 2006). As stated in the article,
the objective of that study was to assess if tau could induce a
neuroautoimmune disorder in mice. In their more recent
study, which is similar to our approach, mice immunized
with phospho-tau epitopes using the same strong adjuvants
to assess safety did not show such adverse reactions (Boimel
et al. 2010). It is conceivable that phospho-tau epitopes raise
tauopathy-specific/selective immune responses and do not
cause autoimmune-related toxic reactions. However, the
difference in the adjuvant used in these studies should also
be noted. Rosenmann's group used complete Freund's
adjuvant (CFA) and pertussis toxin (PT), which are very
strong adjuvants and prohibited in human use. An Aβ active
immunization study using CFA and PT as adjuvants also
found encephalomyelitis in mice (Furlan et al. 2003). The
strong adjuvants, which elicit cytotoxic T-cell response,
could be at least in part responsible for the adverse reactions.
It is encouraging that none were seen when the immunogen
consisted of phospho-epitopes of tau (Boimel et al. 2010).
On the other hand, we have exclusively used milder alum
adjuvant in our active tau immunization studies, which
promotes antibody response over cytotoxic T-cell response.
The choice of adjuvant needs to be carefully considered to
maintain the safety of tau immunotherapy.
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Mechanisms of Antibody-Mediated Clearance

For tau immunotherapy to work, the antibodies have to get
into the brain. It is known that a small percentage (about
0.1%) of circulating IgG can enter the central nervous
system, presumably mainly through the circumventricular
organs (Nerenberg and Prasad 1975; Broadwell and
Sofroniew 1993). Moreover, the blood–brain barrier
(BBB) is thought to be compromised in AD and other
neurodegenerative diseases (Bell and Zlokovic 2009),
which should lead to greater access of antibodies into the
brain. Importantly, our study in JNPL3 tauopathy mice
found that intracarotid injected FITC-labeled tau antibodies
entered the brain and bound to tau aggregates within
neurons (Asuni et al. 2007). Interestingly, FITC-labeled
antibodies were only detected in the brains of transgenic
mice but not wild-type mice, indicating that these tauopathy
mice have a defective BBB. Aβ immunotherapy studies
have also demonstrated the ability of antibodies to cross
BBB and bind to Aβ deposits in transgenic mice (Bard et
al. 2000; Wang et al. 2011).

Although tau is generally an intracellular protein,
extracellular ghost tangles are well known in tauopathies
and the tau protein is detected as well in cerebrospinal fluid.
Importantly, extracellular tau aggregates appear to be taken
up into cells/neurons, induce intracellular tau misfolding
and thus spread tau pathology throughout the brain (Frost
et al. 2009; Clavaguera et al. 2009). Once entering the
central nervous system, tau antibodies would readily bind
to extracellular aggregates and trigger microglia-related
clearance. The removal of extracellular tau aggregates
would then presumably halt the propagation of tau
pathology. Concurrently, since tau aggregates are likely
to be secreted by neurons, their rapid extracellular
clearance by antibodies may facilitate further secretion
and thereby indirectly clear intracellular tau aggregates.
There is also evidence that neurons can endocytose
antibodies via various receptors which have affinity for
the Fc fraction of IgG (for review, see Sigurdsson 2009).
Antibody entry into cells, including neurons, is likely to be
an integral and important component of the immune
system. This pathway will allow antibodies to neutralize
intracellular pathogens such as viruses and to pass through
tissue to the site of insult. With tau immunotherapy, we are
taking advantage of this endogenous pathway. Upon
internalization into neurons, we have detected antibodies
co-localized with tau aggregates and endosomal/lysosomal
markers (Asuni et al. 2007; Krishnamurthy et al. 2010).
Furthermore, Rosenmann's group detected less cathepsin
D and L immunoreactivity in the brain of mice immunized
with phospho-tau epitopes (Boimel et al. 2010), which
may be a consequence of the clearance of tau aggregates
as we alluded to earlier. These findings are consistent with

reports that suggested the involvement of this pathway in
antibody-mediated clearance of intracellular Aβ and α-
synuclein (Masliah et al. 2005; Tampellini et al. 2007).
While these studies point to the importance of the
endosomal/autophagic/lysosomal pathways in antibody-
mediated clearance of intracellular aggregates, the proteosome
pathway may participate in antibody-mediated clearance of
soluble misfolded proteins. Recently, a novel intracellular
antibody receptor was described (Mallery et al. 2010), tripartite
motif-containing 21, which has relatively high affinity for IgG
and IgM and interestingly targets antibody–antigen to the
proteosome for degradation. Hence, there are at least three
potential pathways within the brain for antibody-mediated
clearance of pathological tau.

Conclusion

Overall, immunotherapy targeting tau has a great potential
as treatment for tauopathies. As the field is novel, several
questions remain. Dissecting the mechanism and epitope
specificity of antibody-mediated clearance of tau aggregates
within and outside cells will provide valuable information
to improve the efficacy and safety of this promising
approach.
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