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Abstract
Purpose Stomach and esophageal cancers are among the highest mortality from cancers worldwide. Microbiota has an 
interplaying role within the human gastrointestinal (GI) tract. Dysbiosis occurs when a disruption of the balance between 
the microbiota and the host happens. With this narrative review, we discuss the main alterations in the microbiome of gas-
troesophageal cancer, revealing its potential role in the pathogenesis, early detection, and treatment.
Results Helicobacter pylori plays a major role the development of a cascade of preneoplastic conditions ranging from 
atrophic gastritis to metaplasia and dysplasia, ultimately culminating in gastric cancer, while other pathogenic agents are 
Fusobacterium nucleatum, Bacteroides fragilis, Escherichia coli, and Lactobacillus. Campylobacter species (spp.)’s role in 
the progression of esophageal adenocarcinoma may parallel that of Helicobacter pylori in the context of gastric cancer, with 
other esophageal carcinogenic agents being Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. Moreover, 
gut microbiome could significantly alter the outcomes of chemotherapy and immunotherapy. The gut microbiome can be 
modulated through interventions such as antibiotics, probiotics, or prebiotics intake. Fecal microbiota transplantation has 
emerged as a therapeutic strategy as well.
Conclusions Nowadays, it is widely accepted that changes in the normal gut microbiome causing dysbiosis and immune 
dysregulation play a role gastroesophageal cancer. Different interventions, including probiotics and prebiotics intake are 
being developed to improve therapeutic outcomes and mitigate toxicities associated with anticancer treatment. Further 
studies are required in order to introduce the microbiome among the available tools of precision medicine in the field of 
anticancer treatment.
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Introduction

Stomach and esophageal cancers are among the highest 
mortality from cancers worldwide, ranking third and sixth, 
respectively [1]. Esophageal cancer can develop as a result 
of uncontrolled gastroesophageal reflux disease (GERD). 
Approximately 7% of patients with reflux experience a 
change in the esophageal epithelium from squamous to 
columnar, leading to Barrett’s esophagus (BE). BE is a pre-
malignant condition which carries a risk of progression to 
esophageal adenocarcinoma (EAC). EAC and squamous 
cell carcinoma (ESCC) are the two most common forms of 
esophageal cancers [2–4].

Other identified risk factors that may cause the devel-
opment of BE and EAC include male sex, advanced age, 
obesity, and cigarette smoking [5]. The gut microbiota 
has been shown as an independent factor that contributes 
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to the development of GERD, BE, and EAC. Microbi-
ota plays a mutualistic role within the human GI tract, 
influencing numerous physiological mechanisms such as 
digestion, regulating metabolism, drug metabolism, vita-
min synthesis, and immune system development and helps 
maintain the integrity of the esophageal mucosal barrier. 

Dysbiosis occurs when there is a balance disruption 
between the microbiota and the host. Dysbiosis, through 
a complex series of mechanisms, can lead to inflamma-
tion, genomic instability, mutations, proliferative signal-
ing, and immune system evasion [2, 6–8]. Dysbiosis can 
be attributed to a variety of factors, including inadequate 
nutrition, stress, environmental factors (e.g., smoking and 
physical inactivity), or specific diseases like inflammatory, 
autoimmune, and chronic conditions. Additionally, drug 
usage (e.g., antibiotics and anticancer drugs) and various 
medical and surgical procedures may also play a role in the 
development of dysbiosis [9, 10].

Dysbiosis has been implicated in other GI tract cancers, 
including gastric cancers. One of the most common risk 
factors for developing gastric cancer (GC) is infection with 
Helicobacter pylori (H. pylori). In many cases, H. pylori 
sets off an inflammatory process which goes from atrophic 
gastritis to intestinal metaplasia and, finally, gastric cancer 
[11–13]. Other risk factors include older age, male gender, 
environmental factors such as smoking, alcohol, and con-
sumption of salty and smoked foods [11, 14]. In addition 
to the role of H. pylori, it has been shown that the oral and 
stomach microbiome also has an important function in the 
pathogenesis of GC [15]. In fact, several studies demon-
strate a reduction in diversity and an alteration of micro-
bial composition in patients with GC compared to healthy 
patients [16].

How the Microbiome Can Predispose 
to Tumor Formation

The gut microbiome has been recognized not only as a 
critical player in maintaining homeostasis but also as 
a potential contributor to different diseases, including 
cancer. The mechanisms by which the microbiome can 
influence tumorigenesis are multifaceted and intricate, 
ranging from immune modulation to direct genotoxic 
effects. Despite ongoing explorations, the direct influ-
ence of the gut microbiota on the pathogenesis of can-
cers remains less definitively established. Within the 
scope of this review, our objective is to dissect and scru-
tinize the array of mechanisms through which the gut 
microbiota may influence the predisposition to gastroe-
sophageal neoplasms.

Key Pathways and Mechanisms of Carcinogenesis 
Mediated by Gut Microbes

Alteration in the microbiota’s diversity and composition 
is often viewed to be a key factor in the etiology of can-
cer [17]. Preclinical studies performed using germ-free 
mice models showed how the gut microbiome may cause 
cancer development and progression through different 
mechanisms [18, 19]. Three primary mechanisms by 
which dysbiosis contributes to carcinogenesis are chronic 
inflammation, immune dysregulation, and the effects of 
microbial metabolites.

Chronic Inflammation as a Carcinogenic Driver

Chronic inflammation is recognized as a catalyst for can-
cer, promoting tumor progression, invasion, and metasta-
sis. It can directly cause DNA damage in epithelial cells 
through aberrant DNA methylation [20]. Gut dysbiosis 
can drive cancer formation; it causes epithelial repro-
gramming and induces local inflammation. In turn, it 
leads to local induction of interleukin (IL)-6 secretion 
and proliferation of intestinal epithelial cells, ultimately 
leading to tumor formation [21]. Elevations in cytokines 
such as IL-1, IL-6, IL-10, and tumor necrosis factor-alpha 
(TNF-α) contribute to cancer development through a tri-
partite process: (I) activation of pathways like nuclear 
factor kappa-light-chain-enhancer of activated B cells 
(NF-κB), Wnt signaling, and mitogen-activated protein 
kinases (MAPK); (II) inhibition of apoptosis; and (III) an 
increase in oxidative stress [22]. Inflammatory mediators 
may also downregulate oncosuppressor genes, such as by 
inducing P53 mutations, and activate oncogenes, includ-
ing KRAS mutations [23, 24].

Dysbiosis and Immune Dysregulation  
in Tumor Formation

The innate and adaptive immune systems play an important 
role in managing the colonization niche of the intestinal 
microbiota, employing mechanisms that include the pro-
duction of antimicrobial peptides and IgA antibodies [25]. 
Within the gut mucosa, the T and B cells adapted to specific 
microflora-affected locales, which are pivotal in maintain-
ing immune homeostasis. They achieve this by suppressing 
responses to benign antigens and protecting the integrity of 
the intestinal mucosal barrier [25]. The intestinal mucosal 
surface barrier not only permits microbial symbiosis but also 
serves as a critical line of defense against environmental 
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insults to the gut microbiota. The prompt restoration and 
ongoing maintenance of the intestinal barrier are crucial for 
re-establishing and preserving homeostatic balance.

While the immune system’s mechanisms are vital in pre-
venting dysbiosis, the establishment of a dysbiotic microbial 
community can profoundly affect both the local mucosal 
and systemic immune responses. This dysbiosis can lead to 
the movement of bacterial products into the systemic cir-
culation, further exacerbating immune dysregulation. Such 
disturbances in immune homeostasis and barrier integrity 
are increasingly recognized as significant contributors to the 
process of tumorigenesis, highlighting the interplay between 
the gut microbiota, immune function, and cancer develop-
ment [25–28].

Role of Microbial Metabolites in Carcinogenesis

Microbial metabolites such as lipoteichoic acid (LTA), sec-
ondary bile acids, and short-chain fatty acids (SCFAs) have 
been shown to play ambivalent roles in cancer development 
[29]. LTA interacts with cluster of differentiation 14 (CD14) 
or Toll-like receptor 2 (TLR), provoking an overproduction 
of pro-inflammatory factors [30, 31]. Secondary bile acids, 
via the activation of G protein-coupled bile acid receptor 1 
(GPBAR1), can promote intestinal cell proliferation, induce 
DNA damage, and lead to cellular senescence and a pro-
inflammatory secretory phenotype [32–34]. These metabo-
lites collectively contribute to the malignant transformation 
process. Conversely, SCFAs can exert anti-inflammatory 
and anticarcinogenic effects by promoting immunoregula-
tion through regulatory T cells (Tregs) [35–37].

The microbiome’s role in the diagnosis and management 
of gastroesophageal cancers is a rapidly developing field of 
research due to its association with reduced patient progno-
sis. We next review alterations in the microbiome among 
both healthy individuals and those with gastroesophageal 
cancer, revealing its potential role in the pathogenesis, early 
detection, and treatment of this disease.

Gastroesophageal Microbiome 
and Differences Between Healthy 
Individuals and Cancer Patients

Esophageal Microbiome

It has been estimated that the GI tract contains 1014 micro-
organisms [38]. Studies have suggested that the majority of 
the gut microbiota is represented by the following phyla: Fir-
micutes (Clostridium, Ruminococcus, Eubacterium, Peptos-
treptococcus, Peptococcus, Lactobacillus-L.), Bacteroidetes, 
Proteobacteria (Enterobacteriaceae), and Actinobacteria 

(Bifidobacterium-BF) [5]. In the esophagus, there is a com-
plex microbial community, and it has been estimated that 
there are 140–166 bacterial species of resident microbes [39, 
40]. Pei et al. found that six phyla represent the esopha-
geal microbiota: Firmicutes, Bacteroidetes, Actinobacteria, 
Proteobacteria, Fusobacteria, and TM7 (Saccharibacteria). 
The predominant genus is Streptococcus (39%), then there 
are Prevotella (17%), and Veilonella (14%) [41]. Yang et al. 
confirmed the predominance of Firmicutes and Streptococ-
cus genus in the esophageal tract [40].

Chronic reflux can cause esophageal mucosal damage, 
leading to the formation of an inflammatory background 
that facilitates dysplasia and carcinogenesis. This phenom-
enon may indirectly influence the microbial composition of 
the esophagus because different bacteria belong to specific 
niches [42]. In fact, the microbiota of the normal esophagus 
undergoes changes in patients with reflux-related disorders, 
as well as in response to proton-pump inhibitor therapy [43]. 
These findings have supported the concept of categoriz-
ing the microbiome composition into two groups, labeled 
as “type I and type II.” Type I, representing the normal 
esophagus, was found to be predominantly populated with 
high quantities of Streptococcus, in contrast to patients with 
excessive esophageal acid exposure (type II), which exhib-
ited a higher proportion of Gram-negative, anaerobic, and 
microaerophilic organisms [42]. This suggests that Gram-
positive bacteria are more present in the healthy esopha-
geal microbiome, while GERD leads to a shift towards an 
increased presence of Gram-negative and anaerobic bacteria 
[42, 44]. Their data revealed that the phylum Planctomycetes 
was significantly reduced across the disease groups, par-
ticularly in cases of high-grade dysplasia (HGD) and EAC, 
when compared to control subjects. Additionally, the phylum 
Crenarchaeota exhibited a similar reduction [42].

A case–control study conducted by Snider et al. revealed 
changes in microbial communities associated with esopha-
geal carcinogenesis, including increases in Proteobacteria 
presence and reductions in Firmicutes. Additionally, two 
families, Verrucomicrobiaceae and Enterobacteriaceae, 
exhibited increased presence in cases of HGD and EAC 
[45]. EAC, compared to healthy subjects, shows a decrease 
in microbial diversity, and community composition is mod-
ified; in particular, there is a reduction in Gram-negative 
(Veillonella, Megasphaera, and Campylobacter) and Gram-
positive taxa (Granulicatella, Atopobium, Actinomyces, and 
Solobacterium) and increased Lactobacillus fermentum [39].

In 2016, Yamamura et al. analyzed esophageal cancer 
tissues from 325 patients who had undergone esophageal 
cancer resection. They discovered the presence of Fusobac-
terium nucleatum (F. nucleatum) in esophageal cancer tis-
sues, and this was linked to shorter survival, indicating a role 
as a prognostic biomarker [46].
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Gastric Microbiome

The human stomach has always been considered an inhospi-
table organ for microorganisms because of acidic conditions 
and other antimicrobial factors. However, with the discovery 
of H. pylori and the development of new molecular tech-
niques and metagenomics analyses, bacterial communities 
have been found in the stomach.

H. pylori is part of the gastric biota in a considerable por-
tion of the human population. It is the strongest risk factor 
for GC development and is reported as a type I carcinogen 
by the International Agency for Research on Cancer [14]. 
H. pylori is an acidotolerant bacterium that can survive at 
pH 5, so its favorite location is in the gastric mucus near the 
epithelial cells of the mucosa [12]. Several factors influ-
ence the survival and function of the gastric microbiota. The 
typical gastric environment, full of antibacterial enzymes, 
defensins, immunoglobulins, and high gastric acid levels, 
poses a significant challenge to gastric microbiota [47].

The most represented phyla in gastric mucosa are Pro-
teobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and 
Fusobacteria [14, 48, 49]. Zilberstein et al. found a predomi-
nance of Lactobacillus sp., Veillonella sp., and Clostridium 
sp., which are all acid-resistant [50]. Coker et al. studied the 
microbiome in patients with GC and noted changes in the 
microbial composition in different stages of the tumor. In 
particular, they found a significantly higher abundance of 
taxa that are members of the oral microbiome including P. 
micra, P. stomatis, Fusobacterium nucleatum, and Gemella. 
They had previously been associated with GI cancers [51]. 
In particular, F. nucleatum has been positively correlated 
with a worse prognosis in patients with Lauren’s diffuse-
type gastric cancer [52].

Ferreira et al. compared the gastric microbiota of patients 
with gastric cancer and patients with chronic gastritis reveal-
ing significant differences. They found that in gastric car-
cinoma, there is an abundance of Proteobacteria, including 
the genera Phyllobacterium and Achromobacter, as well as 
the families Xanthomonadaceae and Enterobacteriaceae. 
Additionally, Firmicutes and Actinobacteria were also more 
abundant in gastric carcinoma, particularly Lactobacillus, 
Clostridium, and Rhodococcus [49]. As supported by the 
literature, they found a decreased alpha diversity in carci-
noma compared to gastritis. In fact, microbial diversity has 
been identified as a characteristic of disease states, including 
inflammatory diseases and cancer [49].

Changes occur in the microbiome when there is a posi-
tive H. pylori status. Specifically, it is characterized by an 
increased number of non-Helicobacter bacteria from the 
Proteobacteria, Spirochetes, and Acidobacteria phyla, while 
there was a decreased abundance of Actinobacteria, Bacte-
roidetes, and Firmicutes [53]. Liu et al. worked to charac-
terize the differences in the gastric microbiota associated 

with the development of GC. Their findings revealed an 
enrichment of Prevotella melanogenic, Streptococcus angi-
nosus, and Propionibacterium acnes in cancerous tissues 
compared to normal and paracancerous tissues. In contrast, 
they noted a significant reduction in the abundance of H. 
pylori, Prevotella copri, and Bacteroides uniformis in can-
cerous tissue [54].

Specific Gut Microbes and Pathways 
of Carcinogenesis

Helicobacter pylori and Gastric Carcinogenesis

Within the intricate ecosystem of the gut microbiota, cer-
tain bacterial strains have been implicated in the oncogenic 
processes affecting the GI tract. A paradigm of this asso-
ciation is embodied by Helicobacter pylori, a bacterium 
with a well-established link to the development of a cascade 
of preneoplastic conditions ranging from atrophic gastri-
tis to metaplasia and dysplasia, ultimately culminating in 
gastric cancer [55, 56]. The connection between H. pylori 
and oncogenesis is not merely associative; interventional 
studies have demonstrated that the eradication of this bac-
terium significantly diminishes the risk of gastric cancer, 
particularly noting a decreased onset of metachronous can-
cer following the endoscopic resection of early-stage gastric 
neoplasms [51, 57].

The mechanisms by which H. pylori facilitates oncogen-
esis are diverse, but many revolve oncoprotein cytotoxin-
associated gene A (CagA) and vacuolating toxin A (VacA) 
[58]. Infections with CagA-positive Helicobacter pylori 
strains significantly escalate the risk of developing gastric 
cancers [59, 60]. Research has demonstrated that individu-
als infected with CagA-positive H. pylori exhibit increased 
levels of pro-inflammatory cytokines in the gastric mucosa, 
including interferon-γ, TNF-α, and interleukins such as IL-1, 
IL-1β, IL-6, IL-7, IL-8, IL-10, and IL-18. This cytokine 
accumulation prompts the recruitment and activation of 
lymphocytes, peripheral mononuclear cells, eosinophils, 
macrophages, neutrophils, mast cells, and dendritic cells. 
Correspondingly, the infection by CagA-positive H. pylori 
strains leads to the activation of several oncogenic signaling 
pathways, such as ERK/MAPK, PI3K/Akt, NF-κB, Wnt/β-
catenin, Ras, sonic hedgehog, and STAT3. These strains also 
contribute to the suppression of tumor suppressor pathways, 
which is evidenced by the induction of mutations in the P53 
gene, further contributing to the malignancy risk [61–63].

VacA, a multimeric pore-forming protein, is present in 
all H. pylori strains, and its presence in the human stom-
ach is facilitated through pore formation in the epithelial 
membrane and subsequent exit of urea, enabling H. pylori 
to catalyze urea hydrolysis as a means of protecting against 



666 Journal of Gastrointestinal Cancer (2024) 55:662–678

gastric acidity [64]. VacA is known to induce vacuolation 
in cells and has been demonstrated to trigger autophagy in 
gastric epithelial cells of human origin [65–67] This effect 
is mediated through a direct interaction with the mitochon-
dria, which is substantiated by several studies [68–72]. Fur-
thermore, VacA has been implicated in the modulation of 
cellular signaling pathways; it upregulates the expression 
of MAP kinase and ERK1/2 [73]. It also activates vascular 
endothelial growth factor, which is crucial for angiogenesis 
[74, 75]. Additionally, VacA is involved in enhancing the 
Wnt/β-catenin signaling pathway, pivotal for cell prolifera-
tion and differentiation [76]. It further exerts its influence by 
inhibiting glycogen synthase kinase 3 (GSK3) via the PI3K/
Akt signaling pathway, thereby potentially contributing to 
cellular processes that favor oncogenic transformation [77].

Infection with H. pylori has been associated with epige-
netic alterations, particularly the methylation of CpG islands 
in critical genomic regions [78]. This includes the promoter 
regions of E-cadherin—a crucial molecule involved in cell 
adhesion—and genes that serve tumor suppressor func-
tions, such as those coding for trefoil factor 2 (TFF2) and 
the forkhead box transcriptional regulator (FOXD3). These 
methylation events can lead to the silencing of these genes 
and thereby play a substantial role in the heightened risk of 
developing adenocarcinoma in the gastric tissues [74].

Other Microbes and Gastric Carcinogenesis

The prevailing dogma that the gastric environment was 
devoid of microbial life due to its acidic nature was chal-
lenged and refuted by the identification of H. pylori [79]. 
Initially, H. pylori was considered the solitary microbe resil-
ient enough to inhabit the gastric niche. However, recent 
advancements in microbial research have now established 
that the gastric microbiota is far more varied, housing mul-
tiple bacterial species that can endure the acidic milieu of 
the stomach [79].

Although H. pylori stands out as a significant risk fac-
tor for the development of gastric cancer, the incidence of 
cancer development among those colonized by the bac-
terium is relatively low, affecting merely 1–2% of those 
infected [80–82]. With the enhancement of high-through-
put sequencing capabilities, a wider array of gastric micro-
bial communities has been implicated, suggesting a more 
complex interaction between the host’s microenviron-
ment and the potential for gastric carcinogenesis beyond 
the role of H. pylori alone. For instance, investigations 
employing quantitative PCR techniques have uncovered 
significant variations in the microbial profiles of individu-
als with gastric cancer. Notably, there has been a reported 
decrease in bacterial populations including Porphy-
romonas, Neisseria, the TM7 group, Prevotella pallens, 

and Streptococcus sinensis, with a concomitant increase 
in species such as Lactobacillus coleohominis, Klebsiella 
pneumoniae, Acinetobacter baumannii, and members of 
the Lachnospiraceae family [83–85]. These shifts in the 
gastric microbiota may have profound implications for the 
development of gastric malignancies.

The pathogenic components from these non-H. pylori 
Helicobacter species, particularly outer membrane pro-
teins like phospholipase C-gamma 2, BAK protein, and 
nickel-binding proteins, have been shown to facilitate the 
colonization of these microbes in the gastric mucosa. This 
colonization is a precursor to gastritis, which may escalate 
the risk of gastric tumorigenesis [86].

It is also possible that gastric microbiota may link 
H. pylori and gastric carcinogenesis, when other bac-
teria colonize the stomach in case of decreased acidity 
(such as chronic atrophic gastritis), creating reactive oxy-
gen and nitrogen species and modulating inflammatory 
responses [87, 88].

Fusobacterium nucleatum and Bacteroides fragilis

Gut bacteria possess the capability to influence various cel-
lular proliferation and pro-survival pathways in the host, 
thereby playing a contributory role in cancer development. 
Notable examples include the effector adhesin A (FadA) 
of Fusobacterium nucleatum and the metalloproteinase 
toxin (MP toxin) of Bacteroides fragilis. These bacterial 
factors are known to interact, either directly or indirectly, 
with E-cadherin in the host’s epithelial cells. This interac-
tion disrupts intercellular junctions and activates β-catenin 
signaling, which can lead to increased cell proliferation and 
potentially induce oncogenic transformation in the affected 
host cells [89, 90]. 

Another mechanism of tumorigenesis involves the induc-
tion of oxidative stress, which can lead to autonomous 
genomic mutations in host cells. For instance, Bacteroides 
fragilis have been shown to activate host spermine oxidase. 
This activation results in the production of hydrogen peroxide 
and reactive oxygen species (ROS), leading to increased DNA 
damage, a critical factor in the development of cancer [91].

Fusobacterium nucleatum can also promote carcinogen-
esis by impairing immune effectors that typically serve to 
inhibit tumor development. It inhibits the host’s Natural 
Killer (NK) cells for its own benefit. This inhibition facili-
tates the recruitment of myeloid suppressor cells to the infec-
tion site, indirectly aiding in cancer initiation. This process 
is orchestrated by the bacterial virulence factor Fap2, which 
can bind to and inhibit the NK cell’s inhibitory receptor, 
TIGIT. This interaction effectively hampers the NK cells’ 
ability to attack tumor cells, thereby contributing to the pro-
gression of cancer [92].
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Lactobacillus

Lactobacillus, a common gut microbe, produces lactate, 
which can potentially fuel the accelerated growth of tumor 
cells [93]. Tumor cells, especially those in rapid growth 
phases, primarily rely on anaerobic glycolysis over oxida-
tive phosphorylation [94, 95]. This metabolic shift leads to 
increased lactic acid production, with lactate concentrations 
in glycolytic tumors being approximately tenfold higher than 
basal lactate levels in an average human. This elevation in 
lactic acid production by Lactobacillus is hypothesized to 
promote tumor cell growth [96–99]. 

Moreover, Lactobacillus has been observed to convert 
nitrate to nitrite, resulting in the formation of substantial 
quantities of N-nitroso compounds [100, 101]. These com-
pounds are known to facilitate gene mutations, angiogenesis, 
and the expression of proto-oncogenes by epithelial cells, 
thereby contributing to the development of gastric cancer 
(GC). Lactobacillus and other lactic acid bacteria are also 
potent inducers of reactive oxygen species (ROS) in both 
cultured cells and in vivo, which can cause significant DNA 
damage [102]. Furthermore, lactic acid bacteria have been 
shown to upregulate the expression of NANOG, a marker of 
multipotency, transforming adult fibroblasts into multipotent 
cells [93, 103]. This finding lends support to the notion of 
a direct cancer-promoting activity of Lactobacillus and its 
metabolic byproducts.

Atopobium species

Atopobium spp. belongs to the Coriobacterium family and is 
an anaerobic microorganism that can produce large amounts 
of lactic acid [104]. Its pathogenic mechanism may be simi-
lar to Lactobacillus spp.

Clostridium species

Clostridium spp. produces toxic factor adhesion A on the 
cell surface, which binds to E-cadherin on endothelial cells 
and regulates either the cadherin or b-catenin pathway. This 
process brings the release of transcription factors, onco-
genes, and inflammatory genes. Moreover, it can regulate 
the growth and cell proliferation of epithelial cells [105]. 

E. coli

In instances of pathogenic infections that lead to dysbiosis 
in the gut microbiome, bacterial pathogens can proliferate 
and produce substantial quantities of toxins. These toxins are 
capable of inducing DNA damage in the host, thereby caus-
ing genomic instability and the initiation and progression of 
tumors in susceptible cells [106–108]. A prime example is 
the production of colibactin and cytolethal distending toxin 

(CDT) by certain strains of Escherichia coli, both of which 
exhibit DNAse activity. When these toxins are liberated near 
the GI epithelium, they cause DNA double-strand breaks 
within the epithelial cells of the host. This damage initiates 
a transient cell cycle arrest, creating an environment con-
ducive to genomic mutations, which can ultimately lead to 
tumor development [109].

Helicobacter pylori and Esophageal Carcinogenesis

Emerging data from population studies suggest that Heli-
cobacter pylori infection may lower the risk of esophageal 
adenocarcinoma (EAC) [110–114]. The underlying hypoth-
esis posits that chronic H. pylori infections, by impeding 
parietal cell function or promoting the development of 
atrophic gastritis, may limit the secretion of hydrochloric 
acid by these cells. This reduction in acid secretion leads to 
a higher pH in the gastric tract. Considering that Gastroe-
sophageal Reflux Disease (GERD) is a primary contribu-
tor to Barrett’s esophagus—a known precursor to EAC—an 
increase in gastric pH and a consequent reduction in acidity 
could result in a diminished incidence of reflux disease. This 
chain of events may ultimately contribute to a lower occur-
rence of EAC [115, 116]. 

Other Microbes and Esophageal Carcinogenesis

The esophageal microbiome in its normal state is predomi-
nantly composed of oral flora. Among its major constituents 
are members of the phylum Firmicutes, particularly repre-
sented by Streptococcus viridans. However, the esophageal 
microbiota is diverse, encompassing a range of other phyla 
such as Bacteroides (e.g., Prevotella), Actinobacteria (e.g., 
Rothia), Proteobacteria (e.g., Haemophilus), and Fusobac-
teria (e.g., Fusobacterium). In the normal esophagus, Gram-
positive bacteria, particularly from the Firmicutes phylum 
and the Streptococcus genus, are prevalent. Conversely, 
Gram-negative anaerobes and microaerophiles, including 
those from the Bacteroidetes, Proteobacteria, Fusobacte-
ria, and Spirochaetes phyla, are more commonly associ-
ated with esophageal pathologies such as esophagitis and 
Barrett’s esophagus [40]. Lipopolysaccharide (LPS), an 
important component of the cell wall of gram-negative bac-
teria, is implicated in the oncogenic process through various 
mechanisms. These mechanisms encompass the activation 
of innate immune responses leading to NF-κB activation, 
the promotion of inflammatory mediators like IL1β, IL6, 
IL8, and TNFα, and the elevation of inducible nitric oxide 
synthase (iNOS) and nitric oxide (NO) levels. Furthermore, 
LPS contributes to gastroesophageal reflux by reducing the 
activity the lower esophageal sphincter and impeding gastric 
emptying, thereby exacerbating the risk factors associated 
with esophageal cancer [117–119].
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Blackett and colleagues observed a notable enrichment 
of Campylobacter species in cases of GERD and Barrett’s 
esophagus compared to control groups and those with 
esophageal adenocarcinoma [44]. Furthermore, they iden-
tified a higher expression of cytokines linked to carcinogen-
esis, such as IL-18, in tissues colonized by Campylobacter 
[44]. Considering the recently acknowledged pathogenic 
potential of Campylobacter species in humans, its role in 
the progression of esophageal adenocarcinoma may parallel 
that of Helicobacter pylori in the context of gastric cancer. 
This suggests a possible significant role for Campylobacter 
in the etiology and progression of esophageal adenocarci-
noma [120].

In a study involving a rat model with esophagojeju-
nal anastomosis, Zaidi et al. found a notable presence of 
Escherichia coli in both Barrett’s esophagus and esopha-
geal adenocarcinoma [121]. Additionally, they observed a 
significant upregulation of Toll-like receptors (TLRs) 1–3, 
6, 7, and 9 in esophageal adenocarcinoma tissues com-
pared to normal epithelium. These findings suggest a link 
between the TLR signaling pathway and the presence of E. 
coli, indicating that microbial activity may mediate early 
molecular alterations in the carcinogenesis of esophageal 
adenocarcinoma in this rat model. This points to the poten-
tial role of microbes in the initiation and progression of 
esophageal cancer [121].

Bacteroides fragilis has been implicated in compromising 
the integrity of tight junctions and increasing the perme-
ability of the digestive tract through its toxin production, 
ultimately leading to inflammation and tumorigenesis. 
Cheng et al. highlighted this pathogenic process, indicat-
ing the bacteria’s role in disrupting the gut barrier and pro-
moting carcinogenic pathways [122]. Further supporting 
the link between B. fragilis and cancer, Li et al. reported a 
markedly higher expression of B. fragilis in fecal samples 
from patients with esophageal carcinoma compared to those 
from healthy individuals, suggesting a potential association 
between this bacterium and the development of esophageal 
cancer [123].

In a report of Fusobacterium nucleatum–positive tissue 
samples, the most prominent feature was “cytokine-cytokine 
receptor interaction.” A more detailed examination of this 
data indicated an upsurge in specific chemokine genes, nota-
bly CCL20. This suggests that Fusobacterium nucleatum 
may play a role in worsening tumor behavior through the 
activation of chemokines like CCL20, highlighting a poten-
tial mechanistic link between this bacterium and enhanced 
tumor aggressiveness [46].

These multifaceted interactions between gut microbiome 
and host pathways underscore the complexity of carcinogene-
sis and highlight potential targets for therapeutic intervention.

Role of the Microbiome in GI Cancer 
Diagnosis

The microbiome has obtained increasing attention in recent 
years for its potential role in the diagnosis and develop-
ment of GI cancers. Several evidence has shown that the 
gut microbiota exerts both pro-tumorigenic and anti-onco-
genic effects; thus, specific microbial signature could be 
an important diagnostic biomarkers and screening tools 
for GI cancers [15, 124]. However, the identification of a 
biomarker with excellent sensitivity and specificity is chal-
lenging (Table 1).

H. pylori is a well-known risk factor for the development 
of GC and is considered a class I carcinogen by the Interna-
tional Agency for Research on Cancer [14]. A test launched 
by BIOHIT HealthCare Ltd promotes the early detection of 
gastric cancer and precancerous lesions with a blood sam-
ple through the detection of H. pylori infection and three 
stomach-specific biomarkers such as pepsinogen I, pepsino-
gen II, and gastrin-17 [125]. However, despite several stud-
ies confirming the potential of GastroPanel for improving 
patient outcomes through early identification of high-risk 
individuals, Sivandzadeh and colleagues concluded that this 
kit lacked the sufficient accuracy to diagnose gastric atrophy 
[126–128].

Patients with H. pylori infection have increased the 
expression of NADPH oxidase (NOX) and inducible 
nitric oxide synthase (iNOS), enzymes that cause reactive 
oxygen (ROS) and nitrogen (RNS) species production 
[129]. A recent study showed that levels of circulating 
nitrosative stress markers were increased in patients with 
gastric cancer. However, levels of NO, kynurenine, and 
N-formylkynurenine change significantly between gastric 
cancer patients with and without H. pylori infection. 
Therefore, more research is needed to identify the causal 

Table 1  Gut microbes associated with gastroesophageal carcinogenesis

spp. species

Gastric cancer Esophageal cancer

Helicobacter pylori [51, 55–88]
Lactobacillus coleohominis 

[93–103]
Klebsiella pneumoniae [83–85]
Acinetobacter baumannii [83–85]
Fusobacterium nucleatum [89–92]
Lachnospiraceae spp. [83–85]
Bacteroides fragilis [89–92]
Lactobacillus spp. [93–103]
Atopobium spp. [104]
Clostridium spp. [105]
Escherichia coli [106–109]

Campylobacter spp. [44, 120]
Escherichia coli [121]
Bacteroides fragilis [122, 123]
Fusobacterium nucleatum [46]



669Journal of Gastrointestinal Cancer (2024) 55:662–678 

relationship between H. pylori and nitrosative stress in the 
development of gastric cancer [130].

Several H. pylori virulence genes also affect gastric car-
cinogenesis [131]. However, the role of individual single 
nucleotide polymorphisms in bacterial genes in cancer devel-
opment is unknown. Sharafutdinov and colleagues showed 
that a single-nucleotide polymorphism in H. pylori, the 
171S/L HtrA mutation, facilitates gastric cancer development, 
making this single-nucleotide polymorphism a potential bio-
marker for gastric cancer risk predictions [132]. In addition, 
the International Immunopharmacology published a Chinese 
work in which investigated the potential role of a H. pylori 
infection–related gene, SOCS1, in stomach adenocarcinoma. 
The SOCS1 expression was increased in both H. pylori-
infected and stomach adenocarcinoma patients but a higher 
SOCS1 expression indicated poor prognosis in stomach 
adenocarcinoma, indicating that SOCS1 may act as a poten-
tial biomarker for gastric cancer [133]. Kamarhei and col-
leagues exposed differentially expressed miRNAs between H. 
pylori–induced gastric cancerous tissue and non-tumor tissue 
collected from H. pylori–positive patients. Five microRNAs 
changed among the two groups, and gene functional analysis 
revealed that the ubiquitination system and ciliary process 
were primarily involved in H. pylori–induced GC. They con-
cluded that DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, 
TIMP3, SMARCE1, TXNIP, and MRPS5 may be considered 
prognostic biomarkers for H. pylori–induced GC [134].

Finally, a recent study revealed that also the protein tyros-
ine phosphatase non-receptor type 20 (PTPN20) could be 
a significant prognostic marker in H. pylori–related GC. 
Indeed, by measuring PTPN20 levels, it is possible to pre-
dict the survival of H. pylori–related GC, suggesting that 
PTPN20 targeting may be a promising way to treat H. 
pylori–related GC [135].

It is important to note that while there is a growing body 
of research on the microbiome’s role in GI cancer diagnosis, 
this field is still in its early stages. More research is needed 
to establish specific diagnostic markers and clinical applica-
tions. Nevertheless, the microbiome’s potential impact on GI 
cancer diagnosis is an exciting area of research that may lead 
to improved early detection, risk assessment, and treatment 
strategies for GI cancers in the future.

Interaction Between Gastroesophageal 
Microbiome and Therapy

The dynamic interplay between microbiota and cancer has 
been a subject of fascination in the scientific community for 
over a century, dating back to William Coley’s pioneering 
work in the 1890s. Coley introduced the concept of bacte-
rial therapy for cancer, using heat-inactivated Streptococci, 
later known as “Coley’s toxins,” for intratumoral injection 

in sarcoma patients [136, 137]. This concept was further 
advanced with the successful intravesical administration 
of Mycobacterium bovis post-resection in bladder cancer 
patients, significantly reducing tumor recurrence [138].

This historical groundwork has set the stage for numerous 
published and ongoing clinical trials exploring the use of 
attenuated gut bacterial strains in anticancer therapy. Under-
standing how the microbiome contributes to the progression 
of cancer holds promise for novel therapeutic approaches, 
especially in the context of gastric and esophageal cancer 
prevention and treatment.

Modulation of the gut microbiome could significantly 
alter the outcomes of anticancer therapies. Treatments such 
as radiotherapy, chemotherapy, and immunotherapy are 
known to alter the patient’s microbiome. Conversely, the 
composition of the microbiome can profoundly affect the 
patient’s response to these therapies [139]. Therefore, iden-
tifying the factors that influence the gut microbiome and 
developing strategies to manipulate it are critical for enhanc-
ing therapeutic outcomes in patients. Specifically, modu-
lating the microbiome may play a crucial role in reducing 
toxicity associated with anticancer therapies and enhancing 
their efficacy [140, 141]. This underscores the importance 
of integrating microbiome-focused interventions into com-
prehensive cancer treatment strategies.

Influence of Gut Microbiota on Chemotherapy 
and Immunotherapy Outcomes in Gastric 
and Esophageal Cancers

The interplay between gut microbiota dysbiosis and both 
cancer pathogenesis and therapeutic outcomes is increas-
ingly acknowledged. Specifically, the gut microbiota’s 
ability to metabolize anti-tumor agents and modulate host 
immune responses and inflammation pathways plays a criti-
cal role in the regulation of therapeutic outcomes [142]. This 
dual impact of the microbiota is key to understanding its 
significant role in influencing the effectiveness of chemo-
therapy and immunotherapy.

Microbiota and Chemotherapy

Research has shown that the gut microbiota is crucial for 
the effectiveness of certain chemotherapy drugs. In tumor-
bearing mice, the absence of a healthy gut microbiota (either 
germ-free or depleted following antibiotic therapy) results 
in a diminished response to oxaliplatin treatment. The gut 
microbiome produces Toll-like receptor (TLR) agonists, fos-
tering an oxidative stress environment conducive to tumor 
cell death. Reactive oxygen species (ROS) produced by the 
microbiota enhance the DNA damage inflicted by oxalipl-
atin, leading to cell death [143].
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Cyclophosphamide reduced regulatory T cells and 
increases the number of T helper (Th1) and Th17 cells 
[144, 145]. Mice with reduced gut microbiota demonstrate 
a decrease in Th17 cells and resistance to cyclophospha-
mide treatment [146]. Administering specific oral bacteria 
like Lactobacillus johonsoni and Enterococcus hiraecan can 
convert T cells to pro-inflammatory TH17 cells, enhancing 
the drug’s efficacy [146, 147].

The chemotherapy agent irinotecan is activated into 
SN-38 by carboxylesterase in plasma, intestinal mucosa, 
liver, and tumor cells. The gut microbiota’s β-glucuronidase 
reactivates the detoxified SN-38G in the intestine, leading 
to GI toxicity. Targeted inhibition of these gut bacterial 
enzymes has shown promise in reducing chemotherapy-
induced toxicity [148].

Microbiota and Immunotherapy

The last decade has witnessed immunotherapy emerge 
as a cornerstone in modern cancer treatment paradigms. 
The intricate correlation between gut microbiota and the 
immune system is now recognized as a critical determinant 
in modulating a host’s response to immunotherapy. Pioneer-
ing clinical studies have substantiated that variations in gut 
microbiome composition significantly impact the efficacy 
of immune checkpoint inhibitor (ICI) therapy across various 
tumor types, even those distant from the GI tract.

Recent research has established a strong link between the 
composition of a patient’s microbiome and the intrinsic effi-
cacy of ICI-based immunotherapy for various solid tumors 
[149–151]. Immune checkpoint inhibition modulates T cell 
activation against tumor cells. The prevalent checkpoint 
inhibitors in the market are monoclonal antibodies target-
ing either the cytotoxic T lymphocyte-associated protein 4 
(CTLA4) or the programmed death 1 (PD1) and its ligand 
PD-L1, which are expressed on the surface of T cells and 
antigen-presenting cells (APCs), respectively [152].

In murine models, the gut microbiome composition 
has been demonstrated to significantly influence the host 
response to ICIs. Notably, two studies have highlighted the 
potential role of gut microbiota in enhancing the efficacy of 
anti-CTLA4 and anti-PD1 therapies [153, 154]. Vetizou et al. 
revealed that the effectiveness of anti-CTLA4 antibodies in 
reducing sarcoma tumor growth is significantly enhanced in 
the presence of a gut microbiome enriched with Bacteroides 
fragilis and Burkholderia cepacia [153]. Similarly, Sivan 
et al. observed that the efficacy of PD-L1 targeting antibod-
ies in treating melanoma is improved with a gut microbiome 
enriched in Bifidobacterium species [154]. They further dem-
onstrated that oral administration of a Bifidobacterium cock-
tail together with anti-PD-L1 antibodies notably augmented 
T cell responses and impeded melanoma growth [154].

Research by Shi et  al. has focused on two critical 
aspects of the interaction between H. pylori and can-
cer immunotherapies. Elements of H. pylori, such as 
HP-NAP, CagA, VacA, BabA, and HspA, can act as 
enhancing tumor responses to ICIs. Moreover, H. pylori 
infection may modulate the efficacy of antitumor immu-
nity elicited by ICIs by altering host immune responses 
[155]. Che et al.’s study found a correlation between H. 
pylori infection and efficacy of gastric cancer patients’ 
immunotherapy, where H. pylori–positive patients had 
a higher risk of nonclinical response to anti-PD-1 anti-
bodies compared to H. pylori–negative patients [156]. 
This raises the possibility of incorporating microbial 
elements such as H. pylori into vaccine strategies for 
treating upper GI malignancies.

The microbiome is increasingly viewed as a potential 
source of biomarkers for predicting ICI response. Sunakawa 
et al. investigated the role of gut microbiome gene expres-
sion as a predictor of ICI efficacy in advanced GC treated 
with nivolumab monotherapy. Upregulation of the bacte-
rial invasion of epithelial cell pathway was associated with 
disease progression, and certain bacterial genera, namely 
Odoribacter and Veillonella, correlated with tumor response 
to nivolumab [157].

While immune checkpoint inhibitors have succeeded 
in treating various malignancies, their use is limited in 
some patients due to severe toxic side effects, such as 
gut inflammation and immune dysregulation [158]. The 
microbiome’s influence extends to modulating or predict-
ing the toxicity of immunotherapy. Oral administration 
of Bacteroides fragilis and Burkholderia cepacia in ani-
mal models has been shown to mitigate immunotherapy-
associated toxic side effects [154]. Similarly, in patients 
treated with anti-CTLA4 antibodies, toxic side effects 
were associated with an increased abundance of Firmi-
cutes, such as Faecalisbacterium, and a decreased abun-
dance of Bacteroides [159, 160].

In an observational study encompassing 95 patients 
with advanced GI malignancies treated with immuno-
therapy, the correlation between the gut microbiome 
and the incidence of immune-related adverse events 
(irAEs) was examined through metagenomic sequencing 
of baseline fecal samples. This analysis identified spe-
cific bacterial species and metabolic pathways potentially 
implicated in the genesis of irAEs among patients with 
gastric, esophageal, and colon cancers. The study found 
a higher prevalence of Ruminococcus callidus and Bac-
teroides xylanisolvens in patients who did not manifest 
severe irAEs [161]. These findings collectively reinforce 
the hypothesis that gut microbiota plays a crucial role in 
modulating not only the response to immunotherapy but 
also its associated toxicities.
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Modulation of the Gut Microbiome with Probiotics: 
Implications for Cancer Therapeutics

The gut microbiome can be modulated through interventions 
such as antibiotics, probiotics, or prebiotics. The utilization 
of probiotics, in particular, offers a method to introduce 
beneficial microbial components absent in the human host. 
These probiotics, mainly consisting of lactic acid bacteria 
(LAB) from genera like Lactobacillus and Bifidobacterium, 
have shown promise in cancer prevention, especially among 
high-risk populations. Such probiotic strains, predominantly 
Gram-positive, are increasingly recognized for their role in 
treating GI disorders [162, 163].

GI cancers have been linked to certain bacterial strains, 
including Streptococcus bovis, Bacteroides, Clostridia, and 
Helicobacter pylori [164–166]. Conversely, strains like 
L. acidophilus and B. longum have shown the potential to 
inhibit carcinogenic tumor growth. Thus, maintaining a bal-
ance between damaging and beneficial bacteria is crucial in 
modulating cancer risk. Shifting the proportion of microbes 
with the use of probiotics influences carcinogen bioactiva-
tion and, thus cancer risk [167, 168].

Studies on probiotics and gastric cancer are mainly 
focused on H. pylori infection as the major risk factors of 
gastric cancer [169]. Notably, probiotic strains such as B. 
bifidum, L. acidophilus, L. rhamnosus, and L. salivarius 
have demonstrated inhibitory effects on H. pylori in diverse 
animal models [170]. Recent meta-analyses underscore 
the utility of incorporating probiotics alongside antibiotic 
therapy in enhancing the efficacy of H. pylori eradication 

protocols [171–173]. Such probiotic supplementation dur-
ing antibiotic treatment for H. pylori has been observed to 
reduce adverse side effects, leading to improved patient com-
pliance and, in some instances, heightened eradication rates. 
Additionally, the successful eradication of H. pylori has been 
correlated with the regression of gastric tumor–promoting 
lymphoid tissue proliferation [174, 175] The implications of 
these findings suggest that modulating gut microbiome with 
probiotic supplementation could represent a pivotal adjunct 
in the management of gastric cancer, particularly in strate-
gies aimed at targeting H. pylori infection.

The efficacy of probiotics in mitigating the toxicities 
associated with anticancer treatments, such as diarrhea 
and mucositis, is a subject of ongoing preclinical studies 
and clinical trials [176, 177]. The administration of 
probiotics, particularly Lactobacillli, aims to repopulate the 
compromised gut microbiota of cancer patients, restoring 
the levels and functionality of commensal bacteria depleted 
post-treatment [178]. In animal models, Lactobacillus 
administration alongside food has shown to attenuate 
fluorouracil (5-FU)- mediated and radiation-mediated 
gut epithelial injuries, thus helping in the preservation of 
gut microbiota balance and intestinal epithelial barrier 
maintenance [179–181]. While generally safe, concerns 
remain about the potential risks of opportunistic infections 
and antibiotic resistance transfer in immunocompromised 
cancer patients [182, 183]. Nonetheless, probiotics have 
demonstrated beneficial effects in improving GI symptoms 
following anticancer therapy, thereby contributing to the 
re-establishment of a healthy gut microbiota (Fig. 1) [184].

Fig. 1  Effects of probiotic vs. pathogenic gut microbiota. Bacteri-
ocins are ribosomal synthesized antimicrobial peptides produced by 
bacteria able to inhibit bacterial strains. Probiotics may modulate bac-

teriocins and short chain fatty acid (SCFA) production, contributing 
to protect gut mucosal barrier. Figure created with Biorender app
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In summary, the strategic use of probiotics to modu-
late the gut microbiome presents a promising avenue for 
improving therapeutic outcomes in cancer treatments, high-
lighting the potential for microbiome-targeted interventions 
in oncology.

Fecal Microbiota Transplantation: A Novel Approach 
in Cancer Therapy

The transplantation of gut microbiota between individu-
als, known as fecal microbiota transplantation (FMT), has 
emerged as a therapeutic strategy for treating pathogen infec-
tions, gut inflammatory diseases, and dysbiosis. FMT has 
demonstrated efficacy in treating recurrent Clostridium dif-
ficile duodenal infections [185, 186]. Additionally, its appli-
cation in Graft Versus Host Disease (GVHD) post-allogeneic 
stem cell transplantation is promising [187]. In the realm 
of anti-tumor therapy, preclinical studies in murine models 
have indicated the potential of FMT in reducing colon tumo-
rigenesis. However, the translation of these findings into 
clinical efficacy requires further validation [188]. Currently, 
several trials are underway to assess the utility of FMT in 
cancer patients, focusing on the prevention and mitigation of 
intestinal side effects associated with anticancer treatments.

Conclusions

Nowadays it is widely accepted that changes in the normal 
gut microbiome causing dysbiosis and immune dysregula-
tion play a role in carcinogenesis, especially for GI cancers. 
Many conditions may cause variations in the gut microbial 
equilibrium and promote cancer, such as environment, diet, 
and antibiotics intake. Moreover, the knowledge of the inter-
acting role of gut microbiome in the treatment of GI can-
cers has evolved rapidly over the past decade. Indeed, gut 
microbiome can interfere with chemotherapy effectiveness 
and enhance toxic adverse events and at the same time can 
significantly influence the host response to PD-1/PD-L1 
blockade and CTLA-4 inhibition.

Targeted microbiome interventions with nutraceuticals 
including probiotics and prebiotics are being developed to 
improve therapeutic outcomes and mitigate toxicities associ-
ated with anticancer treatment. In addition, fecal microbiota 
transplantation has shown promising activity in the preven-
tion and mitigation of chemotherapy and immunotherapy 
intestinal side effects and is currently under assessment in 
different clinical trials.

Dietary interventions such as limitation of processed and 
animal foods and increased intake of fibers and pro-prebiotic 
foods together with the choice of Mediterranean diet are 
among the most immediate approaches to follow in order 
to positively manipulate the gut microbiome. In addition to 

this, rational drug use strategies should be promoted, with 
limitations in antibiotics to prevent gut dysbiosis and GI 
cancer onset. Further studies are warranted in order to intro-
duce the microbiome among the available tools of precision 
medicine. In particular, research should develop innovative 
approaches for modulating the microbiota in order to get bet-
ter responses and less toxicities from anticancer treatment. 
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