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Abstract 

Background: The objective of this study was to define clinically meaningful phenotypes of intracerebral hemorrhage 
(ICH) using machine learning.

Methods: We used patient data from two US medical centers and the Antihypertensive Treatment of Acute Cer-
ebral Hemorrhage-II clinical trial. We used k-prototypes to partition patient admission data. We then used silhouette 
method calculations and elbow method heuristics to optimize the clusters. Associations between phenotypes, com-
plications (e.g., seizures), and functional outcomes were assessed using the Kruskal–Wallis H-test or χ2 test.

Results: There were 916 patients; the mean age was 63.8 ± 14.1 years, and 426 patients were female (46.5%). Three 
distinct clinical phenotypes emerged: patients with small hematomas, elevated blood pressure, and Glasgow Coma 
Scale scores > 12 (n = 141, 26.6%); patients with hematoma expansion and elevated international normalized ratio 
(n = 204, 38.4%); and patients with median hematoma volumes of 24 (interquartile range 8.2–59.5) mL, who were 
more frequently Black or African American, and who were likely to have intraventricular hemorrhage (n = 186, 35.0%). 
There were associations between clinical phenotype and seizure (P = 0.024), length of stay (P = 0.001), discharge 
disposition (P < 0.001), and death or disability (modified Rankin Scale scores 4–6) at 3-months’ follow-up (P < 0.001). We 
reproduced these three clinical phenotypes of ICH in an independent cohort (n = 385) for external validation.

Conclusions: Machine learning identified three phenotypes of ICH that are clinically significant, associated with 
patient complications, and associated with functional outcomes. Cerebellar hematomas are an additional phenotype 
underrepresented in our data sources.
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Introduction
Spontaneous intracerebral hemorrhage (ICH) affects 
nearly 100,000 Americans each year, and acute manage-
ment improves the prognosis [1]. Although severity of 
ICH is easily summarized [2] and standing order sets 
are common, presentation of ICH is not monolithic. 

Different etiologies of spontaneous ICH, such as hyper-
tension or cerebral amyloid angiopathy [3], result in dif-
ferent clinical phenotypes [4]. Each clinical phenotype 
might be expected to have a different clinical course, 
complications, and potentially different patient out-
comes. Thus, optimal management likely differs between 
phenotypes [5]. For example, patients with lobar hema-
tomas and altered consciousness are at increased risk for 
seizures and thus would be more likely to benefit from 
antiseizure medication and electroencephalography 
monitoring compared to patients with deep hematomas 
and intact consciousness [6].
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Although prior work has sought to identify differences 
in risk factors, features, and outcomes based on ICH 
location [7, 8] and characterize the locations and etiolo-
gies of spontaneous ICH in specific populations [9], to 
our knowledge, no study has sought to agnostically iden-
tify clinical phenotypes using unsupervised machine 
learning. As a form of artificial intelligence, machine 
learning algorithms recognize previously unknown pat-
terns in data structure [4]. Unsupervised machine learn-
ing algorithms are agnostic to expert-defined labels and 
prespecified assumptions, which allows for the discov-
ery of novel patterns [10]. These algorithms have been 
broadly applied to phenotyping cardiovascular diseases 
and aortic stenosis [11–15]; distinguishing patterns of 
end-of-life care delivery in the intensive care unit (ICU) 
[16]; and grouping stroke symptoms, biomarkers, and 
complex patient outcomes [17–20]. Unsupervised meth-
ods reduce human bias introduced from classifications 
based on clinical expertise and thus allow us to validate 
conventional clinical wisdom and discover phenotypes 
that may not have previously been characterized. Bet-
ter characterization of clinical phenotypes could allow 
for the development of more precise management and, 
potentially, improved outcomes.

We tested the hypothesis that unsupervised machine 
learning could identify clinical phenotypes in patients 
with acute ICH. We also explored if these clinical phe-
notypes were clinically meaningful based on associa-
tions with complications (e.g., seizures) and functional 
outcomes.

Methods
Patients
We conducted a retrospective analysis of deidentified 
prospectively collected patient data obtained from three 
sources: (1) the Northwestern University Brain Attack 
Registry (NUBAR), a prospectively collected registry of 
electronic health records with detailed information on 
patient outcomes after stroke; (2) a cohort of patients 
from the Johns Hopkins Hospital and Johns Hopkins 
Bayview Medical Center, part of Johns Hopkins Medi-
cine [21]; and (3) Antihypertensive Treatment of Acute 
Cerebral Hemorrhage-II (ATACH-II) [22], a clinical trial 
data set of patients with ICH that we used for validation 
of the phenotypes [23]. For consistency, we included only 
patients from ATACH-II enrolled in the United States 
because of variability in treatment response internation-
ally (e.g., regional differences in treatments and outcomes 
for patients from Asia) [24, 25]. Across the three data 
sources, we analyzed complete patient records [17, 20].

Variable selection was limited because of the availabil-
ity of data that could be harmonized across all three data 
sources. Harmonized patient data collected at admission 

included age, sex, race, ICH volume, ICH location, Glas-
gow Coma Scale (GCS) score, international normalized 
ratio (INR), systolic blood pressure (SBP), intraventricu-
lar hemorrhage (IVH), infratentorial location, history of 
diabetes, history of hypertension, and hematoma expan-
sion. ICH location was dichotomized as lobar hematoma 
location versus thalamus, basal ganglia, brainstem, cau-
date, cerebellar, lentiform nucleus, or other location of 
hemorrhage. GCS score was categorized as < 5, 5–12, and 
13–15. INR was dichotomized as 1.4 and lower (“nor-
mal”) and 1.5 and greater (“abnormal”). All patients had 
a diagnostic computerized tomography (CT) scan and a 
standard-of-care follow-up CT scan conducted around 
the 24-h mark [26, 27]. Hematoma expansion was cal-
culated as the hematoma volume on the second or sub-
sequent CT scan minus the hematoma volume on the 
initial CT scan. We defined hematoma expansion as 
growth of 6 mL or greater across all data sets [28]. Hema-
toma expansion was recoded to a binary true/false vari-
able for harmonization across the three data sources.

Hematoma volumes at Northwestern were measured 
with validated, semiautomated, voxel-based techniques 
from CT scans. We previously established the high inter-
rater reliability of this hematoma volume measurement 
technique in patients with ICH and reported excellent 
correlation between two separate evaluators (Spearman 
ρ = 0.99, P < 0.001) [29]. These validated methods account 
for voxel-by-voxel measurements (three-dimensional 
representations of volume that have the density of acute 
hemorrhage). Hematoma volumes for ATACH-II were 
adjudicated by a central reader. Hematoma volumes for 
the Hopkins data set were calculated using the ABC/2 
method. When IVH was next to ICH, an expert adjudi-
cated where the IVH began and the intracranial hema-
toma ended.

Outcomes
The patient outcomes assessed included seizure, hospi-
tal length of stay (LOS) in days, ICU LOS in days, dis-
charge disposition, and the modified Rankin Scale (mRS; 
a global functional outcomes scale) score at 3-months’ 
follow-up. Seizures were defined based on characteristic 
clinical presentation observed during hospitalization by a 
clinician and reviewed by a study neurologist or electro-
encephalography monitoring per protocol [30]. Disposi-
tion at discharge was harmonized across the three data 
sources by recategorizing as died, inpatient (e.g., reha-
bilitation, acute care, nursing facility), outpatient (e.g., 
home), and other. The mRS score was dichotomized to 
mRS scores 0–3 (“good outcome,” independence or bet-
ter) and mRS scores 4–6 (“poor outcome,” dependence or 
death) [31–33]. Follow-up mRS scores at 3 months were 



available for patients in the ATACH-II and NUBAR data 
sets.

Machine Learning
We used unsupervised k-prototype cluster analysis to 
group patients into clinical phenotypes because this 
algorithm performs well with mixed categorical and 
continuous data [34]. The algorithm generated mutu-
ally exclusive groups from the 13 independent admission 
variables using a combination of means for continuous 
variables and modes for categorical variables. This unsu-
pervised cluster analysis was performed independent of 
the patient complications or outcomes data. Both elbow 
method heuristics and average silhouette method calcu-
lations were used to determine the optimal number of 
clusters [17]. Each cluster represents a clinical phenotype 
composed by maximizing similarities within and differ-
ences between clusters according to select admission 
data [16]. We generated a two-dimensional visualization 
of the clinical phenotypes using the uniform manifold 
approximation and projection (UMAP) [35]. The UMAP 
algorithm employs a nonlinear approach for dimension 
reduction.

Validation
We validated the k-prototype clustering algorithm in 
the independent cohort of ATACH-II data [11, 23]. We 
trained the k-prototype model using the aggregate data 
from the two US medical centers. We used the same 13 
variables identified in the derivation cohort to assign 
phenotypes in the external validation cohort [11]. Our 
model was tested in this external cohort to validate the 
generalizability of the k-prototype clustering algorithm 
[15].

Statistical Analysis
Continuous data between phenotypes were compared 
using analysis of variance for normally distributed data 
or the Kruskal–Wallis H-test for nonnormally distributed 
data. Categorical data were tested for an association with 
phenotype using χ2 statistics. A P value of 0.05 was used 
as the threshold for statistical significance. Analysis was 
performed in R v4.2.2, package “clustMixType” (RStudio: 
Integrated Development for R. RStudio, PBC, Boston, 
MA, 2020. www. rstud io. com) [36, 37].

Results
The 13 patient admission data variables clustered 
into three clinical phenotypes of ICH (Fig.  1). Elbow 
method heuristics and average silhouette method cal-
culations suggested the optimal number of clusters (k) 
was three (Supplementary Figs.  1 and 2). Demograph-
ics of the three clinical phenotypes are shown in Table 1. 

Illustrative head CT scans for the three clinical pheno-
types are shown in Supplementary Fig. 3. Demographics 
of incomplete patient records not included in the analysis 
are documented in Supplementary Table 1.

Although there was no human labeling of the clusters 
of patients, the three distinct phenotypes were clinically 
meaningful. Of the 531 patients from the two US medical 
centers, 141 (26.6%) were assigned to phenotype 1, 204 
(38.4%) were assigned to phenotype 2, and 186 (35.0%) 
were assigned to phenotype 3 (Table  1). Clinical phe-
notype 1 included patients with small hematomas, high 
blood pressure, and GCS scores greater than 12. Clinical 
phenotype 2 included individuals with hematoma expan-
sion and elevated INR. Clinical phenotype 3 included 
individuals with larger median hematoma volumes (24.0 
[interquartile range 8.2–59.5] mL), who were more com-
monly Black or African American, and who had IVH 
(Fig.  2). This phenotype had the greatest proportion 
(18.8%) of patients with GCS scores less than 5 (Table 1).

Patient complications and outcomes varied with the 
three clinical phenotypes (Table 1, Fig. 3). Seizures were 
more common in patients with phenotype 2 (P = 0.024). 
Patients in phenotype 3 had the longest durations for 
ICU and hospital LOS, more frequently died during 
hospitalization (38.2%), and had a greater proportion 
of poor mRS outcomes at 3-months’ follow-up (83.7%) 
(Table 1). The three clinical phenotypes were significantly 

Fig. 1 UMAP model outputs visualized in two dimensions, three 
clinical phenotypes of ICH emerged
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associated with LOS (P = 0.001), discharge disposition 
(P < 0.001), and poor outcome on the mRS at 3-months’ 
follow-up (P < 0.001) (Fig. 3). Cause of death (e.g., death 
by neurological criteria, cardiac arrest, withdrawal of life 
support) was only available for the Northwestern cohort 
and was not associated with clinical phenotype (P = 0.6).

We separately validated the three clinical phenotypes 
in the independent ATACH-II data (Supplementary 
Fig. 4). Of the 385 patients, 184 (47.8%) were assigned to 
phenotype 1, 130 (33.8%) were assigned to phenotype 2, 
and 71 (18.4%) were assigned to phenotype 3. As in the 

derivation cohort, validation cohort phenotypes differen-
tiated between patients with small hematomas, elevated 
blood pressure, and GCS scores > 12 (phenotype 1); 
coagulopathic patients with hematoma expansion (phe-
notype 2); and patients with large hematomas and IVH 
(phenotype 3) (Supplementary Table 2). There were asso-
ciations between the clinically validated phenotypes and 
LOS (P < 0.001), discharge disposition (P = 0.001), and 
death or disability (mRS scores 4–6) at 3-months’ follow-
up (P < 0.001). In the validation cohort, seizure was not 
significantly associated with clinical phenotype (P = 0.5), 

Table 1 Comparison of patient demographics across three clinical phenotypes

Percentages are based on available data

ICH, intracerebral hemorrhage, INR, international normalized ratio, IQR, interquartile range, IVH, intraventricular hemorrhage, SBP, systolic blood pressure

Patient characteristic Phenotype 1 (n = 141) Phenotype 2 (n = 204) Phenotype 3 (n = 186) P value

Age, mean ± SD 63.0 ± 15.6 66.4 ± 14.2 63.1 ± 14.3 0.04*

Female sex, n (%) 94 (66.7) 54 (26.5) 112 (60.2)  < 0.001*

Race, n (%)  < 0.001*

 White 76 (53.9) 140 (68.6) 48 (25.8)

 Black or African American 62 (44.0) 56 (27.5) 132 (71.0)

 Other or unknown 3 (2.1) 8 (3.9) 6 (3.2)

ICH volume, median (IQR), mL 6.0 (3.0–15.0) 12.2 (4.0–27.8) 24.0 (8.2–59.5)  < 0.001*

ICH location, lobar, n (%) 36 (25.5) 97 (47.5) 54 (29.0)  < 0.001*

Glasgow Coma Scale score, n (%)  < 0.001*

  < 5 12 (8.5) 6 (2.9) 35 (18.8)

 5–12 9 (6.4) 40 (19.6) 114 (61.3)

 13–15 120 (85.1) 158 (77.5) 37 (19.9)

INR, abnormal, n (%) 7 (5.0) 33 (16.2) 24 (12.9) 0.006*

SBP, median (IQR), mmHg 219.0 (198.0–230.0) 151.0 (134.0–169.3) 207.0 (172.5–230.0)  < 0.001*

IVH, n (%) 25 (17.7) 54 (26.5) 155 (83.3)  < 0.001*

Infratentorial location, n (%) 27 (19.1) 24 (11.8) 27 (14.5) 0.2

History of diabetes, n (%) 25 (17.7) 42 (20.6) 43 (23.1) 0.5

History of hypertension, n (%) 117 (83.0) 137 (67.2) 152 (81.7)  < 0.001*

Hematoma expansion, n (%) 13 (9.2) 27 (13.2) 23 (12.4) 0.5

Seizure, n (%) 4 (2.8) 22 (10.8) 17 (9.1) 0.024*

Hospital length of stay, median (IQR), days 7.0 (4.2–12.1) 8.0 (4.2–16.0) 13.0 (5.2–22.0) 0.001*

Intensive care unit length of stay, median (IQR), days 3.0 (1.6–6.4) 3.0 (1.2 –8.5) 8.1 (2.2–14.9)  < 0.001*

3-month mRS score, poor outcome, n (%) 23 (37.1) 42 (47.7) 77 (83.7)  < 0.001*

Discharge disposition, n (%)  < 0.001*

 Died 13 (9.2) 38 (18.6) 71 (38.2)

 Inpatient 91 (64.5) 116 (56.9) 99 (53.2)

 Outpatient 37 (26.2) 50 (24.5) 16 (8.6)

ICH score  < 0.001*

 0 61 (43.3) 77 (37.7) 0 (0.0)

 1 46 (32.6) 67 (32.8) 30 (16.1)

 2 21 (14.9) 35 (17.2) 64 (34.4)

 3 8 (5.7) 17 (8.3) 62 (33.3)

 4 5 (3.5) 4 (2.0) 24 (12.9)

 5 0 (0.0) 2 (1.0) 5 (2.7)

 6 0 (0.0) 2 (1.0) 1 (0.5)



potentially a function of the low seizure incidence in the 
independent cohort of ATACH-II data (1.0% versus 8.1%, 
P < 0.001) (Supplementary Table 3).

Discussion
In this multicenter study analyzing data from 916 patients 
with ICH, we found that unsupervised machine learning 
clustered patient presentations into three clinically dis-
tinct phenotypes. In turn, these data-derived clinical phe-
notypes had different risk factors for ICH (e.g., chronic 
hypertension, anticoagulation), different rates of seizures, 
and different likelihoods of poor functional outcome 
at follow-up. These results suggest that unsupervised 
machine learning could be a useful technique to identify 
clinical phenotypes, anticipate complications (e.g., need 
for ventricular drainage), and potentially inform proto-
cols for treatment (e.g., prophylactic seizure medication).

Of the three clinical phenotypes, the one character-
ized by Black or African American race, large hemato-
mas, and IVH was associated with the worst outcomes 
(phenotype 3). Although the clinical implications of 
larger hematomas are in line with previous work docu-
menting the strong association between increased ICH 
volume and poor outcomes [38–40], we documented a 
new pattern of patient race alongside the clinical pres-
entation and functional outcomes for patients in phe-
notype 3. This finding contributes to the expansive 
body of work on social determinants of health and ICH 
incidence, treatment, and outcomes [41–44]. Pheno-
type 1 and phenotype 2 were distinctly separated by 
SBP, an underlying factor that drives care management 
for patients with ICH [45]. The use of a phenotype may 
be complementary to standard measures of severity 
(e.g., ICH score) to anticipate potential complications 
and treatments.

Fig. 2 Descriptive boxplots of three ICH clinical phenotypes, phenotypes based on patient demographics collected at admission



The clinical phenotypes we present in this study 
may have potential implications in the targeted care of 
patients with ICH [15]. Accounting for clinical pheno-
type may allow for more precisely targeted assessment 
and treatment for subgroups of patients with ICH, a 
key step to achieving the goal of precision medicine [4]. 
Accounting for these phenotypes could promote tar-
geted risk assessment and personalized treatment [10]. 
The data-derived clinical phenotypes may contribute to 
targeted therapy (e.g., prophylactic seizure medication, 
antithrombotic reversal, antihypertensive treatment) for 
each of the identified phenotypes [46].

These phenotypes could promote attention to targeted 
prevention of seizures, antihypertensive medication, and 
hemostatic medication. Seizures worsen outcomes in 
patients with ICH [30, 47–50]. The use of prophylactic 
seizure medication is common (~ 40% of patients) [51], 
yet indiscriminate administration to patients is associated 

with worse mRS scores and reduced health-related qual-
ity of life, particularly cognitive function [52, 53]. Target-
ing the use of antiseizure medications to patients at high 
risk due to seizures is more likely to achieve the intended 
benefit (preventing seizures) while minimizing the risk of 
side effects in patients at low risk for seizures. Prothrom-
botic agents (e.g., activated factor VII) [54] are likely to 
be beneficial in a subset of patients [54–58] but have 
potential adverse effects (e.g., venous thromboembolism) 
[59]. Improved patient selection is needed to precisely 
identify patients most likely to benefit from prothrom-
botic medications. Some patients require more antihy-
pertensive medications even though there are increased 
adverse effects, particularly acute kidney injury [60]. The 
clinical phenotypes we present here could support judi-
cious administration of prophylactic seizure medication, 
prothrombotic agents, and antihypertensive treatment.

Fig. 3 Descriptive boxplots of three ICH clinical phenotypes, phenotypes with corresponding patient complications and outcomes



Strengths of our approach include the large sample 
size from multiple centers, which could improve gener-
alization. In addition, we reproduced three clinical phe-
notypes of ICH in an independent cohort. This external 
validation supports our results and lays the groundwork 
for the generalizability of our findings [10, 11].

Our agnostic subtyping approach used clinical vari-
ables to describe clinical phenotypes of ICH without 
prespecified assumptions or human-derived heuristics. 
Clinical phenotypes of ICH may be most useful in con-
sort with human understanding and as a complement to 
standard measures of severity (e.g., ICH score). However, 
there are several limitations to this analysis. Although 
we were able to analyze data from multiple sources, we 
limited the scope of our analysis to patient data from the 
United States. International data (particularly Asia) were 
available from the ATACH-II trial, but we used domestic 
patients for consistency with the two other US cohorts. 
Patients from Asia also have regional differences in treat-
ments and outcomes after ICH [25]. These differences 
could furnish different clinical phenotypes depending 
on individual patient populations or country of origin. 
Additionally, the ATACH-II trial experienced a relatively 
low risk of seizures, potentially diminishing our power 
to detect a difference in the external validation cohort. 
Future research may attempt to replicate our findings in 
cohorts representing different demographic groups and 
patients from other institutions. Another limitation was 
the lack of baseline mRS data for comparison with the 
reported mRS scores at 3-months’ follow-up. However, 
these seem unlikely to meaningfully change our analysis.

Although our leveraging of routine clinical data 
enhances the practical utility of understanding the nat-
ural segmentation of patients with ICH, our analysis 
was limited by the inclusion of only basic radiographic 
descriptors and the exclusion of more diverse imaging, 
biomarker, and clinical features data. Future research 
may attempt to replicate these phenotypes and incor-
porate other clinical features that were not available in 
the three data sources we harmonized (e.g., presence of 
abnormal vascular lesions, renal function, pretreatment 
with antiplatelet medications, levels of LDL, toxicology 
screen results, microbleeds, presence of dementia, etc.). 
These diverse data sets may further enable the detection 
of novel patterns and additional clinical phenotypes of 
ICH with unsupervised machine learning.

We used a machine learning method to identify clini-
cal phenotypes from the data because existing etiologic 
classifications of intracranial hemorrhage (e.g., Struc-
tural lesion, Medication, Amyloid angiopathy, Systemic/
other disease, Hypertension, Undetermined (SMASH-
U)) regarding structural lesions criteria (e.g., vascular 
malformations) remain unclear in > 20% of patients [61]. 

Although the clinical phenotypes we describe can be 
mapped in part onto SMASH-U, they have the advan-
tage of accounting for multiple variables present on 
admission. The variables we used to define phenotypes 
(e.g., hematoma location, blood pressure) are routinely 
collected. Even so, not all clinical phenotypes are repre-
sented. For example, cerebellar hematoma with brain-
stem compression is well described, but patients with 
cerebellar hematomas were excluded from ATACH-II, 
so the algorithm could not identify it. The clinical phe-
notypes we describe may be useful for guiding targeted 
assessments and treatments, even if they do not include 
every conceivable phenotype. It is possible that other 
clinical phenotypes of ICH might be discerned from 
additional data sets, a topic for future research.

Conclusions
In summary, we identified phenotypes of ICH admission 
data using unsupervised machine learning. These clinical 
phenotypes were clinically meaningful, associated with 
complications, and associated with functional outcomes 
at follow-up. Identifying clinical phenotypes at admission 
could lead to more targeted patient care by anticipating 
risk factors, complications, and outcomes.
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