
Neurocrit Care
https://doi.org/10.1007/s12028-024-02047-6

ORIGINAL WORK

Early Burst Suppression Similarity 
Association with Structural Brain Injury Severity 
on MRI After Cardiac Arrest
Shawn Shivdat1,2, Tiange Zhan3, Alessandro De Palma3,4, Wei‑Long Zheng5, Parimala Krishnamurthy2, 
Ezhil Paneerselvam2, Samuel Snider6, Matthew Bevers6, Una‑May O’Reilly3, Jong Woo Lee2,7, 
M. Brandon Westover2,8† and Edilberto Amorim2,3,9*† 

© 2024 Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society

Abstract 

Background: Identical bursts on electroencephalography (EEG) are considered a specific predictor of poor outcomes 
in cardiac arrest, but its relationship with structural brain injury severity on magnetic resonance imaging (MRI) is not 
known.

Methods: This was a retrospective analysis of clinical, EEG, and MRI data from adult comatose patients after cardiac 
arrest. Burst similarity in first 72 h from the time of return of spontaneous circulation were calculated using dynamic 
time‑warping (DTW) for bursts of equal (i.e., 500 ms) and varying (i.e., 100–500 ms) lengths and cross‑correlation for 
bursts of equal lengths. Structural brain injury severity was measured using whole brain mean apparent diffusion 
coefficient (ADC) on MRI. Pearson’s correlation coefficients were calculated between mean burst similarity across 
consecutive 12–24‑h time blocks and mean whole brain ADC values. Good outcome was defined as Cerebral Perfor‑
mance Category of 1–2 (i.e., independence for activities of daily living) at the time of hospital discharge.

Results: Of 113 patients with cardiac arrest, 45 patients had burst suppression (mean cardiac arrest to MRI time 
4.3 days). Three study participants with burst suppression had a good outcome. Burst similarity calculated using DTW 
with bursts of varying lengths was correlated with mean ADC value in the first 36 h after cardiac arrest: Pearson’s r: 
0–12 h: − 0.69 (p = 0.039), 12–24 h: − 0.54 (p = 0.002), 24–36 h: − 0.41 (p = 0.049). Burst similarity measured with bursts 
of equal lengths was not associated with mean ADC value with cross‑correlation or DTW, except for DTW at 60–72 h 
(− 0.96, p = 0.04).

Conclusions: Burst similarity on EEG after cardiac arrest may be associated with acute brain injury severity on MRI. 
This association was time dependent when measured using DTW.
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Introduction
Each year, approximately 475,000 Americans die of car-
diac arrest [1]. Survival to hospital discharge for out-of-
hospital cardiac arrest is approximately 10%, and 70% 
of patients admitted to the hospital die after withdrawal 
of life-sustaining therapies (WLST) due to severe brain 
injury [2, 3]. Therefore, precise and accurate brain injury 
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diagnostic tools are essential for individualizing interven-
tions and prognostication early on.

Current multimodal approaches to neurological prog-
nostication integrating clinical examination, electroen-
cephalography (EEG) monitoring, and brain imaging 
have limited sensitivity for early identification of patients 
with potential for neurological recovery and imperfect 
specificity to identify patients with irreversible injury 
[4–6]. EEG has emerged as a helpful tool for early strati-
fication of recovery potential. However, the influence of 
sedatives on EEG signals raises concerns for clinicians 
when relying on these tests for decisions about WLST 
[7]. Burst suppression is considered one of the most 
specific EEG predictors of poor outcome, but current 
guidelines recommend the use of this EEG pattern only 
24–72 h after arrest if there is no concurrent use of seda-
tives, which can be challenging in critically ill patients [7, 
8]. Burst suppression with identical bursts is a subtype of 
burst suppression characterized by bursts with very high 
signal correlation, and it has been proposed that this pat-
tern is nearly always associated with poor outcome inde-
pendent of temperature modulation or sedative effects 
[9–15]. However, evaluation of prognostic tests in car-
diac arrest can be confounded by self-fulfilling prophe-
cies from WLST. Diffusion magnetic resonance imaging 
(MRI) of the brain can provide an unbiased assessment of 
structural brain injury after cardiac arrest as it precedes 
WLST in these patients [16]. Therefore, demonstrating 
an association between identical bursts and injury on 
MRI would further support the role of identical bursts in 
prognostication and corroborate previous studies with 
postmortem brain histopathology [17]. Moreover, quan-
tifying the evolution of identical bursts from the time 
of cardiac arrest and defining the optimal timing and 
method for burst similarity evaluation needs additional 
investigation.

In this two-center study, our primary hypothesis was 
that the degree of EEG burst similarity measured dur-
ing burst suppression reflects the severity of structural 
brain injury after cardiac arrest on MRI. To address this 
hypothesis, we used an objective measure of structural 
brain injury, that is, apparent diffusion coefficient (ADC) 
on MRI. In addition, we describe the application of a 
novel method for burst similarity evaluation (dynamic 
time-warping [DTW]) against a standard metric for 
burst similarity evaluation (cross-correlation [XCORR]).

Materials and Methods
Standard Protocol Approvals and Patient Consents
This retrospective study was approved by the Partners 
Healthcare Institutional Review Board, and informed 
consent was waived.

Cohort
This was a retrospective analysis of clinical, EEG, and 
MRI data from patients with cardiac arrest admitted 
to the Massachusetts General Hospital and Brigham 
and Women’s Hospital from July 2009 to February 
2017. The inclusion criteria were nontraumatic cardiac 
arrest, age ≥ 18  years, return of spontaneous circula-
tion (ROSC), Glasgow Coma Scale score ≤ 8 on admis-
sion, use of targeted temperature management (TTM) 
of 32–34 °C, and prognostication using EEG and MRI. 
The exclusion criteria were acute cerebral hemorrhage 
or acute cerebral infarction. Sedation was routinely 
administered to patients using propofol at 0–80 μg/kg/
min and fentanyl at 0–200 μg/kg/min during TTM and 
continued as needed based on clinicians’ discretion. 
Midazolam infusion at 0–5  mg/h was used depend-
ing on side effects or contraindications to propofol. 
Patients were monitored with EEG as soon as possible 
following intensive care unit admission, and EEG moni-
toring was continued until after rewarming, unless 
study participants regained consciousness, had WLST, 
or died. EEG recordings in participating hospitals use 
19 channels and follow the 10–20 international system. 
Brain MRI was performed between days 2 and 12 after 
cardiac arrest for all patients included in the study. 
Neurological outcome at hospital discharge was deter-
mined by retrospective review of the electronic health 
record using the Cerebral Performance Category (CPC) 
[8]. Good outcome was defined as a CPC score of 1–2 
(i.e., independence for activities of daily living).

Quantitative EEG Analysis
EEGs were downsampled to 100  Hz, bandpass filtered 
from 0.5 to 50 Hz, and re-referenced to a bipolar mon-
tage. Bursts and burst suppression epochs were meas-
ured on individual EEG channels [18]. Within each EEG 
channel, samples were labeled as either (1) burst or (0) 
suppression by calculating recursive variance when a 
sample exceeded a variance threshold. We set the vari-
ance threshold for a timestep to be labeled as a burst to 
1.75 Hz based on the optimal variance threshold for burst 
suppression detection in a previous study from our group 
[18]. The forgetting time, which controls the weight of 
past values in the recursive variance estimate of the cur-
rent timestep, was set to 0.1047 [18].

Local burst suppression detections (per channel) were 
combined into a global (all channels) burst suppression 
detection, and a sample was labeled as a suppression if 
there was at least 60% agreement between channels [19]. 
Otherwise, the sample was labeled as a burst. Any sup-
pression epoch shorter than 0.5  s was not labeled as 
suppression.



Burst Suppression Ratio and Burst Suppression Episodes
Burst suppression ratio is defined as the percentage of 
time steps labeled as suppression (< 5 uV amplitude) in 
a sliding window of 1  min using the global burst sup-
pression labels. Burst suppression episodes were defined 
as epochs of time when burst suppression ratios were 
greater than 50% for a minimum of 10 consecutive min-
utes. Burst similarity analysis only included bursts con-
tained within burst suppression episodes. If two burst 
suppression episodes were less than 60  s apart, the two 
episodes were considered as one continuous burst sup-
pression episode. Interburst intervals were not recorded.

Burst Similarity Analysis
For each burst suppression episode, a similarity value 
was calculated for all available burst pairs occurring 
within the episode independent of its length. All burst 
values were individually normalized by mean and stand-
ard deviation [20]. Burst similarity analysis was per-
formed with (1) XCORR using bursts with equal lengths, 
(2) DTW using bursts with equal lengths, and (3) DTW 
using bursts with varying lengths. To evaluate bursts with 
equal lengths, bursts lasting shorter than 500  ms and 
longer than 5 s were removed from analysis. To evaluate 
bursts with varying lengths, bursts lasting shorter than 
100  ms and longer than 5  s were removed from analy-
sis. For all analyses, only signal data within 500 ms from 
bursts’ starting times were used [9]. Allowing similar-
ity calculation for burst shapes of varying lengths in the 
third implementation using DTW took advantage of the 
algorithm’s flexibility in comparing signals of different 
lengths, which is not possible using XCORR because it 
only allows comparison of signals with the same length. 
Qualitative assessment of identical bursts was not pur-
sued. Analysis of features within each burst (e.g., entropy 
or spectral) was not pursued.

XCORR measures the similarity between two signals by 
performing a dot product between a pair of signals across 
various sliding positions, and it was implemented using 
the MATLAB xcorr (version 2017a; Mathworks, Natick, 
MA) function over a range of lags. The maximum value 
of the correlation over all time lags was stored for each 
pair of bursts. DTW measures the similarity between 
two signals after they are optimally aligned. Use of DTW 
allows for small amounts of local “warping” (stretching 
or shrinking) of the time axis to achieve optimal align-
ment, that is, to minimize the sum of the mean squared 
differences between the two signals after alignment [21]. 
Constraints on the largest temporal shift allowed (the 
“Sakoe-Chiba bound”) was set to 200 samples. Smaller 
DTW values indicate higher similarity (smaller differ-
ence) between the two signals after alignment. Similarity 

detection for DTW and XCORR was performed for all 
bursts within a burst suppression episode.

Time‑Dependent Burst Similarity Analysis
Mean burst similarity was calculated using a sliding 
window for each individual burst and its 10 neighbors 
to the left and 10 neighbors to the right (XCORR and 
DTW). DTW similarity values were normalized and sub-
tracted from 1 so that burst similarity values for DTW 
and XCORR were between 0 and 1 (1 indicating highest 
similarity).

Analysis of 50 Sequential Bursts Without Time‑Dependent 
Analysis
To compare findings with the original XCORR method 
for identical bursts determination, segments of 50 
sequential bursts closest to the 24-h timestamp following 
cardiac arrest were identified for each study participant 
with burst suppression episodes [9].

Brain MRI Analysis
Average whole brain ADC signal intensity was obtained 
using a semiautomated method, as previously described 
(Analyze Pro 1.0; Overland Park, KS) [22]. Briefly, the 
entire brain was identified as a region of interest on dif-
fusion weighted sequences, and the resulting map was 
transferred to the ADC sequence. Artifact and cerebro-
spinal fluid were removed by masking out signal below 
200  mm2/s and greater than 2000  mm2/s, respectively. 
Mean ADC signal intensity was then measured on the fil-
tered region of interest map.

Correlation Between Burst Similarity and Whole Brain 
Mean ADC
Pearson’s correlation coefficients (r) and p values were 
calculated between whole brain mean ADC intensity 
and burst similarity for each 12–24-h time block. Not all 
patients had EEG data available at all epochs; therefore, 
the number of patients per time block varies based on 
EEG data availability.

Statistical Analysis
Univariate analysis of different groups was performed 
using Pearson χ2 for categorical variables, t-tests for 
continuous variables with normal distribution, and 
Mann–Whitney U-tests for variables without normal dis-
tribution. Statistical significance was set to an alpha level 
of 0.05.

Results
Of the 118 screened study participants who had both 
EEG monitoring and brain MRI, five patients were 
excluded because their EEG recordings started more 



than 5  days following ROSC (Supplementary Fig.  1). 
The mean age of the final cohort including 113 patients 
was 53.6  years (standard deviation 17.4), and 63.7% 
were men. Ventricular fibrillation or ventricular tachy-
cardia (44.3%) was the most common initial rhythm, 
followed by pulseless electrical activity (29.2%), asys-
tole (13.3%), and unknown (13.3%). Thirty (26.6%) 
study participants had a good neurological outcome at 
discharge (CPC 1–2), 11 (9.7%) had a CPC of 3, five 
(4.4%) had a CPC of 4, and 67 (59.3%) had a CPC of 
5. The WLST rate was 89.3% for patients with CPC 
of 5. Burst suppression episodes were identified in 45 
(39.8%) study participants; three study participants 
had a good neurological outcome at discharge (CPC 2), 
two had a CPC of 3, four a CPC of 4, and 36 CPC of 
5. The WLST rate was 88.3% for patients with CPC of 
5 who had burst suppression. The mean time to MRI 
from ROSC for patients with burst suppression was 
4 days (standard deviation 1.8 days), and five patients 
had MRI done between days 5 and 12. The mean whole 
brain ADC value was 1,026  mm2/s for good outcome 
and 855  mm2/s for poor outcome groups. Characteris-
tics for patients with burst suppression and the entire 
cohort are summarized in Table 1 and Supplementary 
Table 1, respectively. 

Temporal Trends for Burst Suppression Ratio
The longitudinal evolution of burst suppression ratios 
from the time of cardiac arrest is summarized in Fig. 1 
(each row represents the hourly burst suppression 
ratio for one study participant and rows are ranked 
by CPC scores). Only three study participants with 
burst suppression had good outcome, and the duration 
of burst suppression was shorter and resolved earlier 
than study participants with poor outcome. 

Burst Similarity Temporal Evolution
We summarized the temporal evolution of XCORR and 
DTW for bursts with equal lengths and DTW for bursts 
with varying lengths in Fig. 2. Evolution of burst similar-
ity was variable between patients, with similarity trends 
varying from stable to up trending or down trending 
overtime. Mean similarity was higher for patients with 
poor outcome than the three patients with good out-
come. Mean burst similarity between good outcome 
patients (n = 3) and poor outcome patients (n = 42) was 
0.52 versus 0.56 for XCORR, 0.47 versus 0.54 for DTW 
with bursts of equal lengths, and 0.50 versus 0.59 for 
DTW with bursts of varying lengths.

Temporal Burst Similarity Correlation with Whole Brain 
Mean ADC
High burst similarity was correlated with worse brain 
injury on MRI (i.e., lower mean ADC). We summa-
rize mean burst similarity across 72  h and whole brain 
mean ADC correlation with XCORR and DTW for 
bursts with equal lengths and DTW for bursts with 
varying lengths (Fig.  3). This association was significant 
with bursts measured in the first 36 h using DTW with 
bursts of varying lengths (Pearson’s r: 0–12  h: − 0.69 
[p = 0.039], 12–24  h: − 0.54 [p = 0.002], 24–36  h: − 0.41 
[p = 0.049], 36–48  h: − 0.32 [p = 0.22], 48–60  h: 0.24 
[p = 0.54], 60–72  h: 0.14 [p = 0.86]). The correlation 
between burst similarity and whole brain mean ADC 
values using XCORR and DTW for bursts with equal 
lengths was not significant except for DTW at 60–72 h; 
however, only four patients had burst suppression within 
that time window (Pearson’s r: 0–12 h: − 0.17 and − 0.43 
[p = 0.67 and 0.24], 12–24  h: − 0.21 and 0.01 [p = 0.28 
and 0.96], 24–36  h: − 0.20 and − 0.19 [p = 0.35 and 
0.38], 36–48  h: − 0.36 and − 0.28 [p = 0.16 and 0.28], 
48–60  h: 0.01 and − 0.31 [p = 0.99 and 0.45], 60–72  h: 
0.21 and − 0.96 [p = 0.79 and 0.04]). The results for mean 

Table 1 Characteristics of patients with burst suppression stratified by outcome

ADC apparent diffusion coefficient, CPC Cerebral Performance Category, MRI magnetic resonance imaging, PEA pulseless electrical activity, ROSC return of 
spontaneous circulation, SD standard deviation, VF/VT ventricular fibrillation or ventricular tachycardia

Good CPC 1–2 (n = 3) Poor CPC 3–5 (n = 42) Total (N = 45)

Age, mean (SD) (y) 70.33 (6.7) 55.1 (15.9) 56.1 (15.9)

Male (%) 100 57.1 60

Initial cardiac rhythm (%)

 Asystole 0 9.5 8.8

 PEA 33.3 45.2 44.4

 VF/VT 66.7 31.0 33.3

 Unknown (unshockable) 0 14.3 13.3

Mean time to MRI from ROSC (SD) (days) 4.3 (1.7) 5 (1.8) 4.3 (1.8)

Mean ADC (SD)  (mm2/s) 1026 (58) 855 (128) 866 (132)



burst similarity correlation with whole brain mean ADC 
values across consecutive 12 h blocks are summarized in 
Fig. 4.

Burst Similarity Analysis for First 50 Consecutive Bursts
Two study participants in the poor outcome group 
were excluded because they did not have 50 consecu-
tive bursts with lengths of at least 500 ms. Mean burst 

similarity values for XCORR and DTW were 0.42 and 
0.74 among good outcome patients and 0.50 and 0.78 
among poor outcome patients, respectively. None of the 
three patients with good outcomes had mean XCORR 
similarity greater than 0.75, which was the threshold 
for identical bursts determined in the original report 
describing identical bursts [9]. Figure  5 shows a visu-
alization of two exemplary study participants with good 
or poor outcome in which all 50 bursts are overlaid.

Fig. 1 Evolution of burst suppression ratio per hour from time of cardiac arrest, stratified by neurological outcome (Cerebral Performance Category 
score 1–5). Lighter yellow color indicates a higher percentage of time segments labeled as suppression within a 1‑min sliding window. Light gray 
portions indicate the absence of burst suppression episodes. White spaces indicate missing signal or artifacts within the electroencephalography 
signal. Patients were ranked by overall mean burst suppression ratio within each Cerebral Performance Category score (Color figure online)

Fig. 2 Evolution of burst similarity for patients with burst suppression per hour since the time of cardiac arrest, stratified by neurological outcome 
(Cerebral Performance Category score 1–5). a Burst similarity calculated using XCORR with bursts of equal lengths. b Burst similarity calculated using 
DTW with bursts of equal lengths. c Burst similarity calculated using DTW with bursts of varying lengths. Values closer to 1 (yellow) indicate higher 
similarity between bursts. Light gray portions indicate absence of burst suppression episodes. White spaces indicate missing signal or artifacts 
within the electroencephalography signal. DTW, dynamic time‑warping, XCORR, cross‑correlation (Color figure online)



Discussion
This study demonstrates that burst similarity measured 
early during burst suppression after cardiac arrest is asso-
ciated with severity of structural brain injury on MRI. 
Burst similarity was measured through automated com-
putational analysis of all bursts available on EEG, which 
was compared against whole brain quantitative analysis 
of diffusion weighted imaging on MRI. Importantly, this 
quantitative approach to validating burst similarity as 
an early marker of brain injury severity using MRI is not 
directly affected by bias from self-fulfilling prophesies 
related to clinical decisions about continuation of life-
sustaining therapies because brain MRI is obtained prior 
to WLST. Potential bias from qualitative review of EEG 
and MRI studies is mitigated through the use of auto-
mated techniques. In addition, we propose a new method 
for burst similarity calculation (DTW) that is more flex-
ible in the quantification of burst similarity by allow-
ing nonlinear alignment of burst signals. This approach 
uncovered the longitudinal time-dependency of burst 
similarity, which had the highest association with brain 
injury severity within 24 h from cardiac arrest, losing its 
value after 36 h. These results corroborate the potential 
value of high burst similarity as an early marker of severe 
brain injury after cardiac arrest. These results emphasize 
the opportunity of research using automated computa-
tional analysis of EEG for early patient risk stratification 
and monitoring that may prevent premature WLST or 
unnecessary ancillary testing.

Identical bursts represent a low-dimensional state of 
brain activity dynamics characterized by bursts with high 
synchronicity caused by significant hypoxic-ischemic 
brain injury following cardiac arrest [9, 23]. All study 
participants in our cohort with average burst similarity 
above 0.5 using XCORR had poor outcome, corroborat-
ing several studies that have identified burst suppres-
sion with identical bursts as a marker of poor prognosis 
in cardiac arrest; however, WLST is an important con-
founder [9–15]. An important limitation of previous 
literature was that the ground truth for evaluation of 
predictive performance using identical bursts was neuro-
logic functional outcome, which could have been biased 
by self-fulfilling prophesies, as the presence of burst 
suppression on EEG might lead to discontinuation of 
life-sustaining therapies when that information was pre-
sented to treating clinicians. The current study confirmed 
that the degree of burst similarity was associated with 
poor outcomes, but it also demonstrated that burst simi-
larity is associated with severity of brain injury on diffu-
sion MRI. A previous study from Barbella and colleagues 
[10] have also demonstrated that the presence of identi-
cal bursts was associated with severity of brain injury 
measured using neuron-specific enolase, underscoring Fi

g.
 3

 R
el

at
io

ns
hi

p 
be

tw
ee

n 
m

ea
n 

A
D

C
 o

n 
br

ai
n 

M
RI

 a
nd

 m
ea

n 
bu

rs
t s

im
ila

rit
y 

du
rin

g 
1–

72
 h

 s
in

ce
 ti

m
e 

of
 c

ar
di

ac
 a

rr
es

t. 
a 

Bu
rs

t s
im

ila
rit

y 
ca

lc
ul

at
ed

 u
si

ng
 X

CO
RR

 w
ith

 b
ur

st
s 

of
 e

qu
al

 le
ng

th
s. 

b 
Bu

rs
t s

im
ila

rit
y 

ca
lc

ul
at

ed
 u

si
ng

 D
TW

 w
ith

 b
ur

st
s 

of
 e

qu
al

 le
ng

th
s. 

c 
Bu

rs
t s

im
ila

rit
y 

ca
lc

ul
at

ed
 u

si
ng

 D
TW

 w
ith

 b
ur

st
s 

of
 v

ar
yi

ng
 le

ng
th

s. 
AD

C 
ap

pa
re

nt
 d

iff
us

io
n 

co
effi

ci
en

t, 
D
TW

 d
yn

am
ic

 ti
m

e‑
w

ar
pi

ng
, X
CO

RR
 c

ro
ss

‑c
or

re
la

tio
n



the potential of burst similarity as a functional measure 
of neuronal damage. A study from Keijzer and colleagues 
[24] highlighted that EEG and MRI are complementary in 
prognostic assessment.

The flexibility of DTW in measuring time-series simi-
larity enabled characterization of burst similarity despite 
variability in synchronicity between bursts. An advan-
tage of the method of one-to-many matching that DTW 
applies is the analysis of signals of different lengths, as 
opposed to XCORR, which can only compare bursts with 
the same lengths. In addition, use of DTW in this analysis 
uncovered the evolution of similarity over time that was 
not apparent with XCORR, demonstrating that decrease 
in similarity was generally observed over time for 
patients with both good and poor outcome. This decrease 
in similarity was also associated with lower association 
with brain injury severity on MRI, suggesting that early 
similarity measures might be superior to late measures 
for prediction of brain injury burden. This observation 
would go against recommendations of only using EEG 
information about burst suppression after 24 h from the 
time of arrest and only when patients are completely off 
sedation [7]. Previous studies have shown that the impor-
tant prognostic value of burst suppression within the first 
24 h from arrest and despite concomitant use of sedatives 
and temperature control [25–29]. Early information from 
EEG is helpful in prognostication, but it must be part of 
a multimodal evaluation that incorporates assessment of 
confounders.

The limitations from this study pose further ques-
tions for future research into the predictive power of 
burst suppression with identical bursts in cardiac arrest. 
Given that only three patients with burst suppression 
in our cohort had good outcome, further research with 

larger patient cohorts would allow better comparison 
of outcome predictive performance of burst similarity 
measured with XCORR, DTW, and qualitative human 
morphological assessment. Evaluation of burst features 
(e.g., entropy, frequency) and burst discontinuity evolu-
tion may add to predictive performance and biological 
mechanisms underlying burst similarity [30, 31]. Our 
cohort had lower burst similarity than other cohorts and 
may not be representative. This could have been due to 
inclusion of patients with less severe burst suppression in 
our cohort, as only patients who underwent brain MRI 
were included, or attrition and selection bias. Use of sed-
atives may have affected burst signal properties and tim-
ing of burst suppression. Determination of causal effects 
of sedatives on burst similarity could not be determined 
in this retrospective analysis. Prospective studies with 
real-time tracking of anesthetics may help elucidate this 
relationship. Although only five patients underwent MRI 
after the fifth day after cardiac arrest, difference in MRI 
timing between patients limited the temporal trends 
analysis comparing burst similarity to MRI across con-
secutive time blocks. In fact, the degree of brain injury 
estimated from MRI data in this study may have been 
underestimated given potential for pseudonormaliza-
tion of ADC values after 3  days from injury. Diffusion 
changes on MRI that are potentially reversible, such as 
diffusion restriction in the setting of seizure, may have 
confounded the measure of structural brain injury used. 
Regional analysis could have corroborated previous asso-
ciation of thalamic injury in histopathologic studies with 
identical bursts [17]. We only had functional recovery 
assessment at the time of patient discharge, and there-
fore evaluation of longitudinal improvement in the five 
study participants with CPC 3 or 4 is limited. This cohort 

Fig. 4 Correlations between mean ADC on brain magnetic resonance imaging and mean burst similarity across consecutive 12‑h time periods 
since the time of cardiac arrest. a Burst similarity calculated using XCORR with bursts of equal lengths. b Burst similarity calculated using DTW with 
bursts of equal lengths. c Burst similarity calculated using DTW with bursts of varying lengths. The number of patients who had EEG available at 
each 12‑h block is indicated in the x‑axis. ADC apparent diffusion coefficient, DTW dynamic time‑warping, EEG electroencephalography, XCORR 
cross‑correlation



only included patients who had both EEG and MRI per-
formed; therefore, it is not representative of all patients 
with cardiac arrest undergoing multimodal prognostica-
tion in participating hospitals.

Conclusions
This study demonstrates that burst similarity is associ-
ated with the degree of brain injury severity measured 
with diffusion MRI after cardiac arrest and that this 
association is time dependent, highlighting the value of 
measuring early burst suppression features despite TTM 

Fig. 5 Example burst plots and burst similarity for 50 burst epochs for good and poor outcome patients. a 50 burst shapes overlaid from good 
outcome patient (CPC 2). b Selected burst shapes plotted individually for good outcome patients. c Similarity calculated using cross‑correlation 
on left and dynamic time‑warping on right for good outcome patients. d Quantitative brain magnetic resonance imaging map shows bilateral 
thalamic hypoxic‑ischemic brain injury without severe bilateral hemispheric cortical injury (mean whole brain ADC: 982  mm2/s). e 50 burst shapes 
overlaid from poor outcome patient (CPC 5). f Selected burst shapes plotted individually for poor outcome patient. g Similarity calculated using 
cross‑correlation on the left and dynamic time‑warping on the right for poor outcome patient. Red coloring in burst indicates the first 500 ms used 
for similarity analysis. h Quantitative brain magnetic resonance imaging map shows severe bilateral hemispheric cortical injury, which is worse in 
the posterior temporo‑parietal and occipital regions (mean whole brain ADC: 778  mm2/s). ADC apparent diffusion coefficient, CPC Cerebral Perfor‑
mance Category, EEG electroencephalography (Color figure online)



and sedation use. We propose DTW as a novel metric 
of burst similarity with algorithmic advantages com-
pared with the standard XCORR method; however, this 
approach needs further validation against XCORR and 
visual review in larger cohorts of patients who have seda-
tive dosing available. Multimodal prognostication incor-
porating neuroimaging with quantitative EEG analysis 
may increase diagnostic specificity and enable early and 
real-time determination of burst suppression secondary 
to severe brain injury.
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