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Abstract 

Background: Head elevation is recommended as a tier zero measure to decrease high intracranial pressure (ICP) 
in neurocritical patients. However, its quantitative effects on cerebral perfusion pressure (CPP), jugular bulb oxygen 
saturation  (SjvO2), brain tissue partial pressure of oxygen  (PbtO2), and arteriovenous difference of oxygen  (AVDO2) are 
uncertain. Our objective was to evaluate the effects of head elevation on ICP, CPP,  SjvO2,  PbtO2, and  AVDO2 among 
patients with acute brain injury.

Methods: We conducted a systematic review and meta-analysis on PubMed, Scopus, and Cochrane Library of stud-
ies comparing the effects of different degrees of head elevation on ICP, CPP,  SjvO2,  PbtO2, and  AVDO2.

Results: A total of 25 articles were included in the systematic review. Of these, 16 provided quantitative data regard-
ing outcomes of interest and underwent meta-analyses. The mean ICP of patients with acute brain injury was lower 
in group with 30° of head elevation than in the supine position group (mean difference [MD] − 5.58 mm Hg; 95% 
confidence interval [CI] − 6.74 to − 4.41 mm Hg; p < 0.00001). The only comparison in which a greater degree of 
head elevation did not significantly reduce the ICP was 45° vs. 30°. The mean CPP remained similar between 30° of 
head elevation and supine position (MD − 2.48 mm Hg; 95% CI − 5.69 to 0.73 mm Hg; p = 0.13). Similar findings were 
observed in all other comparisons. The mean  SjvO2 was similar between the 30° of head elevation and supine position 
groups (MD 0.32%; 95% CI − 1.67% to 2.32%; p = 0.75), as was the mean  PbtO2 (MD − 1.50 mm Hg; 95% CI − 4.62 to 
1.62 mm Hg; p = 0.36), and the mean  AVDO2 (MD 0.06 µmol/L; 95% CI − 0.20 to 0.32 µmol/L; p = 0.65).The mean ICP of 
patients with traumatic brain injury was also lower with 30° of head elevation when compared to the supine position. 
There was no difference in the mean values of mean arterial pressure, CPP,  SjvO2, and  PbtO2 between these groups.

Conclusions: Increasing degrees of head elevation were associated, in general, with a lower ICP, whereas CPP and 
brain oxygenation parameters remained unchanged. The severe traumatic brain injury subanalysis found similar 
results.
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Introduction
Historically, studies have focused on intracranial pressure 
(ICP) and cerebral perfusion pressure (CPP) as targets in 
the management of patients with acute brain injury. In 
general, the treatment thresholds in the setting of intrac-
ranial hypertension are mainly derived from traumatic 
brain injury (TBI) guidelines because targets for non-
traumatic etiologies were not adequately studied [1–3]. 
The fourth edition of Guidelines for the Management of 
Severe TBI [1], published by the Brain Trauma Founda-
tion, recommends treating an ICP > 22  mm Hg and tar-
geting a CPP between 60 and 70 mm Hg, values that are 
associated with favorable outcomes [4].

By considering only ICP and CPP, important data 
regarding the physiologic and metabolic state of the brain 
are overlooked, and significant parenchymal hypoxia may 
occur even when ICP and CPP are normal [5, 6]. Data 
regarding cerebral oxygenation can be mainly assessed 
by jugular bulb oxygen saturation  (SjvO2) or by brain 
tissue partial pressure of oxygen  (PbtO2). Moreover, the 
arteriovenous difference of oxygen  (AVDO2) can also be 
determined by calculating the difference between the 
arterial oxygen saturation and  SjvO2 [7]. The last severe 
TBI guidelines [1] recommend that the use of  SjvO2 or 
 AVDO2 as a source of information for management deci-
sions may be considered to reduce mortality and improve 
outcomes at 3 and 6 months post injury [1, 8–10]. This 
guideline provides no recommendations regarding the 
 PbtO2 for such purposes, although there is increasing 
interest in this parameter and ongoing phase III clinical 
trials evaluating whether its use is associated with better 
functional outcomes [11–13].

A variety of measures may be adopted to reduce ICP 
of patients with acute brain injury, including pharmaco-
logical and nonpharmacological interventions as well as 
emergent surgery [3]. Head elevation is generally recom-
mended as a tier zero measure [3, 14, 15] in this setting 
and was demonstrated as an effective measure to reduce 
ICP in a previous meta-analysis [16]. However, by simul-
taneously decreasing mean arterial pressure (MAP), head 
elevation may theoretically reduce CPP and/or cerebral 
oxygenation [17]. The repercussions of head elevation on 
these parameters on CPP, as well as on cerebral oxygena-
tion, are uncertain. In fact, we are unaware of meta-anal-
yses addressing such parameters. Therefore, we aim to 
analyze the effects of different degrees of head elevation 

on ICP, CPP,  SjvO2,  PbtO2, and  AVDO2 among patients 
with acute brain injury through a systematic review and 
meta-analysis.

Methods
This systematic review and meta-analysis was performed 
in line with recommendations from the Cochrane Collab-
oration and the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses statement guidelines. The 
protocol was registered and made publicly available on 
the PROSPERO database (CRD42023391072) on January 
22, 2023. This article complies with ethical standards, and 
institutional review board approval was not required.

Search Strategy and Selection Process
We systematically searched for studies on PubMed, Sco-
pus, and Cochrane Library from inception to January 17, 
2023. The exact search string is presented in Supplemen-
tary Table  1. Two independent reviewers analyzed all 
titles and abstracts for eligibility criteria. Articles were 
included if they assessed the effect of head elevation on 
any of the main outcomes in the setting of acute brain 
injury, defined as the life threatening acute neurologi-
cal condition requiring the use of an invasive ICP meas-
urement device. The main outcomes were ICP (direct 
measurements), CPP,  SjvO2,  PbtO2, and  AVDO2. Articles 
were excluded (1) if they were editorials, letters, book 
chapters, brief reports, or protocols and (2) if they were 
not available in the English language. When necessary, 
the full articles were also analyzed. Discrepancies were 
resolved by consensus between the reviewers.

Risk of Bias and Publication Bias Assessment
We used the Risk of Bias in Non-randomized Studies of 
Interventions (ROBINS-I) tool for risk of bias assess-
ment. The risk of bias was evaluated by two independ-
ent reviewers. Discrepancies were resolved by consensus 
between the reviewers. Publication bias was assessed 
through funnel plots.

Data Retrieval
The following main outcomes were collected and ana-
lyzed from each report: (1) ICP, (2) CPP, (3)  SjvO2, (4) 
 PbtO2, and (5)  AVDO2. Other data were also retrieved: 
(1) number of patients, (2) invasive ICP monitoring type, 
(3) age distribution, (4) degree of head elevation, (5) type 



of brain injury, (6) mean invasive MAP value before and 
after intervention, (7) site of insertion of MAP catheter 
(e.g., radial artery or femoral artery), (8) level of MAP 
transducer (e.g., foramen of Monro or right atrium), (9) 
timing of intervention, and (10) timing of measurement 
of main outcomes after head positioning. Patients who 
underwent the intervention served as their own con-
trols, with different degrees of elevation. When studies 
reported multiple timings of outcome measurements, 
we considered the first measurement. When studies 
reported more than one MAP transducer level, we con-
sidered the one measured at the level of Monro foramen.

Statistical Analysis
We used Cochrane’s Review Manager version 5.4 (Nordic 
Cochrane Centre, The Cochrane Collaboration, Copen-
hagen, Denmark) for statistical analysis. Weighted mean 
differences (MDs) were used to pool continuous out-
comes that appeared in two or more studies. Heteroge-
neity was evaluated with the Cochran Q test and the I2 
statistic. A p < 0.10 and an I2 statistic > 25% were consid-
ered as heterogeneous. Overall estimates of effect and 
95% confidence intervals (CIs) were calculated using a 
random-effects model and inverse variance weighting. 
When outcomes were present only on charts and did not 
show the exact values, we used an online resource to pre-
dict the values (https:// apps. autom eris. io/ wpd/). When 
articles reported median and interquartile range, we esti-
mated means and standard deviations (SDs) according to 
the methodology described by Luo et  al. [18] and Wan 
et al. [19].

Subgroup and Sensitivity Analyses
We performed a subanalysis of studies that included only 
patients with TBI. When both the Cochran Q test p value 
and the I2 statistic indicated heterogeneity, we performed 
sensitivity analyses. This consisted of (1) leaving indi-
vidual studies out of the analysis (leave-one-out analysis) 
and (2) performing a meta-analysis of studies in which 
the baseline mean ICP (i.e., the ICP in the supine posi-
tion) plus 1 SD reached the value of at least 22 mm Hg 
(higher ICP analysis).

Results
Study Selection, Baseline Characteristics, and Qualitative 
Analysis
The initial search yielded 1,610 results (Fig. 1). After the 
removal of duplicates and applications of eligibility crite-
ria, 25 articles were included in the systematic review. Of 
these, 16 provided quantitative data regarding outcomes 
of interest, allowing for meta-analysis (quantitative analy-
sis) [20–35]. Each outcome was analyzed in each com-
parison of 15° increments of head elevation when there 

were two or more included studies (Fig. 1). Baseline char-
acteristics of the nine studies [36–44] included in the 
qualitative analysis are shown in Supplementary Table 2, 
and their main findings are presented in Supplementary 
Table  3. These studies lacked sufficient information to 
undergo a meta-analysis, such as those that underwent 
the quantitative analysis. The baseline characteristics of 
studies included in the quantitative analysis are shown 
in Table 1. All included studies were prospective cohort 
studies.

ICP, MAP, and CPP
The mean ICP of patients with acute brain injury was 
lower at 30° of head elevation than in the supine posi-
tion (MD − 5.58  mm Hg; 95% CI − 6.74 to − 4.41  mm 
Hg; p < 0.00001; Fig.  2a). The only comparison in which 
a greater degree of head elevation did not significantly 
reduce the ICP was 45° vs. 30°. In all other comparisons, 
increments of ≥ 15° resulted in significantly lower ICP 
values (Supplementary Figs.  1–5). Increments of ≥ 15° 
also resulted in lower MAP values, except for the 45° vs. 
30° comparison (Fig.  2b and Supplementary Figs.  1–5). 
The mean CPP remained similar between 30° of head ele-
vation and the supine position (MD − 2.48 mm Hg; 95% 
CI − 5.69 to 0.73 mm Hg; p = 0.13; Fig. 2c). Similar find-
ings were observed in all other comparisons (Supplemen-
tary Figs. 1–5).

Brain Oxygenation
The mean  SjvO2 was similar between the 30° of head 
elevation and supine position groups. There was no sta-
tistically significant difference between groups (MD 
0.32%; 95% CI − 1.67% to 2.32%; p = 0.75; Fig.  3a). The 
mean  PbtO2 was similar between the 30° of head eleva-
tion and supine position groups (MD − 1.50  mm Hg; 
95% CI − 4.62 to 1.62 mm Hg; p = 0.36; Fig. 3b), as well 
as between the 30° and 15° of head elevation groups 
(MD − 0.99  mm Hg; 95% CI − 5.02 to 3.05  mm Hg; 
p = 0.63; Supplementary Fig.  3). The mean  AVDO2 was 
also similar between the 30° of head elevation and supine 
position groups (MD 0.06  µmol/L; 95% CI − 0.20 to 
0.32 µmol/L; p = 0.65; Fig. 3c).

Severe TBI Subanalysis
A total of five articles provided quantitative data regard-
ing outcomes of interest among patients with severe TBI, 
allowing for meta-analysis. This subanalysis was only 
possible in the 30° of head elevation group because out-
comes were not present in ≥ 2 studies for other compari-
sons. The mean ICP of patients with TBI was lower with 
30° of head elevation when compared with the supine 
position (MD − 4.78 mm Hg; 95% CI − 6.21 to − 3.36 mm 
Hg; p < 0.00001; Fig.  4a). There was no difference in the 

https://apps.automeris.io/wpd/


Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram for the identification of studies evaluating the effects of 
head elevation on intracranial pressure (ICP), cerebral perfusion pressure (CPP), jugular bulb oxygen saturation  (SjvO2), brain tissue partial pressure 
of oxygen  (PbtO2), and arteriovenous difference of oxygen  (AVDO2)
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mean values of MAP, CPP,  SjvO2, and  PbtO2 between 
these groups (Fig.  4b–e). Other studies that included 
patients with TBI as part of their sample did not provide 
data particularly for this condition.

Risk of Bias and Publication Bias
The overall risk of bias was low in 24% (n = 6 of 25), mod-
erate in 48% (n = 12 of 25), serious in 28% (n = 7 of 25), 
and critical in zero studies. The analysis of each study 
is presented in Supplementary Table 4. Funnel plots for 
each publication bias analysis are shown in Supplemen-
tary Figs. 6–11.

Heterogeneity
For the main outcomes, there was high heterogeneity 
(demonstrated by both the Cochran Q test p value and 
the I2 statistic) in the analysis of ICP and CPP between 
30° of head elevation and the supine position (Fig. 2a, c, 
respectively). In the TBI subanalysis, there was also high 
heterogeneity in the analysis of CPP between 30° of head 
elevation and the supine position (Fig. 4c).

Sensitivity Analysis
Leave‑one‑out Analysis
When removing the study by Schwarz et  al. [34] from 
the ICP analysis between 30° and the supine position, 
the I2 statistic dropped to 0% and the Cochran Q test p 
value increased to 0.56, meaning low heterogeneity. The 
removal of the study by Moraine et al. [29] also reduced 
in a lesser degree the heterogeneity, with an I2 statis-
tic of 17% and a Cochran Q test p value of 0.27. In the 
CPP analysis between 30° and the supine position, the 
study by Schwarz et al. [34] was the only study that, when 
removed, reduced the heterogeneity significantly, with an 
I2 statistic of 27% and a Cochran Q test p value of 0.18. In 
the CPP analysis of the TBI subanalysis between 30° and 
the supine position, the removal of the study by Dagod 
et al. [23] significantly reduced the heterogeneity, with an 
I2 statistic of 0% and a p value of 0.87.

Higher ICP Analysis
For this approach, we removed studies with a lower 
mean ICP from analyses with a high heterogeneity 
(the studies by Brimioulle et  al. [22], Dagod et  al. [23], 
and Schwarz et  al. [34]). The heterogeneity of the ICP 
analysis between 30° and the supine position reduced 
substantially (the I2 statistic dropped to 0%, and the 
Cochran Q test p value increased to 0.49). The analysis of 
CPP between 30° and the supine position found similar 
results (the I2 statistic dropped to 0%, and the Cochran N
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Q test p value increased to 0.71). In the severe TBI suba-
nalysis, we removed the study by Dagod et al. [23], and 
the heterogeneity of the CPP analysis between 30° and 

the supine position decreased significantly (the I2 sta-
tistic dropped to 0%, and the Cochran Q test p value 
increased to 0.87).

Fig. 2 Forest plots showing the mean differences between 30° of head elevation and supine positions in the setting of acute brain injury on 
intracranial pressure (ICP) (a), mean arterial pressure (MAP) (b), and cerebral perfusion pressure (CPP) (c). CI confidence interval, IV inverse variance, 
SD standard deviation



Discussion
Main Findings
We conducted a systematic review and meta-analysis 
regarding the effect of head elevation on ICP, CPP, and 
brain oxygenation in the acute brain injury setting. 
Increasing degrees of head elevation was associated, in 
general, with a lower ICP, whereas CPP and brain oxy-
genation parameters remained unchanged. The severe 
TBI subanalysis found similar results.

ICP and CPP
Our results demonstrated that increasing degrees of 
head elevation decreases ICP in patients with acute 
brain injury (Fig. 2a and Supplementary Figs. 1–5). This 
fact was also demonstrated by the severe TBI subanaly-
sis (Fig. 4a). The exception was the comparison between 
45° and 30° of head elevation, in which no statistical dif-
ference was found in the MD between groups. The CPP 
remained unchanged in all analyses (Figs. 2c and 4c and 
Supplementary Figs. 1–5). The MAP values decreased or 
tended to decrease with head elevation.

Of note, absolute CPP measurements may be affected 
by some MAP monitoring details, such as site of cath-
eter insertion and level of measurements, which are not 
consistent across studies and sometimes are not even 
reported (Supplementary Table 2 and Table 1). In fact, 
measurements through the radial artery may underesti-
mate MAP when compared to measurements through 
the femoral artery [45]. However, the differences in 
CPP measurements according to different degrees of 
head elevation should not be affected, regardless of 
the site of insertion. In addition, an MAP transducer 
at the level of the Monro foramen (approximately at 
the level of the tragus) tends to generate lower values 
than an MAP transducer placed at the level of right 
atrium when the head is elevated. Therefore, when an 
MAP transducer is placed at the level of right atrium, 
CPP values may be overestimated during head eleva-
tion. For purposes of accurate CPP calculations, coun-
cils by the Neuroanaesthesia and Critical Care Society 
of Great Britain and Ireland and the Society of British 
Neurological Surgeons endorse positioning (leveling) 

Fig. 3 Forest plots showing the mean differences between 30° of head elevation and supine positions in the setting of acute brain injury on jugular 
bulb oxygen saturation  (SjvO2) (a), brain tissue partial pressure of oxygen  (PbtO2) (b), and arteriovenous difference of oxygen  (AVDO2) (c). CI confi-
dence interval, IV inverse variance, SD standard deviation



the arterial transducer at the level of the middle cra-
nial fossa, which can be approximated to the tragus of 
the ear [46]. Moreover, we included studies of patients 
with different conditions and, hence, with different 
pathophysiology. For instance, the study by Schwarz 

et al. [34] notably increased heterogeneity in the analy-
sis of ICP and CPP between 30° of head elevation and 
the supine position by showing no effect on ICP and 
impairment on CPP (Fig. 2a, c). Interestingly, this was 
the only study that included exclusively patients with 

Fig. 4 Forest plots showing the mean differences between 30° of head elevation and supine positions in the subanalysis of severe traumatic brain 
injury (TBI) on intracranial pressure (ICP) (a), mean arterial pressure (MAP) (b), cerebral perfusion pressure (CPP) (c), jugular bulb oxygen saturation 
 (SjvO2) (d), brain tissue partial pressure of oxygen  (PbtO2) (e), and arteriovenous difference of oxygen  (AVDO2) (f). CI confidence interval, IV inverse 
variance, SD standard deviation



hemispheric ischemic stroke. In other articles, patients 
with ischemic stroke represented a small portion of the 
sample. In addition, the study by Schwarz et al. [34] was 
the one in which patients presented the lowest mean 
ICP in the supine position. Possibly, these factors were 
the most responsible for these discrepancies, and addi-
tional caution should be taken when extrapolating our 
results to the ischemic stroke population. Indeed, a 
prior meta-analysis [17] demonstrated that the middle 
cerebral artery mean flow velocity among patients with 
acute ischemic stroke increased significantly in the side 
affected but not in the unaffected side when they were 
positioned in a lying-flat head position at the supine 
position or at 15° of head elevation in comparison with 
30° of head elevation.

In the severe TBI analysis between 30° of head eleva-
tion and the supine position, the study by Dagod et al. 
[23] increased the heterogeneity of the CPP results by 
showing a deleterious effect. Conversely, other severe 
TBI studies showed no significant effect of head eleva-
tion on CPP (Fig.  4c). We did not find a specific rea-
son for these discrepancies because we did not detect 
patient characteristics, measurement methods, or 
interventional approaches that were exclusive to this 
specific study.

Brain Oxygenation
There are various types of brain oxygenation monitoring. 
The most used are the  SjvO2 and the  PbtO2. The  SjvO2 
can be used for the indirect measurement of oxygen sup-
ply to the brain as a whole and its consumption. It also 
allows for the calculation of the  AVDO2, whose altera-
tions may reflect changes in cerebral blood flow.  SjvO2 
and the  AVDO2 monitoring can be considered to reduce 
mortality and improve outcomes at 3 and 6 months after 
severe TBI [1, 8–10].

The  PbtO2 values reflect a regional oxygenation 
of the brain tissue, and there is increasing research 
interest in such a parameter. In fact, three phase III 
clinical trials are underway to study the benefits of 
 PbtO2 monitoring in the setting of severe TBI: the 
BOOST-3 trial [12] (NCT03754114), the OXY-TC trial 
[11] (NCT02754063), and the BONANZA trial [13] 
(ACTRN12619001328167). In our study, we did not 
find a statistically significant difference of brain oxy-
genation parameters  (SjvO2,  PbtO2, and  AVDO2) in all 
comparisons that we made across different degrees of 
head elevation (Fig. 3 and Supplementary Fig. 3d). The 
severe TBI analysis also showed no difference in  SjvO2 
and  PbtO2 parameters (Fig. 4d, e) between 30° of head 
elevation and the supine position.

The Timing Factor
Although the timing of head elevation since acute brain 
injury or since patient admission may play an important 
role in the findings, many studies did not mention it or 
did not detail it adequately. Among studies that men-
tioned it, this timing varied substantially (Supplementary 
Table 2 and Table 1). It is not clear whether the outcomes 
of interest remain steady during the first days after injury 
[21, 23]. Also, the timing of parameter measurement after 
intervention varied widely across studies (Supplemen-
tary Table 2 and Table 1), which may also influence the 
results.

ICP Measurement Methods
The most common methods of ICP monitoring were 
intraparenchymal and intraventricular probes (Supple-
mentary Table 2 and Table 1). The intraventricular meas-
urement is considered the gold standard because of its 
accuracy [47, 48]. In addition, it also allows the simulta-
neous drainage of cerebrospinal fluid. Intraparenchymal 
probes tend to reflect a local cerebral pressure rather than 
the ventricular pressure. However, its placement is gen-
erally easier and faster, especially in patients with small 
ventricles or severe brain edema [47, 48]. The included 
studies did not provide comparisons of outcomes accord-
ing to different types of ICP monitoring.

Strengths and Limitations
This study presents limitations. First, we analyzed 
patients with acute brain injuries due to pathologies with 
different pathophysiology altogether, although many 
included studies also used this approach. We performed a 
subanalysis of patients with severe TBI to minimize het-
erogeneity. Subanalyses of other conditions were not pos-
sible because of the low or inexistent number of articles 
analyzing only patients with specific pathologies. Second, 
we only assessed invasive methods of neuromonitoring 
and did not perform comparisons among them. Methods 
such as transcranial Doppler, optic nerve sheath diameter, 
near-infrared spectroscopy, pupillometry, and skull elas-
ticity-based measurements were beyond the scope of this 
article. Third, we did not assess clinical outcomes, such as 
mortality or disability. However, measuring the effect of 
head elevation on values of brain monitoring is clinically 
relevant because it allows us to avoid values associated 
with increased mortality and/or disability, for instance. 
To the authors’ best knowledge, only one randomized 
trial (HeadPoST trial [49]) assessed the clinical effects 
of head elevation among neurocritically ill patients. This 
study found no difference on disability outcomes between 
patients with acute ischemic stroke assigned to a lying-
flat position for 24 h and patients assigned to a sitting-up 



position with the head elevated to at least 30° for 24  h. 
Fourth, we included only English-language studies. This 
was probably the only exclusion criterion for some arti-
cles. Fifth, several aspects may influence our findings and 
were not quantitatively assessed, such as additional ther-
apies (e.g., hyperosmolar therapy, temperature manage-
ment, vasoactive drugs, ventilatory parameters,  PaCO2, 
 PaO2, sedation, decompressive craniectomy) as well as 
the timing of measurements and interventions. Decom-
pressive craniectomy may heavily affect brain hemody-
namics [50] and was only assessed by Burnol et  al. [21] 
and Schwarz et al. [34], whose findings demonstrated no 
effect of this therapy on postural induced ICP changes. 
Other studies that included patients who underwent 
decompressive craniectomy did not perform analysis in 
this subgroup [24, 32, 34, 36, 38]. Sixth, only 7 of the 25 
included studies described how the degrees of head ele-
vation was obtained (by using a goniometer or a protrac-
tor). Other studies did not mention the method.

Recommendations for Future Studies
Future studies on head elevation in the setting of acute 
brain injury should include a more homogeneous sample. 
For instance, articles should include only patients with a 
specific condition (e.g., subarachnoid hemorrhage, TBI, 
or intracerebral hemorrhage) instead of analyzing them 
together. When more than one pathology is included, 
subanalyses of each condition or individual patient data 
reporting would be reasonable approaches. Even within 
a same pathology, however, important characteristics 
should be clearly described (e.g., isolated TBI and TBI 
with concomitant polytrauma) because they may poten-
tially affect the analysis of outcomes. A clear and detailed 
methodology is essential. Information such as the site of 
MAP insertion, the level where the MAP transducer was 
placed, the type of ICP monitoring, the timing of param-
eter measurement since patient admission, and the tim-
ing of parameter measurement after head positioning is 
imperative.

Conclusions
Our results suggest that head elevation is an effective 
measure to reduce ICP, without significant effect on 
CPP and brain oxygenation parameters. We are unaware 
of previous meta-analyses addressing all these param-
eters. In the severe TBI subanalysis, we also found similar 
results. Regarding general clinical practice, head elevation 
also decreases the rates of ventilator-associated pneumo-
nia [51]. However, studies analyzing the effects of head 
elevation on brain hemodynamics and oxygenation with 
other specific conditions (e.g., subarachnoid hemorrhage, 
intracerebral hemorrhage, and stroke) are scarce. There-
fore, additional caution is important when performing 

head elevation in these scenarios, with the purpose of 
improving brain hemodynamics and oxygenation.
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