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Abstract 

Introduction: Neuromonitoring represents a cornerstone in the comprehensive management of patients with 
traumatic brain injury (TBI), allowing for early detection of complications such as increased intracranial pressure (ICP) 
[1]. This has led to a search for noninvasive modalities that are reliable and deployable at bedside. Among these, 
ultrasonographic optic nerve sheath diameter (ONSD) measurement is a strong contender, estimating ICP by quan‑
tifying the distension of the optic nerve at higher ICP values. Thus, this scoping review seeks to describe the existing 
evidence for the use of ONSD in estimating ICP in adult TBI patients as compared to gold‑standard invasive methods.

Materials and Methods: This review was conducted in accordance with the Joanna Briggs Institute methodology 
for scoping reviews, with a main search of PubMed and EMBASE. The search was limited to studies of adult patients 
with TBI published in any language between 2012 and 2022. Sixteen studies were included for analysis, with all stud‑
ies conducted in high‑income countries.

Results: All of the studies reviewed measured ONSD using the same probe frequency. In most studies, the marker 
position for ONSD measurement was initially 3 mm behind the globe, retina, or papilla. A few studies utilized addi‑
tional parameters such as the ONSD/ETD (eyeball transverse diameter) ratio or ODE (optic disc elevation), which also 
exhibit high sensitivity and reliability.

Conclusion: Overall, ONSD exhibits great test accuracy and has a strong, almost linear correlation with invasive 
methods. Thus, ONSD should be considered one of the most effective noninvasive techniques for ICP estimation in 
TBI patients.

Keywords: Intracranial pressure (ICP), Monitoring, Traumatic brain injury (TBI), Intracranial hypertension, Noninvasive 
monitoring, Invasive monitoring, Optic nerve sheath diameter, Optic nerve ultrasound

Introduction
Neuromonitoring is essential for the management of 
patients with traumatic brain injury (TBI), allowing early 
detection of potential insults such as increased intracra-
nial pressure (ICP), which may precipitate a cascade of 
events (from ischemia to brain herniation) that warrant 

proper and timely treatment [1–3]. Thus, efficient, reli-
able, and widely available tools for such ICP monitoring 
are also equally essential. Currently, the gold standard for 
neuromonitoring consists of intraventricular and intra-
parenchymal transducers; however, these techniques are 
costly and require skilled personnel. As a consequence, 
these techniques are usually restricted to high-level cent-
ers [4, 5]. Invasive devices are also generally contrain-
dicated in patients with bleeding disorders while also 
carrying the risk of infection and malfunction [6–9]. This 
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has led to a search for noninvasive modalities for ICP 
monitoring that are inexpensive, reliable, reproducible, 
and tailored for point-of-care applications [10, 11]. Dif-
ferent methods are described in the literature for nonin-
vasive ICP (nICP) estimation, which include, but are not 
limited to, optic nerve sheath diameter (ONSD) measure-
ment as assessed by ultrasound, computerized tomogra-
phy or magnetic resonance imaging [12, 13], transcranial 
Doppler-derived indices (e.g., pulsatility index and flow 
velocities) [14], and the measurement of pupil size and 
other dynamic pupillary variables (Neurologic Pupillary 
Index, NPi, latency, constriction velocity, and dilation 
velocity) [15]. The goal of this work is to characterize the 
evidence concerning exclusively ONSD abilities to esti-
mate nICP in adult patients with TBI.

Review Questions
The objective of this scoping review is to describe the 
extent and type of evidence for nICP monitoring in TBI 
using ONSD, as compared with standard invasive meth-
ods in the adult population. Applying the Patient, Con-
cept, Context (PCC) framework, the following specific 
questions were formulated:

1. Which methods are available for nICP monitoring 
using ultrasound-measured ONSD?

2. What evidence exists for the association and accu-
racy of nICP monitoring using ultrasound-measured 
ONSD versus invasive monitoring for ICP estima-
tion?

Methods
This scoping review was conducted in accordance with 
the Joanna Briggs Institute methodology for scoping 
reviews.

Inclusion Criteria
Participants
This scoping review considered studies including patients 
over 18  years old suffering from TBI who underwent 
nICP monitoring using ONSD and required diagnos-
tic invasive ICP (ICPi) monitoring for ICP estimation. 
All studies in the pediatric population (defined here 
as < 18 years) were excluded.

Concept
The concept of this scoping review was to include stud-
ies that investigated nICP monitoring by ONSD in 
adult patients with all degrees of TBI (mild, moderate, 
and severe) as compared with the analysis derived from 

gold-standard invasive methods. Topics in this concept 
include, but are not limited to, device features, methodo-
logical details, variables derived from said methods, the 
diagnostic accuracy of each method in detecting intrac-
ranial hypertension, the reliability of these methods, and 
the sensitivity and specificity of a specific ONSD method 
in the diagnosis of intracranial hypertension.

Context
This scoping review did not consider the specific race, 
gender, or geographic location of participants in the 
selected studies. Given that the anatomy and patho-
physiology of TBI within the pediatric population 
differ substantially from those of their adult coun-
terparts, especially in the mid and lower age ranges 
(e.g., < 14  years and > 50  years), and because of the 
large amount of literature that consider “adults” by 
a cutoff of 18  years, exclusion was determined solely 
by participant age, with only studies conducted in 
adults > 18 years being included.

Types of Sources
The present scoping review assessed both experimental 
and quasi-experimental study designs including rand-
omized controlled trials, nonrandomized controlled tri-
als, before-and-after studies, and interrupted time-series 
studies. In addition, analytical observational studies 
including prospective and retrospective cohort studies, 
case–control studies, and analytical cross-sectional stud-
ies were considered for inclusion. This review also con-
sidered descriptive observational study designs including 
case series, individual case reports, and descriptive cross-
sectional studies for inclusion. Qualitative studies that 
focus on qualitative data were also considered, includ-
ing but not limited to, designs such as phenomenology, 
grounded theory, ethnography, qualitative description, 
action research, and feminist research. In addition, sys-
tematic reviews that met the inclusion criteria were also 
considered, depending on the research question.

Search Strategy
An initial search in EMBASE and PubMed was under-
taken, aimed at locating published studies in the adult 
population between January 2012 and June 2022 so as 
to obtain the most updated evidence and technological 
advances on the subject and because, specifically from 
2012, the results by year in the two employed databases 
(exhibited in bar charts in their websites) showed an 
important increase in the publication of studies in the 
topic. Additionally, studies published in any language 
were included, as the available and useful literature was 



1195

in a variety of languages. Studies that contained noninva-
sive monitoring with techniques other than ONSD were 
excluded. Studies containing ICPi or nICP monitoring 
for the diagnosis of intracranial hypertension from etiol-
ogies other than TBI were also excluded. We also exclude 
narrative reviews in the topic because, although in gen-
eral they are comprehensive in the information that they 
provide, they are influenced subjectively by the authors 
and may have outdated sources. A detailed search strat-
egy for both databases is contained in online Appendix 1.

Source of Evidence Screening/Selection
The initial EMBASE and PubMed search yielded 106 
studies. All identified citations were collated and 
uploaded into Covidence, and one duplicated study was 
removed. Studies were screened by two independent 
researchers (KM and SV) and one collaborator (OF). 
After examining 105 titles and abstracts for inclusion, 74 
irrelevant studies were removed, 31 full-text studies were 
assessed for eligibility, and 15 studies were excluded for 
reasons described in Fig. 1. The results of the search are 
reported using the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses extension for Scoping 
Reviews checklist [16].

Results
After reviewing and applying inclusion and exclusion cri-
teria, 16 studies were included for final analysis. We did 
not find any qualitative study with designs such as phe-
nomenology, grounded theory, ethnography, qualitative 
description, action research, and feminist research. Fig-
ure 2 provides the characteristics of the included publica-
tions. Table  1 provides the extracted information based 
upon the formulated research questions.

Methods for nICP Monitoring Using Ultrasound‑Measured 
ONSD
After reviewing in detail each of the studies included, 
the reported technical settings were identical in terms 
of probe frequency (a 7.5  MHz linear probe), with the 
exception of three studies that mentioned a range of fre-
quencies rather than any single one [17–19].

Regarding the position of the ONSD measurement, all 
studies reported an initial measurement 3  mm behind 
the globe, retina, or papilla, whereas one study meas-
ured 2.8 mm behind the globe, and another in a range of 
3–4 mm [20, 21]. Probe orientation for ONSD ultrasound 
was mentioned in four studies (Table 1). In three studies, 
the orientation was axial only [1, 21, 22]. In one, orienta-
tion was both axial and sagittal [23]. In the previous study 

Fig. 1 Extraction methodology
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and one other, a description of patient positioning during 
the ultrasound study (head of bed at 30°) was made [23, 
24].

Regarding the method of estimating the final ONSD 
measurement, ten studies reported how they obtained 
the final value in mm (Table 1). Some considered an aver-
age of four values (one axial and one sagittal measure-
ment for each eye) [23, 25] while some used an average of 

three values [19, 26, 27] or an average of two values [17, 
20, 21, 28, 29]. The remaining included studies did not 
mention any details regarding the methods for obtaining 
the final ONSD measurement [18, 22, 24, 30–32].

Besides isolated ONSD measurements for ICP esti-
mation of correlation with ICPi, three studies assessed 
parameters apart from ONSD that leveraged ultrasonog-
raphy such as eyeball transverse diameter (ETD) [26], 

Fig. 2 Characteristics of included publications
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ONSD/ETD ratio [19], and optic disk elevation (ODE) 
(estimated by measuring the maximum height of the 
optic disk above the retina) [3]. One study even went as 
far as to propose a formula-based nICP estimation based 
on ONSD values as follows [25]:

Uniquely, one of these studies assessed three differ-
ent ONSD measurements: the proper optic nerve (ON) 
diameter (between the pia mater), the measured distance 
between the external borders of the hypoechogenic lep-
tomeninges or dura mater (ONSDI), and the ONSD 
including the subarachnoid space (SAS), defined as the 
subarachnoid diameter (ONSDE) [19]. Each method 
description along with its associated variables is summa-
rized in Table 1.

nICP by ONSD Versus ICPi Monitoring for ICP Estimation
Of the studies analyzed, only five did not mention a cal-
culated correlation between ONSD and ICPi [21, 22, 24, 
28, 30]. All studies except for two considered “elevated 
intracranial pressure” as greater than or equal to 20 mm 
Hg [18, 27]. Two studies specifically used the term 
“intracranial hypertension” to refer to values above this 
threshold (Table 1) [23, 25]. On the other hand, four stud-
ies assessed different ICP thresholds and estimated their 
corresponding ONSD threshold values (Table 1): Launey 
et al. reported ICPi values of 20 mm Hg, 25 mm Hg, and 
30 mm Hg, Soliman et al. reported values of 20 mm Hg 
and 25 mm Hg, Wang et al. of 13 mm Hg and 22 mm Hg, 
and Agrawal et al. of 22 mm Hg and 25 mm Hg [18, 20, 
27, 29].

Regarding the ICPi monitoring technique, the vast 
majority of studies considered either intraparenchymal 
techniques, intraventricular techniques, or both, and only 
three studies did not mention the type of ICPi method 
employed (Table  1) [21, 28, 30]. None of the analyzed 
studies made any specifications about the side of injury 
or type of injury (e.g., contusion vs. subdural hematoma) 
with respect to ICPi and nICP estimation or about the 
site of ICP probe placement in relation to the side of 
ONSD measurement. All the studies were performed in 
high-income countries (Fig. 2).

In a prospective cohort study of 27 patients with TBI, 
ONSD accurately predicted ICPi greater than 20  mm 
Hg with a sensitivity of 83.3% (95% Confidence Inter-
val CI [35.9%, 99.6%]) and a specificity of 100% (95% CI 
[83.9%, 100%]). The positive predictive value of an ONSD 
value greater than or equal to 5.2 mm was 100% (95% CI 
[48%,100%]), and the negative predictive value of ONSD 
less than 5.2  mm was 95.5% (95% CI [77.2%, 99.9%]) 
(Table  1). The receiver operating characteristic curve 
demonstrated an area under the curve of 0.865 [17].

nICPONSD = (5.00 ·ONSD)− 13.92mmHg

In a diagnostic test accuracy study performed in 120 
patients with TBI, both ONSD and ODE were analyzed. 
The optimal ONSD threshold for detecting ICPi greater 
than 25  mm Hg was 7.2  mm, with a sensitivity of 83% 
(95% CI [36, 100%]) and a specificity of 76% (95% CI [67%, 
84%]). Notably, a cutoff of 7.2 mm similarly detected ICPi 
greater than 22 mm Hg and less than 25 mm Hg at the 
expense of a slight decrease in sensitivity and increase 
in specificity to 82% (95% CI [48%, 98%]) and 79% (95% 
CI [70%, 86%]), respectively. Meanwhile, ODE showed 
an optimal threshold of greater than 0.04  cm to detect 
an ICPi greater than 22 mm Hg, with a sensitivity of 90% 
(95% CI [56%, 100%]) and a specificity of 71% (95% CI 
[61%, 79%]) (Table 1) [18].

A prospective cohort study in 50 patients calculated 
variables apart from ONSD including ONSDI, ONSDE, 
and ETD for the ONSD/ETD ratio (Table 1). The values 
for ONSDE, ONSDI, and ONSD/ETD ratio were sig-
nificantly associated with ICP (p = 0.005, p < 0.001, and 
p < 0.001, respectively). The greatest association with 
ICPi was with ONSD (r = 0.511) and ONSD/ETD ratio 
(r = 0.59) The cutoff values in terms of ONSD/ETD, 
ONSDI, and ONSDE for an ICPi of greater than or equal 
to 20 mm Hg were 0.264, 6.15, and 5.05, respectively [19].

A cohort study performed in 73 patients that correlated 
maximum, minimum, and standard deviation values for 
both ONSD and ICPi found a good correlation between 
the two modalities (r = 0.8717, p < 0.0001) in the setting 
of TBI [24].

A prospective cohort study performed in 40 patients 
using two ICPi cutoff values (20 and 25 mm Hg), found 
a strong correlation between ONSD values and invasive 
monitoring (r = 0.74, p < 0.0001), with an ONSD cutoff 
value of 6.4 mm for an ICPi of 20 mm Hg and of 6.6 mm 
for an ICPi of 25 mm Hg. Sensitivity and specificity were 
both more than 80% (Table 1) [20].

In a prospective cohort study of 20 patients with TBI, 
an ONSD greater than 5.55  mm was shown to have a 
sensitivity of 81.8% and a specificity of 88.9% for pre-
diction of ICP increases (Area Under Curve 0.919; 95% 
CI [0.798,1.0], p < 0.002). The median ICPi value was 
22.75  mm Hg, with no head-to-head value comparison 
between ONSD in mm versus ICP in mm Hg [21].

In another cohort study in 11 patients with TBI, a linear 
relationship between ONSD and ICPi was documented 
when a specific ICP-lowering treatment was applied, with 
an average posttreatment decrease in ONSD of 0.62 mm 
(p = 0.0001) and an average posttreatment decrease in 
ICPi of 3.33 mm Hg (p = 0.0001). Correlations were simi-
lar in the pretreatment stage (Table 1) [22].

Another prospective cohort study in 100 patients 
(30 with TBI) found a significant, moderate correla-
tion between ICPi and ONSD (r = 0.53, p 0.002), with 
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an ONSD cutoff value greater than 5.3 mm predictive of 
intracranial hypertension (ICPi > 20 mm Hg). This cutoff 
value was associated with a sensitivity of 67% and a speci-
ficity of 73% [23].

In a cohort study assessing ONSD and another ultra-
sound-estimated measurement, the ETD, in 52 patients, 
better accuracy was observed for the ONSD/ETD ratio 
over ONSD in isolation. An ONSD/ETD cutoff value was 
set at 0.25 (sensitivity of 90%, specificity of 82.3%), and 
an ONSD cutoff value was set at 5.53 mm (sensitivity of 
80%, specificity of 79.3%) [26].

A Chinese case–control study with a total sample 
size of 75 (35 patients with TBI, 40 healthy controls), 
showed a significant correlation between ONSD and ICPi 
(r = 0.771, p < 0.0001). Here, the cutoff value for detecting 
ICP above 13 mm Hg was defined as 5.48 mm, with sen-
sitivity and specificity of 91.1% and 88.0%, respectively. 
Similarly, the cutoff value for detecting ICP above 22 mm 
Hg was 5.83 mm, with sensitivity and specificity of 94.4% 
and 81.0%, respectively (Table 1) [27].

In a systematic review of four studies in patients with 
TBI, the sensitivity and specificity were 91% and 82% 
for sonographic ONSD in the prediction of intracranial 
hypertension [28].

A prospective cohort study in 135 patients (66 with 
TBI) in the United States described both a weak-moder-
ate correlation (r = 0.498, p = 0.292) between ONSD and 
ICPi values. However, no data regarding other specific 
values nor a ICPi estimation method were specified [30].

A systematic review of 12 studies concluded that ultra-
sound ONSD measurements less than 5  mm could be 
considered “normal ICP,” whereas measurements greater 
than 6  mm represented an elevated ICP (ICP > 20  mm 
Hg). This ICP cutoff was considered accurate for assess-
ing “ICP crisis,” with sensitivity and specificity approach-
ing 90% and 85%, respectively [31].

Lastly, in a French study of 54 patients with TBI, an 
ONSD cutoff value of 5.6 mm had a sensitivity and nega-
tive predictive value of 100% for detecting ICPi greater 
than 20  mm Hg, with an area under the curve of 0.73 
(95% CI [0.59–0.86]) [33].

Discussion
According to the information extracted from the 
reviewed studies and their reported results, ONSD seems 
to have a great accuracy and good correlation with ICPi, 
both in isolated absolute values and in incremental or 
decremental changes. The relationship between ONSD 
and ICPi values is almost linear. Nevertheless, OSND is 
more useful in detecting high ICP than in identifying nor-
mal ICP, which is clinically useful given that undetected 
ICP elevation often leads to detrimental consequences in 

patients with TBI, whereas low or normal ICP is usually 
less concerning.

The theoretical principles of ONSD ultrasound meas-
urements as an indirect estimation of ICP depend on 
an extensive number of pathophysiological phenomena, 
which are mainly related to cerebrospinal fluid (CSF) 
dynamics and ICP transmission to the space surround-
ing the ON [34]. Strictly speaking, the ON is not a nerve 
by histological terms, but instead a central nervous sys-
tem (CNS) white matter tract that extends into the orbit, 
where it is surrounded by CSF throughout its entire 
length. Given this particular anatomical configuration, 
the ON is sensitive to ICP changes in its surrounding lay-
ers. The dura mater and, to a lesser extent, the arachnoid, 
allow the circulation and storage of CSF due to their abil-
ity to physically expand [35]. There are several theories 
regarding CSF dynamics as a whole that, in specific CNS 
areas such as the ON, take into account the role of other 
parameters in CSF dynamics, such as physics per se [36, 
37], bridging veins and sagittal sinus pressures [38], and 
the rate of CSF production and drainage (via arachnoid 
villi and the glymphatic system) [34, 37], among others. 
However, there is no single unified theory that comprises 
and integrates all of these phenomena, and some deserve 
to be mentioned specifically with respect to the ON and 
ONSD.

Free, bidirectional communication between the intrac-
ranial SAS and the ON SAS (optic nerve subarachnoidal 
space) has been proposed in an attempt to define how the 
cranial CSF that enters the SAS of the ON could change 
its direction of flow against the volume gradient that 
directs it from the higher volume site of production (in 
the intracranial space) toward the SAS of the ON [35]. 
Two outflow routes have been proposed. The first is from 
the SAS of the distal portion of the ON, and the second 
via the glymphatic system [34, 35]. Thus, for now, we can 
speculate that a certain amount of CSF is already circulat-
ing around the ON in the SAS at baseline and that “extra 
fluid” (in the setting of TBI and other CNS diseases) in 
fact represents CSF redistribution as a compensatory 
mechanism in early-stage and mid-stage of ICP increases. 
This excess fluid occupies the SAS and leads to ONSD 
distention detected by ultrasound. Other possibly related 
mechanisms, such as impaired exchange between intrac-
ranial CSF and ON SAS, described in other diseases have 
not yet been considered in TBI, given the different disease 
processes and underlying pathophysiology [39]. As such, 
ONSD estimation indeed represents a noninvasive way of 
detecting ICP changes by assessing, from a CSF-dynamics 
point-of-view, early “buffering mechanisms” in cases of 
intracranial compliance compromise [40].

With respect to the sonographic techniques for 
ONSD evaluation and assessment of other similar 
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parameters described in the analyzed studies, the infor-
mation extracted was generally highly variable in terms 
of the probe’s plane of orientation/insonation [25, 41], 
patient positioning [23, 24], anatomical landmarks for 
ONSD measurement [19], and final ONSD measurement 
calculation methods (Table  1). It is worth mentioning 
that there were three additional proposed methods apart 
from ONSD for nICP estimation: ODE [18], ONSD/ETD 
ratio [19], and a formula-based method leveraging calcu-
lated ONSD values (Table  1) [25]. Some of these meth-
ods demonstrated better correlation with ICPi and even 
greater sensitivity and specificity than ONSD alone [18, 
19]. Such methods may represent an attempt to indi-
vidualize ONSD measurements by taking into account 
eyeball size and its relation to ONSD for each patient 
[19]; however, there are also recently published data that 
contrarily report no correlation between global size and 
ONSD in a healthy Latin American population, creating 
possible uncertainties regarding the usefulness of these 
techniques for nICP assessment [42]. On the other hand, 
these methods may constitute a sonographic assessment 
of optic disk changes, which may be detected earlier than 
changes in routine fundoscopy, specifically papilledema 
[18, 43]. Thus, specifically, the formula-based method 
proposed by Robba et al. may have a great potential for 
nICP estimation, although it must be validated in fur-
ther studies before any considerations regarding its effi-
cacy and accuracy for this purpose can be made (Table 1) 
[25]. Given the huge differences in the described meth-
ods for ONSD ultrasound estimation among all studies, 
there is undoubtedly a need for establishment of a for-
mal protocol that considers the aforementioned param-
eters, includes details that may not be as obvious (such as 
the position of the patient’s gaze during measurement), 
and can be applied across different regions of the world. 
Currently, there are emerging data that could represent 
important starting points, such as anatomical landmark 
identification and a quality checklist [44, 45].

Overall, ONSD correlations with ICPi were moderate 
to high in the reviewed studies (Table 1), with all of them 
reporting ONSD values greater than 5 mm correspond-
ing with elevated ICP values (> 20 mm Hg). However, the 
highest sensitivity, specificity, predictive ability for high 
ICP values [23] and diagnostic accuracy [18] were seen 
with values greater than or equal to 5.85 mm. This effect 
was even more pronounced for values exceeding 6 mm, 
in line with concomitant ICP increases. Specific data for 
different ICP thresholds were given by Launey et al. and 
Soliman et  al. (Table  1) [20, 29]. In the near future, we 
need more studies that consider standardized ultrasound 
techniques for ONSD measurement based on criteria for 
quality, definitions of intracranial hypertension (based on 
physiology rather than simple ICP values), decompressive 

craniectomy-induced changes in ONSD estimations, 
ONSD correlations with ICP properties (e.g., waveform 
trends), and site-of-injury descriptions to help identify 
compartmentalized vs. diffuse ICP changes.

Limitations
This review, as their first and third counterparts, has mul-
tiple limitations. First, only studies in patients 18  years 
or older were included, potentially leaving out valuable 
information from patients 16  years and older who are 
also considered part of the “adult population.” Second, 
as a matter of a scoping review design, in-depth statisti-
cal analyses or risk-of-bias assessments that are usually 
performed in systematic reviews were not done in our 
study. This may represent a weakness for data interpreta-
tion in terms of diagnostic accuracy and nICP-ICPi cor-
relation comparison between studies. Third, studies that 
assessed other ICPi monitoring techniques (e.g., open-
ing pressure by lumbar puncture) were not included in 
our review, given that intraventricular/intraparenchymal 
catheters are still considered the gold standard. This is 
a potential loss of valuable additional information. Not-
withstanding, we agree that this paper can be seen as 
complementary to the aforementioned work by Aletreby 
et al. regarding ONSD for nICP monitoring [46]. Finally, 
we only included studies in patients with TBI. As such, 
the analyses and conclusions derived from this work can-
not be extrapolated to other neurocritical care patient 
populations (e.g., aSAH, ischemic stroke, or intracerebral 
hemorrhage).

Conclusions
This review can be considered an update acknowledg-
ing ONSD as possibly (when properly done), one of 
the most practical, fast, and reliable methods for nICP 
monitoring in patients with TBI. ONSD cutoffs that cor-
relate with ICPi values were provided, although it must 
be underscored that these still cannot be considered a 
replacement for invasive techniques. ONSD seems to 
be promising for bedside identification of patients with 
high degrees of neurological deterioration secondary to 
intracranial hypertension.
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