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Abstract 

Background:  Electroencephalography (EEG) has long been recognized as an important tool in the investigation of 
disorders of consciousness (DoC). From inspection of the raw EEG to the implementation of quantitative EEG, and 
more recently in the use of perturbed EEG, it is paramount to providing accurate diagnostic and prognostic informa‑
tion in the care of patients with DoC. However, a nomenclature for variables that establishes a convention for naming, 
defining, and structuring data for clinical research variables currently is lacking. As such, the Neurocritical Care Soci‑
ety’s Curing Coma Campaign convened nine working groups composed of experts in the field to construct common 
data elements (CDEs) to provide recommendations for DoC, with the main goal of facilitating data collection and 
standardization of reporting. This article summarizes the recommendations of the electrophysiology DoC working 
group.

Methods:  After assessing previously published pertinent CDEs, we developed new CDEs and categorized them into 
“disease core,” “basic,” “supplemental,” and “exploratory.” Key EEG design elements, defined as concepts that pertained to 
a methodological parameter relevant to the acquisition, processing, or analysis of data, were also included but were 
not classified as CDEs.

Results:  After identifying existing pertinent CDEs and developing novel CDEs for electrophysiology in DoC, variables 
were organized into a framework based on the two primary categories of resting state EEG and perturbed EEG. Using 
this categorical framework, two case report forms were generated by the working group.

Conclusions:  Adherence to the recommendations outlined by the electrophysiology working group in the resting 
state EEG and perturbed EEG case report forms will facilitate data collection and sharing in DoC research on an inter‑
national level. In turn, this will allow for more informed and reliable comparison of results across studies, facilitating 
further advancement in the realm of DoC research.
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Introduction
Hans Berger presented the first human electroencepha-
logram (EEG) approximately 100  years ago [1]. This 
initial recording suggested a link between levels of con-
sciousness and brain electrical oscillations [2]. Since its 
first introduction, EEG has evolved due to widespread 
application and technological advancements (i.e., digital 
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recordings) to become one of the core means of noninva-
sive continuous monitoring of brain activity [3]. In addi-
tion to its use as a clinical tool, EEG has become a key 
technique in advancing research in the field of disorders 
of consciousness (DoC) [3]. The value of EEG is recog-
nized by experts in the field, and it has been endorsed 
by the American Academy of Neurology and European 
Academy of Neurology for evaluation of patients with 
DoC [3–5].

Significant uncertainty exists within the realm of DoC, 
thus positioning it favorably as a nidus for emerging 
investigations. We propose a data collection framework 
for electrophysiology in DoC research, based on two pri-
mary categories of resting state EEG (rsEEG) and per-
turbed EEG (pEEG). rsEEG metrics pertain to variables 
collected from patients who are not confronted with an 
external stimulus. pEEG metrics are those collected from 
patients who are sequentially or repeatedly exposed to 
magnetic, electrical, auditory, or other stimuli. In the 
last 20  years, a variety of EEG measures, both relating 
to rsEEG and pEEG, have been proposed; however, no 
broad agreement on their categorization and collection 
to advance DoC research exists.

The common data elements (CDEs) project is a joint 
effort between the National Institute of Health and the 
National Institute of Neurological Disorders and Stroke 
to develop standardized naming, definitions, and data 
structure for clinical research variables, with the main 
goal of facilitating the comparison of clinical studies 
results in major neurological diseases. As such, the “elec-
trophysiology working group” is a working group of the 
“Coma and Disorders of Consciousness-CDE Project” 
aimed to construct CDEs concerning the use of EEG 
either within or outside of the intensive care unit, with 
the goal of standardizing data collection and for the pur-
pose of advancing DoC research. Herein we discuss the 
evidence supporting the CDEs used to develop the rsEEG 
and pEEG case report forms (CRFs).

rsEEG
Classification of EEG Findings
In 1965, the first classification system of EEG patterns in 
DoC was established and was based on EEG findings in 
postanoxic coma. The classification system described that 
deteriorating brain function was associated with progres-
sive slowing and dampening of EEG background oscilla-
tions [6]. In 1988, this classification scheme was further 
systematized into five grades, with grade 1 referring to 
dominant reactive alpha activity and grade 5 referring to 
an isoelectric EEG [7]. This remained the primary clas-
sification system until 2013, when the American Clini-
cal Neurophysiology Society published the standardized 
critical care EEG terminology, which standardized the 

description of not only EEG background activity in the 
awake and asleep states but also major epileptiform 
abnormalities [8]. These guidelines have more recently 
been updated in 2021 [8]. This classification system, 
which was ultimately validated by two independent 
groups [9, 10], has become the standard classification 
system used today.

Raw EEG Inspection
In the acute care setting, EEG is routinely used to detect 
electrographic seizures (ESzs) and electrographic status 
epilepticus, confirm electroclinical seizures and elec-
troclinical status epilepticus, and monitor treatment 
response. Although not specific to diagnosis or progno-
sis of DoC, recognizing and treating acute pathology that 
may be contributing to a patient’s level of consciousness 
is imperative. Electroclinical seizures are common in 
the population of patients with brain injury, seen in up 
to 30% of patients in the neurological intensive care unit 
with a depressed level of consciousness [11, 12]. In addi-
tion to clearly defining electrographic seizures and status 
epilepticus, rhythmic and periodic patterns on the ictal/
interictal continuum that do not qualify as unequivocal 
seizures or status epilepticus are now recognized as being 
synonymous with possible ESz or electrographic status 
epilepticus and may be seen contributing to a patient’s 
depressed level of consciousness [13]. Although the pres-
ence of certain ictal/interictal patterns is suggestive of a 
higher risk of ESz, equipoise regarding the clinical sig-
nificance and aggressiveness of treatment remains con-
troversial and thus an active area of research [13–15]. 
rsEEG characteristics have been found to correspond 
to preservation of cerebral pathways relating to DoC. In 
a study of 44 patients with severe brain injury in which 
continuous EEG, functional magnetic resonance imag-
ing (fMRI), and 18-Fluoro-deoxyglucose positron emis-
sion tomography were performed, patients with evidence 
of covert command following on fMRI were consistently 
found to have a well-organized background EEG activity, 
with a preserved anterior posterior gradient, theta/alpha 
background frequencies, and an absence of marked dif-
fuse or focal slowing [16]. This coupling of EEG and fMRI 
suggests that thalamocortical function is preserved in a 
minimally conscious state (MCS) [16]. Such EEG findings 
have a high specificity but low sensitivity for MCS, fur-
ther supporting the use of rsEEG in diagnosis of DoC [5].

In patients with DoC, thalamocortical circuit pres-
ervation has also been explored in EEG recorded dur-
ing sleep-like states. Preserved EEG sleep transients and 
structures, including sleep spindles and slow wave sleep, 
are thought to reflect intact thalamocortical circuitry. In 
MCS, sleep features are commonly seen in the complex 
transition from non-rapid eye movement to rapid eye 



movement sleep stages, whereas they are rarely, if ever, 
observed in patients with vegetative state/unresponsive 
wakefulness syndrome (VS/UWS) [17]. This notion sup-
ports concepts discussed above in the resting EEG sec-
tion recorded to evaluate awake-like states [3]. rsEEG has 
for a long time played a central role in patients with DoC 
following cardiac arrest to guide neuroprognostication. 
As a part of a multimodal protocol, rsEEG at 24 h post 
arrest demonstrating low voltage or suppressed (< 10 µV) 
background, burst suppression with or without identical 
bursts, generalized periodic discharges on a suppressed 
background, or a spontaneous discontinuous back-
ground have been considered predictors of poor outcome 
[18–22]. This notion has recently been challenged, with 
reports of late emergence from coma and good clinical 
outcome in patients with burst suppression with noni-
dentical bursts, composed of theta peak intraburst spec-
tral power [23].

Quantitative EEG Analysis
The digitally recorded EEG signal can be transformed 
by applying computational analysis to investigate differ-
ent EEG characteristics including frequency, amplitude, 
or power complexity of the signal and metrics based on 
information theory. Power spectrum or power spectral 
density (PSD) describes the power present in the signal as 
a function of oscillation frequency seen on raw EEG. PSD 
allows for quantification of slowing on raw EEG, which 
has been shown to negatively correlate with the Coma 
Recovery Scale-revised score [24–26]. PSD has been 
applied to study the rsEEG in patients with DoC, and it 
has been suggested that there is an increased prevalence 
of low frequency power bands (delta) seen in patients 
with VS/UWS, whereas higher frequency power bands 
(theta/alpha) are seen in MCS patients [3, 24, 27, 28]. A 
number of measures investigate the complexity of the 
EEG signal such as permutation entropy, which may be 
restricted to specific frequency power bands (e.g., theta 
permutation entropy, which correlates with states of 
consciousness in patients with brain injury). There are 
several measures that explore functional connectivity 
between different recording sites (e.g., weighted symbolic 
mutual information [wSMI]). wSMI, a marker of cerebral 
complexity, is yet another means by which one can corre-
late brain function to level of consciousness [25, 28–30]. 
Automatic behavioral state classification is increasingly 
more reliable combining a panel of these metrics, and 
recovery prediction may be feasible [25, 26]. In a study 
of 181 patients with DoC, the combination of absolute 
power, average complexity related metrices, and wSMI 
in the theta frequency band were found to be the most 
effective at attempting to discriminate between VS/UWS 
and MCS [25].

The disconnection or deafferentation within and 
among the cortical and subcortical structures in patients 
with impaired consciousness is at least partially reflected 
in the degree of slowing on rsEEG [31, 32]. This concept 
has been captured by the ABCD classification building 
on the anterior forebrain mesocircuit model classify-
ing the degree of thalamocortical disconnection based 
on spectral EEG background changes [33]. Describing 
the spectral patterns of EEG background, A-type clas-
sification refers to a slow EEG with 1  Hz oscillations, 
whereas D-type classification refers to normal alpha/beta 
range oscillations. The dynamic hierarchical classifica-
tion system has been suggested to represent the degree 
of thalamocortical integrity and has been shown to cor-
relate with behavioral improvement in patients with 
severe anoxic brain injury [16, 33, 34]. A recent study 
conducted on 87 patients with DoC found that power in 
the EEG alpha band is significantly suppressed in patients 
with anoxic DoC, yet it does not distinguish between 
consciousness and unconsciousness in DoC due to 
other causes [35]. Conversely, a bivariate index combin-
ing EEG spectral PSD slope and anteriorization stratifies 
patients and identifies consciousness in nonanoxic DoC 
with high sensitivity [35]. This study confirms that EEG 
alpha power is linked more to the degree of integrity of 
the thalamocortical system rather than to consciousness, 
whereas a well-preserved EEG can be consistent with 
covert consciousness [16]. In cases of negative or uncer-
tain predictions, more sensitive tools may be of interest, 
such as the Perturbational Complexity Index (PCI) based 
on the combination of Transcranial Magnetic Stimula-
tion with EEG (TMS-EEG) measurements as described 
in the next section.

pEEG
Event‑Related Potentials
Event-related potentials (ERPs) encompass the group of 
brain responses seen on EEG secondary to an external 
stimulus and reflect the summed activity of postsynap-
tic potentials produced when similarly oriented cortical 
neurons fire in synchrony [36, 37]. The early component 
of the waveform generated is considered the “exogenous” 
response given its dependence upon the stimulus itself, 
whereas the later aspect of the waveform is considered 
the “endogenous” response, reflecting the information 
processing [36].

Mismatch negativity (MMN) describes an established 
protocol for assessing auditory processing using ERPs 
[38, 39]. It employs a series of repetitive tone bursts, with 
an oddball stimulus deviating from the standard tones, 
and as such eliciting the MMN [38, 40]. If the deviant 
exceeds the study participant’s discrimination threshold 
and the brain can detect the auditory violation, the ERP 



waveform will peak at 100–150 ms after stimulus onset, 
with a prominent frontocentral distribution [3, 39]. 
Across a wide range of acute and subacute brain patholo-
gies, MMN is now an accepted metric in predicting neu-
rologic recovery given its robust positive predictive value 
of 80–94% [41–45]. However, as with nearly all prog-
nostic studies involved in comatose patients, these stud-
ies may be limited by positive verification bias of early 
withdrawal of life-sustaining treatment given the lack 
of clinician blinding reported in the studies. Although 
MMN remains a promising tool, its use in the diagnosis 
of DoC to differentiate VS/UWS from MCS has yet to be 
established.

The P300 response describes an ERP assessing a 
patient’s attentiveness and reaction to a novel stimu-
lus [46]. Recorded maximally in the centroparietal 
area approximately 300  ms after the rare stimulus, this 
response is further divided into the P3a and P3b com-
ponents [47]. P3a denotes the automatic detection to the 
change in environment, whereas the P3b represents the 
more complex processing of the rare stimuli [48], and 
possibly conscious perception of the novel stimuli [49, 
50]. The P3b response has been shown to have poten-
tial to assist in DoC diagnosis and prognostication when 
applied to a local–global paradigm (an ERP oddball audi-
tory paradigm with two embedded levels of auditory reg-
ularity, testing one’s ability to distinguish between local 
auditory regularities and global long-term rule violations 
[51]), with presence of a P3b response (“global effect”) 
associated with covert awareness and increased likeli-
hood of progressing toward MCS or fully conscious state 
[51, 52].

Somatosensory Evoked Potentials
Somatosensory evoked potentials, specifically the N20 
response elicited by stimulation of the median nerve and 
recorded over the somatosensory cortex, have long been 
used as a component of the multimodal approach to neu-
roprognostication in DoC [53, 54]. The bilateral absence 
of N20 responses is considered as one of the more pow-
erful indicators of poor outcome and is a key compo-
nent of postcardiac arrest prognostication guidelines 
[55–58]. In a meta-analysis of 4,500 postanoxic patients, 
bilaterally absent N20s within the first week had a 100% 
specificity to predict poor outcome [59]. In a 2018 sys-
tematic review, survivors after cardiac arrest with N20 
amplitudes > 4 uV at 48–72  h from return of spontane-
ous circulation had greater than 80% specificity and 40% 
sensitivity for favorable functional outcome [22]. This has 
led to recent recommendations for neuroprognostication 
in adults after cardiac arrest that the bilateral absence 
of the N20 wave, with preservation of responses at Erb’s 
point and the cervical spine, on somatosensory evoked 

potentials, is a reliable predictor of functional outcome 
at 3 months or later after arrest [22]. However, presence 
of an N20 response does not guarantee a good prognosis 
[60], and the significance of SSEP findings in other brain 
injuries is much less certain.

Activation Paradigm
Assessments of command following are the foundation 
for behavioral diagnoses of patients with DoC. Motor 
activation or imagery paradigms allow detection of brain 
activation using fMRI or EEG [3] without behavioral 
signs of motor activity to commands a phenomenon also 
known as cognitive motor dissociation (CMD) or covert 
consciousness. Initially reported in fMRI studies [61–64], 
the most widely reported motor activation paradigms 
involve asking patients to engage in mental imagery of 
spatial navigation, swimming, or playing tennis. To detect 
CMD using EEG, repeated trials asking the study partici-
pant to move or imagine moving and then to stop moving 
or stop imagining to move are performed. The recorded 
EEG signal is then transformed applying PSD analysis at 
each electrode. Machine learning algorithms such as sup-
port vector machine learning then determine whether 
the response associated with the move command is sys-
tematically different [2, 60–62]. Used both as a diagnos-
tic and prognostic tool, a large single center study of 104 
patients with DoC identified that up to 15% of patients 
in coma, VS/UWS or MCS minus, and behaviorally unre-
sponsive to commands were in fact capable of producing 
reliable brain activation to simple motor commands [65]. 
CMD predicts better long-term outcomes at 1 year after 
injury [65], independent of age, admission diagnosis, and 
admission neurological deficits [66].

TMS‑EEG and Pertubational Complexity Index
Transcranial magnetic stimulation allows for the nonin-
vasive, direct, and focal perturbation of corticothalamic 
circuits thought to be responsible for the emergence of 
consciousness [67], whose pathological alteration may 
bring to DoC. The EEG response to this perturbation 
reflects the ability of one cortical neuronal group to caus-
ally interact with other groups of neurons to produce 
complex dynamics, which are thought to be responsible 
for the emergence of consciousness [Click or tap here to 
enter text [67–69]. TMS-EEG allows direct assessment 
of cortical circuits independent of behavior and hence 
without relying on the integrity of neural circuits that 
normally support sensory, motor, or executive functions. 
In healthy study participants in NREM sleep or under 
anesthesia, or patients with coma and disruption of the 
thalamocortical system, TMS stimulation will result in 
an EEG response that is simple and local, secondary to 
loss of integration, or stereotypical, secondary to loss 



of differentiation [3, 70–75]. The PCI has been devised 
to quantify the complexity of the overall EEG response 
to TMS. Before applying it to DoC, PCI was first cali-
brated in a benchmark population (n = 150) of healthy 
study participants and patients who could report about 
their state of consciousness. This process allowed setting 
an empirical cutoff (PCI = 0.31) above which conscious-
ness is always present. This PCI cutoff was then applied 
to deduce the presence of consciousness in patients 
with DoC with VS/UWS or MCS [76–78]. PCI showed 
an unprecedented sensitivity (about 95%) in identifying 
MCS patients, whom by definition show minimal behav-
ioral outputs [77].

In the context of the present article, which mainly 
aims at promoting standardization of data collection 
and reporting in the DoC field of research, it is impor-
tant to point out that, as with other electrophysiological 
techniques, reliably measuring PCI requires complying 
with a few, key experimental procedures during TMS-
EEG measurements. These procedures aim at maximiz-
ing the impact of TMS on the cortex, while minimizing 
both artifacts and biological confounds, as well as data 
preprocessing. They are eventually finalized at recording 
EEG responses to TMS that are reproducible and specific 
for the stimulation target and characterized by an opti-
mal signal-to-noise ratio. Tools specifically designed to 
accurately neuronavigate TMS, to check in real-time for 
the signal quality, or to abolish biological confounds are 
today available [79–81]. Taken together, these tools and 
procedures can foster the routine application of TMS-
EEG in patients with clinical chronic, subacute, or acute 
DoC when consciousness is not apparent and can be cov-
ert [77, 82, 83].

Methods
Overview
Building on this all-encompassing compilation of 
research involving electrophysiology and DoC, we aimed 
to construct CDEs focused on the use of EEG in patients 
with DoC, with a goal of standardizing data collection 
and reporting. We expect that these CDEs (version 1.0) 
will be adapted and redefined as additional electrophysi-
ology discoveries continue to emerge. The various work-
ing group DoC CDEs are designed to complement one 
another; the electrophysiology CDEs should be used in 
conjunction with other relevant DoC CDEs to best depict 
clinical characteristics and outcomes.

CDE Development Meetings
The electrophysiology working group composed of inter-
national DoC experts was convened as a part of the Neu-
rocritical Care Society’s Curing Coma Campaign with the 
aim of developing electrophysiology CDEs for patients 

with DoC. Members of the working group performed an 
extensive review of existing CDEs from traumatic brain 
injury, epilepsy, subarachnoid hemorrhage, and other 
neurological diseases (https://​commo​ndata​eleme​nts.​
ninds.​nih.​gov). Whenever possible, pertinent existing 
CDEs were used.

For development of new CDEs, a list of electrophysiol-
ogy concepts related to DoC was compiled from March 
2020 to June 2022. Several prospective and observational 
studies were reviewed to derive a comprehensive list of 
variables pertaining to electrophysiology and DoC that 
had not been described in existing CDEs. Such variables 
were selected based both on their use in clinical electro-
physiology and established reliability and validity. The 
collected variables were discussed via videoconference, 
and a candidate list to include was finalized and approved 
by all working group members.

Both the selected predefined CDEs, in addition to the 
novel CDEs, were then classified by consensus into the 
previously described categories of rsEEG and pEEG. 
These categories were the foundation for the two CRFs 
ultimately produced by the working group.

Classification into Core, Basic, Supplemental, or 
Exploratory CDEs
Both the predefined CDEs and the novel CDEs developed 
by the working group, were classified as “disease core,” 
“basic,” “supplemental,” or “exploratory.” This classifica-
tion nomenclature is consistent with that used in prior 
National Institute of Neurological Disorders and Stroke 
CDE initiatives. We assigned the “basic” designation to 
CDEs that are strongly recommended for all DoC stud-
ies. We assigned the “supplemental” designation to CDEs 
that are recommended for specific DoC studies (i.e., 
depending on the context and goals of the study), and the 
“exploratory” designation was applied to CDEs that can 
be considered for use in DoC electrophysiology studies 
but require further validation. In addition to the afore-
mentioned CDE categories, data included in the CRFs 
that pertained to a methodological parameter relevant 
to the acquisition, processing, or analysis of electrophysi-
ological data were termed “key design elements.”

Results
Version 1.0 (see Supplementary Materials) of the pro-
posed electrophysiology CDEs for patients with DoC 
were presented in the format of two CRFs: (1) rsEEG 
(supplemental material 1) and (2) pEEG (supplemental 
material 2). These CRFs underwent a two-month pub-
lic feedback period from October to November 2022, 
advertised at the 2022 annual Neurocritical Care Soci-
ety meeting and social media. The public feedback was 
then incorporated into the CRFs, which were finalized 
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following approval by all working group members. 
Ongoing feedback regarding modification of the CDEs 
is encouraged and can be submitted via email to cde.
curingcoma@gmail.com. Additional feedback will be 
reviewed by the electrophysiology working group on an 
as-needed basis, following which new versions of the 
CRFs will be posted to the Zenodo Web site (https://​
zenodo.​org/​record/​81723​59).

Discussion
The primary aim of the Neurocritical Care Society’s Cur-
ing Coma Campaign call for DoC CDEs was to allow for 
development of standardized naming, definitions, and 
data structure for clinical research variables that will ulti-
mately enhance cross-study comparisons and facilitate 
collaborations in DoC-related research. The electrophysi-
ology working group pulled from existing CDEs, ensur-
ing consistency with prior reported efforts to standardize 
electrophysiology data acquisition [84–86]. To supple-
ment the existing CDEs, the electrophysiology working 
group created novel CDEs to encourage the harmoniza-
tion of data collection. The CDEs selected by the work-
ing group have been internationally disseminated in the 
form of a rsEEG CRF and pEEG CRF. These CRFs, and 
the CDEs they are composed of, are designed for ease of 
use to encourage broad implementation across various 
clinical settings.

The goal of this initiative is to encourage the advance-
ment of electrophysiology-related DoC research, in turn 
developing diagnostic and prognostic tools to assist in 
efforts to cure coma.

All DoC electrophysiology CDEs are now publicly 
available at (see Supplementary Materials).
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