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Abstract 

Background:  Noninvasive neuromonitoring in critically ill children includes multiple modalities that all intend to 
improve our understanding of acute and ongoing brain injury.

Methods:  In this article, we review basic methods and devices, applications in clinical care and research, and explore 
potential future directions for three noninvasive neuromonitoring modalities in the pediatric intensive care unit: auto-
mated pupillometry, near-infrared spectroscopy, and transcranial Doppler ultrasonography.

Results:  All three technologies are noninvasive, portable, and easily repeatable to allow for serial measurements and 
trending of data over time. However, a paucity of high-quality data supporting the clinical utility of any of these tech-
nologies in critically ill children is currently a major limitation to their widespread application in the pediatric intensive 
care unit.

Conclusions:  Future prospective multicenter work addressing major knowledge gaps is necessary to advance the 
field of pediatric noninvasive neuromonitoring.

Keywords:  Pediatric neurocritical care, Neuromonitoring, Pupillometry, Near-infrared spectroscopy, Transcranial 
Doppler ultrasonography

Introduction
Brain injury is common in pediatric critical care as a 
result of either a primary neurological or neurosurgi-
cal process, secondary brain injury or as a consequence 
of systemic disease. The ability to identify children at 
risk of neurologic injury and detect early signs of neuro-
logic dysfunction is key to providing good critical care. 

Pediatric neuromonitoring has traditionally focused on 
serial neurologic examinations, electroencephalography 
(EEG), and neuroimaging. Similar to adult neurocritical 
care, there is an emerging interest in other noninvasive 
neuromonitoring modalities, particularly automated 
pupillometry, near-infrared spectroscopy (NIRS), and 
transcranial Doppler (TCD) ultrasonography. These tech-
nologies may provide additional insights into important 
physiological changes, improve early recognition of acute 
neurologic deterioration, and help guide management in 
a meaningful way that improves patient outcomes [1, 2]. 
In this article, we aim to review pupillometry, NIRS, and 
TCD ultrasonography in the pediatric intensive care unit 
(PICU) setting. For each technology, we will discuss the 
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basic methods and available devices, use in clinical care 
and research, and limitations and future directions, real-
izing that normative data for the PICU population and 
standardized protocols, data reporting, and interpreta-
tion are needed for their safe and effective use in criti-
cally ill children.

Pupillometry
The pupillary light reflex (PLR) is a complex physiologic 
process involving the sympathetic and parasympathetic 
nervous system. When light is shined into the eye, reti-
nal photoreceptors are activated via the optic nerve. The 
optic nerve traverses the optic chiasm, where nerves from 
the nasal retina cross to the contralateral side and nerves 
from the temporal retina continue ipsilaterally [3]. After 
exiting the optic tract, they synapse within the pretectal 
area of the midbrain. Axons then travel from the pretec-
tal area bilaterally and synapse at both Edinger–West-
phal nuclei. The parasympathetic fibers travel via the 
oculomotor nerves to synapse at the ciliary ganglion and 
ultimately innervate the iris sphincter, resulting in pupil-
lary constriction [3–5]. In contrast to the parasympa-
thetic nervous system, the sympathetic nervous system 
is responsible for pupillary dilation. Lesions at any point 
along these pathways, therefore, may impact the pupil-
lary examination. Pupil size or PLR may be confounded 
by a variety of medications, alcohol, delirium, and acute 
brain injury itself [6, 7]. Medications that may impact the 
static or dynamic evaluation of the pupil include but are 
not limited to atropine, barbiturates, diphenhydramine, 
naloxone, opioids, propofol, and selective serotonin reup-
take inhibitors [4].

Pupillary assessment is a key component of the neu-
rologic examination of any critically ill child that may be 
performed qualitatively or quantitatively. Traditionally, 
this has been examiner dependent and subjective and 
would include an estimation of pupillary size and reactiv-
ity assessed as “brisk,” “sluggish,” or “nonreactive.” Prior 
research has shown that qualitative assessments of pupils 
using a penlight have the potential to be inaccurate, with 
limited interrater reliability, and may not identify changes 
in pupillary size or reactivity [8–10]. Automated quan-
titative pupillometry, on the other hand, has allowed for 
objective data reporting, evaluation of multiple dynamic 
components of the PLR, and digital visualization of 
trends that may signify acute neurologic dysfunction.

Pupillometer Methods and Devices
Although there are a variety of pupillometers reported 
in the literature, there are two main companies that 
manufacture devices applicable to the intensivist. Until 
recently, NeurOptics was the only manufacturer avail-
able in the United States. However, as of March 2022, the 

pupillometer made by ID Med is now available (Table 1). 
Handheld pupillometers have their own light source, a 
self-contained digital camera, and a liquid crystal display 
screen. The pupillometers made by these two manufac-
turers have a 510  K US Food and Drug Administration 
(FDA) exemption and are available in both the United 
States and Europe. As with any commercial device, indi-
vidual pupillometer parameters and results may vary 
across manufacturers. An adult study comparing two 
commercially available pupillometers (NeurOptics NPi-
200 and the NeuroLight Aligscan) showed significant 
correlation for pupil size and constriction velocity but no 
correlation for pupillary latency [11].

When using the pupillometer, the examination begins 
with a flash of light of fixed intensity and duration that 
stimulates the PLR [14]. Infrared light rays are used to 
illuminate the eye, and images are acquired by the digi-
tal camera [15]. As an example, the NeurOptics NPi-200 
captures 90 images in a 3-s period (NeurOptics.com). The 
results are immediately displayed on the screen and can 
be trended over time. As such, its use has been associated 
with reduced nursing assessment time when the pupil-
lometer synchronizes with the electronic medical record 
(penlight examination: 96 s versus 37 s with the pupillom-
eter) [16].

Automated pupillometry allows for quantitative meas-
urement of multiple variables that cannot be quantified 
with the human eye. Measured variables vary based on the 
manufacturer but often include static and dynamic param-
eters that may be age related and impacted by environmen-
tal light conditions (Table 2) [4, 14]. For example, in a study 
of 90 children aged 1 to 18 years old in ambient light, the 
mean maximum pupil size was 4.11 mm, the mean mini-
mum size was 2.65  mm, the mean constriction velocity 
was 2.34 mm/s, the mean dilation velocity was 2.2 mm/s, 
and the mean pupillary size reduction was 36% follow-
ing light stimulus [12]. The authors noted larger pupils 
in children aged 2 to 6 years old, which may be related to 
myelination [12]. In contrast, under scotopic light condi-
tions, 101 children had a mean resting pupil diameter of 
6.6 ± 0.74 mm, a mean minimum size of 4.7 ± 0.77 mm, a 
mean constriction velocity of 3.7 ± 0.744  mm/s, a mean 
dilation velocity of 0.88 ± 0.25 mm/s, and a mean pupillary 
size reduction of 30% ± 6.2% [13].

NeurOptics pupillometers employ a proprietary algo-
rithm to quantify pupillary reactivity called the Neuro-
logical Pupil Index (NPi), first introduced in 2011 [14, 
17]. The NPi incorporates multiple PLR variables, includ-
ing size, latency, constriction velocity, and dilation veloc-
ity [14]. Each individual variable is compared against the 
mean reference value of healthy individuals and the dif-
ference is standardized to the standard deviation, result-
ing in a z-score that becomes the NPi [14]. The NPi is 
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scored from 0 to 5, in which 0 indicates an absent PLR 
and 5 indicates a “brisk” PLR. Within the adult literature, 
an NPi ≥ 3 suggests that pupil reactivity falls “within the 
boundaries of the normative pupil behavior distribution” 
[14]. An NPi < 3 has been termed “abnormal.” There are 
no data in children to indicate which NPi values are cause 
for concern.

Use of Pupillometry in Clinical Care and Research
In adults, pupillometry-derived PLR has been studied in 
a variety of applications (e.g., screening for neurologic 
complications, neuroprognostication) and conditions 
(e.g., traumatic brain injury [TBI], aneurysmal suba-
rachnoid hemorrhage/intracerebral hemorrhage). In 
adults with traumatic and nontraumatic intracerebral 

Table 1  Commercially available handheld pupillometers reported in the ICU literature

ICU, intensive care unit, NPi, Neurological Pupil Index

Manufacturer Models (currently available) Pros/cons

ID MED
(Marseille, France)
Idmed.fr
Available in Europe and the United States

NeuroLight
Algiscan

Uses eyecup to block out ambient light
Does not use any disposable contents, 

eyecups are reusable
Quantifies the pupillary light reflex to 

0–5% (nonreactive or fixed), 5–20% 
(abnormal/sluggish), > 20% (normal/
brisk)

The Algiscan uses pupillometer data 
to measure the level of analgesia in a 
proprietary manner called the pupillary 
pain index

NeurOptics
(Irvine, CA, USA)
neuroptics.com
Available in Europe and the United States

NPi-200
NPi-300

Requires each patient to have their own 
SmartGuard

NPi is proprietary
Normative data in children reported 

using the NeurOptics ForSite pupillom-
eter [12] and NeurOptics PLR-200TM 
[13]

NeurOptics makes additional research 
models that do not employ the NPi 
algorithm (outside of the scope of this 
article)

Table 2  Pupillometer variables

Variable Unit of measure Variable explanation

Pupil size mm Minimum pupil size (min): size at peak constriction
Maximum pupil size (max): size measured at rest

Constriction percentage or percent change % (max − min)/max

Latency s Time delay between the light stimulus and the onset of pupillary constriction

Constriction velocity mm/s Distance of constriction (mm) divided by constriction duration (average)

Maximum constriction velocity mm/s Peak value of constriction velocity

Dilation velocity mm/s Distance of redilation (mm) divided by the duration of recovery (seconds)
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hemorrhage, an NPi < 3 was associated with increased 
intracranial pressure (ICP) (average 30.5  mmHg), 
whereas an NPi ≥ 3 was associated with normal ICP 
(average 19.6  mmHg). In a subset of these patients, 
pupillometry was able to identify changes in pupillary 
reactivity preceding intracranial hypertension [14]. 
Findings in adults have also suggested that pupillary 
constriction velocity < 0.6  mm/second, an NPi < 3, and 
pupil size reduction < 10% have been associated with 
intracranial hypertension [4]. In a small cohort of adults 
with aneurysmal subarachnoid hemorrhage, an NPi < 3 
was associated with the development of delayed cer-
ebral ischemia [18]. The pupillometer has been reported 
to aid in neuroprognostication following a variety of 
acute neurologic conditions [4]. In a study of 103 adults 
following cardiac arrest, 48-h quantitative PLR per-
centage reactivity ≥ 13% distinguished survivors from 
nonsurvivors (PLR < 13% had a 100% positive predic-
tive value for mortality with 100% specificity) [19]. In a 
multicenter trial of 456 adults following cardiac arrest, 
an NPi ≤ 2 at any time between days 1 and 3 was asso-
ciated with unfavorable outcome with 32% sensitivity, 
100% specificity, and a 100% positive predictive value, 
exceeding performance metrics of the manual pupillary 
examination [20].

In children, the pupillometer has been used in TBI, 
stroke, central nervous system infections or malignancies, 
seizures, encephalopathy, septic shock, cerebral edema, 
and extracorporeal membrane oxygenation [1]. In a 
recent survey of neuromonitoring practices in 52 PICUs, 
17 (33%) intensive care units reported using pupillometry 
[1]. Pupillometry use was guided by institutional proto-
cols (ten hospitals, 59%), a pediatric intensivist (ten hos-
pitals, 59%), the neurosurgical team (four hospitals, 24%), 
and/or the neurology team (six hospitals, 35%). In this 
survey, the pupillometer was most frequently used in chil-
dren with severe hypoxic-ischemic brain injury follow-
ing cardiac arrest (29%), severe TBI (27%), and cerebral 
edema with no clear underlying etiology (25%) [1]. There 
are no known specific thresholds or values derived from 
pupillometry in children that have been clearly associated 
with unfavorable patient outcomes or acute change in 
management, and trends in data may be helpful. Freeman 
and colleagues [21] attempted to evaluate whether abnor-
mal pupillary measurements would precede increases in 
ICP in a cohort of 28 children with acute brain injury and 
ICP monitors. When ICP was < 20 mmHg (n = 856 meas-
urements), right and left NPis were 4.4 and 4.4, whereas 
when ICP was ≥ 20  mmHg (n = 315 measurements), the 
right NPi was 3.4 and the left NPi was 3.3. There was an 
inverse correlation with NPi, pupillary size, constric-
tion velocity, maximum constriction velocity, and dila-
tion velocity with ICP but no significant correlation with 

latency [21]. These authors suggested that individual 
measured parameters that contribute to the NPi may bet-
ter correlate with ICP than the absolute NPi score itself 
[21]. Although normative data exist for a number of com-
ponents of the PLR in healthy children using the pupil-
lometer [12, 13], it is unclear whether there is a specific 
NPi cutoff in children that indicates “normal” or “abnor-
mal” PLR and what defines a clinically meaningful change 
in the NPi for each manufacturer.

The current evidence base regarding the use of auto-
mated pupillometry in critically ill children is limited. 
The World Brain Death Project suggests using a pupil-
lometer during the clinical examination for determina-
tion of brain death [22]. Outside of this recommendation, 
there are no other societal guidelines or consensus state-
ments with clear recommendations as to which critically 
ill children would benefit from the use of automated 
pupillometry as a routine portion of their care. There-
fore, the use of automated pupillometry is likely best 
integrated based on individual institutional standards 
for neurologic examinations of the critically ill child as 
recommended by a pediatric intensivist, neurologist, or 
neurosurgeon.

Pupillometry Limitations and Future Directions
Automated pupillometry has the potential to impact 
clinical care for the critically ill child. The objective data 
obtained from the pupillometer may allow for early 
detection of impending neurologic deterioration, may 
serve as a marker that one could trend pre-intervention 
and post-intervention, may assist in the noninvasive 
detection of intracranial hypertension, and may have util-
ity in aiding in neuroprognostication. Prospective studies 
are needed to better understand these and other clinical 
applications for pupillometry in the PICU and how pupil-
lometry may impact clinical decision-making at the bed-
side. Standardized data reporting and interpretation that 
does not focus solely on analyzing proprietary algorithms 
is needed to be most generalizable to the global field. Per-
formance metrics of pupillometry for outcomes of inter-
est also need to be better understood.

NIRS
Optimizing oxygen delivery to various tissues is a key 
goal in critical care. The noninvasive measurement of 
blood oxygenation via pulse oximetry revolutionized 
patient management in the 1970s because it gave clini-
cians a tool to measure systemic oxygen levels, to rec-
ognize hypoxemia before it was otherwise obvious, and 
to respond with changes in treatment [23]. Around the 
same time in 1977, NIRS was described as a noninva-
sive tool to detect the oxygenation state of living tissue 
by Jobsis [24]. Since then, the role for NIRS has been a 
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focus of research, resulting in thousands of publications 
and review articles, and its use has been integrated into 
clinical practice in various ways, importantly to assess 
cerebral regional oxygenation (rSO2).

NIRS Methods and Devices
NIRS is a reasonably priced, portable, relatively small, 
noninvasive monitor that does not require ionizing radia-
tion and can be quickly applied at the bedside without 
the need for ongoing hands-on operation. A list of FDA-
approved NIRS devices that are commercially available 
in the United States is shown in Table 3. A probe, which 
contains both the light emission source and the detec-
tion sensor, is applied to the area of interest (e.g., fore-
head for cerebral monitoring), and data are transmitted 
to a processor with a display (Fig.  1a). Most machines 
have neonatal or pediatric probes, which differ from 
adult probes by the size of the footprint and different 
depth of light penetration to compensate for the thin-
ner skull of infants and children. Near-infrared light of 
various wavelengths is emitted from the probe, passes 
through skin and bone, and diffuses through the tissue, 
where it encounters hemoglobin in its different states 
of oxygenation in the arteries, veins, and capillaries in a 
manner that is not flow dependent. Importantly, deoxy-
hemoglobin and oxyhemoglobin absorb light at different 
wavelengths (Fig. 1b). Reflected light is measured by the 
detection sensor, and these data are processed through a 
series of complex mathematical transformations with a 
basis in the modified Beer–Lambert law to provide infor-
mation about tissue oxygenation. A typically proprietary 
algorithm that includes compensation for the light pen-
etration depth and other factors is used by each device 
to provide a regional cerebral oxygen saturation (rSO2), 
which is expressed as a percentage (oxyhemoglobin/total 
hemoglobin × 100) displayed on the monitor, along with 
the trend over time.

There are no well-validated normative thresholds, 
and there is no true gold standard for rSO2, making the 
trend in data likely more valuable than any individual 
point in time. However, rSO2 obtained using NIRS has 
been shown to correlate with jugular bulb saturation 

Table 3  FDA-approved NIRS devices commercially available in the United States

Each uses similar technology but differs in the wavelengths used and components of proprietary computational algorithms. Other devices are available in other 
countries and for research use

FDA, US Food and Drug Administration, NIRS, near-infrared spectroscopy

Company Instrument name Sensors available Wavelengths Additional information

Nonin Medical Inc SenSmart Adult and pediatric 730, 760, 810, 880 nm

Edwards Lifesciences Fore-Sight Adult, pediatric/medium 
(> 3 kg), infant/small (< 8 kg)

5 total: 690, 778, 800, 850 nm 
plus one additional on adult 
probe, 685 nm on pediatric/
infant probe

Reports compensation for 
melanin [27]

Small probe is available without 
adhesive

Medtronic INVOS Adult (> 40 kg), infant (< 5 kg) 730, 810 nm

Mespere Life Sciences NeurOs—Cerebral Oximetry Adult Single use and reusable probes 
available

Provides blood volume index

Masimo O3 Regional Oximetry Adult (> 40 kg), pediatric 
(5–40 kg), infant (< 10 kg)

730, 760, 810, 880 nm

Fig. 1  a Basic model of near infrared spectroscopy showing the light 
emission source and detector on a single probe. From Denault et al. 
[25]. b Absorption spectra for deoxyhemoglobin (HHb), oxyhemo-
globin (HbO2), cytochrome c oxidase (Cyt), and water (H2O) in the 
near-infrared range. Most oximeters use wavelengths in the 730–900-
nm range. From Shaaban-Ali et al. [26]
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(the closest to a gold standard for the measurement of 
the balance between cerebral oxygen delivery and use 
that exists) [28–34]. There is also variability between 
each NIRS machine because of variations in probe size, 
depth of beam penetration, signal processing, and data 
analysis. Although there is no FDA standard for accu-
racy as there is with pulse oximetry, for example, which 
must have an accuracy root mean square within 2–3% of 
arterial blood gas values, comparative studies of several 
commercially available systems have shown that they are 
generally equivalent within ± 10% in both real-world and 
laboratory settings [35–39]. Furthermore, the calculation 
of rSO2 requires assumptions that may not be true in 
all clinical scenarios. For example, most systems assume 
around 10% intracapillary/20% intraarterial/70% intra-
venous blood volume distribution, and calculations are 
weighted appropriately. However, there may be individual 
variability leading to inaccurate results for that specific 
patient [40]. There are also physiologic or pathophysi-
ologic changes in the arterial/venous ratio that occur, 
which may lead to inaccuracy of cerebral oximetry [41]. 
For example, Schober et al. [42] compared the difference 
between measured rSO2 and that calculated from jugular 
venous and radial arterial hemoglobin saturations using 
the manufacturer-provided ratios in healthy volunteers 
over a range of fraction of inspired oxygen (FiO2)  and 
two partial pressure of carbon dioxide in arterial blood 
(PaCO2)  levels. They showed that acute hypocapnia, 
which presumably changes the arterial/venous ratio, led 
to an overestimate of rSO2, and the difference was exac-
erbated with lower FiO2 [42]. Additionally, it is assumed 
that most of the data collected by the probe come from 
the brain, with minimal contribution from the skin and 
tissues. However, this may not always be the case; for 
example, different forehead shapes, larger sinuses, tis-
sue edema, or scarring may create artifact or interference 
with the probe or add a more than minimal contribution 
to the rSO2 calculation [43]. Because of these limitations, 
NIRS-derived rSO2 has variability both between patients 
and within the same patient, making quantitative analy-
sis less valuable than trend monitoring [36, 44]. Although 
studies using different machines in different popula-
tions have generated different normative data, a baseline 
rSO2 of around 55–75% in adults and children without 
cyanotic heart disease is commonly accepted [45–48]. 
Kurth et  al. [49] described the effect of hypoxia on the 
brain in a piglet model and showed that impairment 
occurred in a graded fashion and established general 
thresholds for concern (Fig. 2). Slowing in the EEG and 
increased brain tissue lactate levels were seen at a NIRS 
rSO2 of 40–45%, and this progressed to flat EEG results 
at a NIRS value around 30% [49].

Use of NIRS in Clinical Care and Research
The body of literature evaluating the use of cerebral NIRS 
in a variety of neonatal and pediatric conditions in the 
intensive care unit suggests that it may be a useful adjunct 
with multimodal monitoring, but the impact on patient 
management and outcomes from NIRS alone remains 
unclear. In a systematic review from the Cochrane library 
that examined the use of NIRS in premature infants born 
12  weeks early and outcomes, including mortality and 
later neurologic development, one randomized clinical 
trial was included involving 166 premature infants ran-
domized to continuous cerebral NIRS monitoring until 
72  h after birth and appropriate interventions if NIRS 
was out of normal range according to a guideline versus 
conventional monitoring with blinded NIRS. The trial 
was powered, however, to detect a difference in cer-
ebral oxygenation and not morbidities or mortality. No 
consistent effects of NIRS along with a guideline on the 
assessed clinical outcomes were seen. Validity was ham-
pered by a small sample, lack of blinding, lack of power, 
and indirectness of outcomes [50]. Assessment of cer-
ebral autoregulation using NIRS in the neonatal popula-
tion with hypoxic-ischemic encephalopathy is beyond the 
scope of this review. Another systematic review on the 
use of cerebral NIRS in congenital heart disease reviewed 
available data from 47 case series, four randomized trials, 
and three retrospective studies. The data suggested that 
this literature failed to find an association between the 
use of NIRS and neurologic outcomes, and the authors 
concluded that this limits the support for widespread 

Fig. 2  In a piglet model of hypoxia, signs of neurophysiologic impair-
ment were identified in a graded fashion. Electroencephalography 
(EEG) slowing occurred first, followed by an increase in brain lactate 
levels around a cerebral regional oxygenation (rSO2) of 40–45%. As 
hypoxia progressed, brain failure was evident with a flat EEG and 
decreased ATP. A “buffer” was identified between normal regional 
cerebral oxygen saturation and 45%, at which physiologic changes 
became evident. The figure was made from data shown in Kurth et al. 
[49]
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implementation [51]. A recent survey, however, of 52 
North American PICUs showed that 87% of respondents 
reported using NIRS in clinical care at their institution. 
Patients were chosen for monitoring primarily at the 
choice of the PICU attending (89%) or based on insti-
tutional protocol (56%), and primary reasons for moni-
toring included ECMO (69%), severe hypoxic-ischemic 
brain injury after cardiac arrest (56%), and severe TBI 
(48%) [1]. This study does not provide information on 
frequency of usage or how NIRS was used, and it does 
not represent usage outside of North America.

In pediatric TBI, small studies support the use of 
NIRS [52–55]. In a small pilot study by Kampfl et  al. 
[52] involving eight patients with ICP monitors post 
head injury, rSO2 was lower in the high ICP group 
(> 25  mmHg) than in the low ICP group (< 25  mmHg). 
Another study by Kirkpatrick et al. [53] of 14 ventilated 
patients with closed head injury also showed that NIRS 
changes correlated with changes in cerebral perfusion 
pressure identified by multimodal monitoring 97% of the 
time. Studies by Zuluaga et  al. and Lang et  al. showed 
that rSO2 trended lower with increased ICP in patients 
with brain tumors, trauma, and hydrocephalus pre- and 
post cerebrospinal fluid (CSF) diversion [54, 55].

The small size and portability of NIRS makes it feasible 
to use in a prehospital setting, and it has been success-
fully studied by noncivilian groups as a tool to identify 
traumatic intracranial hemorrhage in the field [56–58]. 
Pediatric research teams have looked at the use of NIRS 
for detection of intracranial hemorrhage in children 
because of these promising results. Studies by Salonia 
et  al., Bressan et  al., Lewartowska-Nyga et  al., and Kir-
schen et  al. each found that the Infrascan, a handheld 
NIRS device, identified intracranial hemorrhage that was 
confirmed by head computed tomography with reason-
able sensitivity and specificity [59–62]. This device does 
not use rSO2 but rather determines differences in the 
optical density, which is higher in areas of hemorrhage 
because of increased hemoglobin levels and therefore 
more absorbent of NIRS light. These studies each show 
that the handheld NIRS device has a high negative pre-
dictive value in their cohorts, suggesting it could act in an 
adjunctive role with current clinical decision rules to pre-
dict risk of intracranial hematoma in children with head 
trauma. Further research in large cohorts with a focus on 
effectiveness will be valuable in clarifying the role for this 
technology, which has the potential to decrease radiation 
exposure via computed tomography scans and shorten 
length of observation for patients who may have previ-
ously required these interventions.

In post-cardiac-arrest monitoring, studies in adults 
have suggested a role for cerebral NIRS during cardiac 
arrest, with higher rSO2 values correlating with return 

of spontaneous circulation (ROSC) and neurologically 
favorable survival to hospital discharge [63–65]. Several 
small case series have described use of NIRS in pediat-
ric cardiac arrest [66–68]. A small prospective study by 
Francoeur et  al. [69] in 2022 showed that NIRS place-
ment during pediatric in-hospital cardiac arrest was 
feasible and that the median rSO2 was higher for events 
with ROSC than those with no ROSC, but there was no 
association between rSO2 and survival to discharge. 
As the field of cardiac arrest research focuses on goal-
directed cardiopulmonary resuscitation, cerebral NIRS 
can noninvasively assess rapid changes in cerebral oxy-
genation, which may correlate with more effective car-
diopulmonary resuscitation and improved neurologic 
outcomes, but larger studies are required to determine its 
role in this clinical scenario.

Lastly, small pediatric studies suggest that use of 
NIRS-derived optimal blood pressure determination is 
feasible post cardiac arrest [70, 71]. Kirschen et  al. [72] 
showed that a larger amount of time with the mean arte-
rial pressure (MAP) below the NIRS-derived optimal 
MAP (MAPopt) during the first 24 h after cardiac arrest 
correlated with unfavorable outcomes (Pediatric Cer-
ebral Performance Categorization ≥ 3 with ≥ 1 change 
from baseline at the time of hospital discharge). Simi-
larly, Lee et al. [73] showed that a larger time with MAP 
below MAPopt or a larger deviation below MAPopt was 
associated with new tracheostomy or gastrostomy, brain 
death, or withdrawal of technological support for neuro-
logic futility. This is an area that requires further research 
to clarify the role for NIRS in the care of children post 
arrest.

As highlighted previously, there is a large breadth of 
studies using NIRS in critically ill pediatric patients. 
Although there is insufficient evidence to support formal 
guidelines surrounding its use, there is also no evidence 
showing harm through the use of this noninvasive device. 
When the device can be placed around other clinically 
indicated equipment (e.g., EEG leads), NIRS could be 
used as a component of multimodality monitoring of 
patients with neurologic injury [51]. As with other non-
invasive monitoring devices, trends in NIRS data may be 
the most clinically useful. To use cerebral NIRS clinically 
in any scenario, it is important to remember that cerebral 
rSO2 is a result of cerebral tissue oxygen supply (a factor 
of cerebral blood flow and arterial O2 content) minus the 
demand (Fig. 3a). There are many physiologic alterations 
that can affect this number, and different interventions 
may be required. For example, low rSO2 may be due to 
low oxygen delivery from decreased cardiac output and 
hypotension. In this case, recognizing and treating the 
hypotension should improve the rSO2. Alternatively, 
if cerebral oxygen demand is high because of seizures, 
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antiseizure medication is required to normalize the 
rSO2. Although there are no accepted protocols or guide-
lines for when to use NIRS and how to interpret the data 
in the PICU population that have been shown to result 
in improved patient-specific outcomes, algorithms have 
been created by various institutions to help clinicians use 
the information obtained from NIRS in addition to other 
physiologic parameters to modify clinical care (Fig.  3b) 
[74, 75]. Further research is needed to validate these algo-
rithms in the PICU for NIRS to be safely and effectively 
incorporated into clinical care.

NIRS Limitations and future directions
Cerebral NIRS monitoring has several limitations, some 
of which are related to the physics behind the machine’s 
function and the physiology of the brain in normal and 
pathologic states. As discussed previously, the lack of 
validated normative thresholds may make a trend more 
meaningful than individual data points. Additionally, the 
data obtained are subject to physiologic or pathophysi-
ologic changes of noncerebral origin. A small laboratory-
based study evaluated the impact of varying levels of skin 
pigmentation and melanin on NIRS oxygenation readings 
and found that as the level of pigmentation increased, the 
reported saturation decreased [76]. Clinically, this was 
assessed by Sun et al. [77] in a retrospective registry study 
in which they found that self-identified African American 
patients had a lower rSO2 when compared with White 
patients. This is a potential source of bias that must be 
addressed in research going forward, and clinicians must 
be aware of this limitation in the interim. NIRS monitors 
measure regional brain tissue oxygenation in the frontal 
regions, and therefore any change seen reflects changes 
in this part of the brain only. Measurements also reflect 
only the tissue oxygenation in the outer cortex because 
beams are unable to reach deeper segments of the brain. 
Additionally, a local change may occur in a nonfron-
tal brain region that would not be detected by the NIRS 
monitor in the frontal region. Logistical challenges exist 
for smaller children who have smaller forehead sizes, and 
the probes may not fit well or may interfere with other 
forms of monitoring (e.g., EEG). Interference may also 
arise from other equipment at the bedside, such as res-
piratory or cardiac oscillations. Lastly, a tightly adher-
ent probe is necessary for appropriate data collection, 

and frequent readjustment may be necessary because of 
probe dislodgement.

To further highlight the limitations and challenges of 
NIRS, we can look to the adult literature, in which recent 
studies have directly compared NIRS monitoring with 
invasive brain tissue oxygen (PbtO2)  monitoring and 
found various levels of correlation in various patholo-
gies. de Courson et al. [78] found no correlation between 
the two methods in a cohort of 51 patients with non-
traumatic subarachnoid hemorrhage. These data were 
collected manually each hour, and there was no global 
correlation over time. When looking at patients with 
severe TBI, presumably a more global injury, studies have 
shown variable but present correlation between invasive 
and NIRS monitoring [79–81]. The differential informa-
tion obtained from invasive and noninvasive monitoring 
may be because invasive PbtO2 monitors assess oxygen 
concentration of the interstitial tissue in the deeper white 
matter, whereas NIRS measures oxygen in intravascular 
space closer to the brain surface [82]. These two moni-
toring sources may have differential baseline values from 
different parts of brain tissue. Additionally, the sampled 
areas may also be affected differently by brain pathology; 
for example, if the invasive monitor is placed into injured 
tissue, local microvascular injury may lead to decreased 
diffusion of O2 that is not occurring globally in the whole 
brain monitored by NIRS. Together with other forms of 
multimodal neuromonitoring, invasive PbtO2 and NIRS 
monitoring may be complementary to each other, and the 
utility of each may be different depending on the type of 
injury.

Large prospective studies with patient-centered out-
comes are needed to better understand the role of NIRS 
as a component of multimodal neuromonitoring in the 
PICU. Uniform data collection and reporting standards 
are needed to compare results across studies and sites, 
and adjustment for variation in proprietary algorithms is 
needed.

TCD Ultrasonography
Transcranial Doppler was introduced in the early 1980s 
by Dr. Aaslid, who described the ability of this device to 
measure cerebral blood flow velocity (CBFV) in the basal 
large cerebral arteries around the Circle of Willis through 
an intact skull bone using low-frequency pulsed Doppler 

Fig. 3  a Examples of physiologic factors that impact cerebral oxygenation. b An example of a management algorithm using cerebral near-infrared 
spectroscopy (NIRS) data during cardiac surgery as shown by Trafidlo et al. [75]. rSO2, regional cerebral oxygen saturation, HgB, hemoglobin, CBF, 
cerebral blood flow, SpO2, oxygen saturation, CPP, cerebral perfusion pressure, MAP, mean arterial blood pressure, ICP, intracranial pressure, PaO2, 
partial pressure of oxygen in arterial blood, PaCO2, partial pressure of carbon dioxide in arterial blood, SvO2, venous oxygen saturation, CMRO2, 
cerebral metabolic rate of oxygenation consumption

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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ultrasound [83]. Because cerebral hemodynamic infor-
mation from TCD is obtained in real-time at the bedside, 
and a single study can be done rapidly and repeated, TCD 
is not only a diagnostic tool but also an ideal tool for 

neuromonitoring [84]. Indeed, technological advances 
have improved TCD technology since its inception, lead-
ing to a broad range of potential applications in the PICU 
setting. TCD has been used in many different pediatric 
and adult patient populations in the intensive care unit 
and perioperative setting in the qualitative assessment of 
raised ICP, cerebral circulatory arrest, and high-intensity 
transient signals/microemboli as well as in the quantita-
tive assessment of cerebral vasospasm, cerebral pressure 
autoregulation, and cerebral vasomotor reactivity [85].

TCD Methods and Devices
A low-frequency ultrasound probe (1–3 MHz) is placed 
over an acoustic window, which is a region of the skull 
that is thin and permits penetration of the ultrasound. 
The most common acoustic windows are transtemporal, 
suboccipital, and orbital (Fig. 4, Table 4). In infants under 
12  months of age, the transfontanelle window can also 
be used. The vessel segments around the Circle of Willis 
insonated using TCD are shown in Fig.  5. TCD studies 
may be obtained using imaging (transcranial color-coded 
duplex ultrasonography [TCCD]) or nonimaging TCD 
devices depending on local availability and user prefer-
ence (Table 5). Both modalities use pulsed wave Doppler 
to generate cerebral hemodynamic information through 
waveform analysis (Fig.  6). The conventional approach 

Fig. 4  Acoustic windows for imaging and nonimaging transcranial 
Doppler ultrasonography (illustration by Dr. Marina Mir)

Table 4  Insonated vessels in each acoustic window [88–90, 103]

TCCD, transcranial color Doppler, TCD, transcranial Doppler

Window Modality Vessel segment

Transtemporal Imaging (TCCD) and nonimaging (TCD) Middle cerebral artery
Anterior cerebral artery
Posterior cerebral artery
Internal carotid artery terminus

Transfontanelle (anterior fontanelle) Imaging (TCCD) Internal carotid artery
Ophthalmic artery
Basilar artery
Anterior cerebral artery and its branches:
Pericallosal
Callosal marginal
Medial frontal
Middle cerebral artery and its branches:
Lenticulostriate
Operculo insular
Cortical arteries
Posterior cerebral artery and its branches:
Thalamic
Choroidal

Transoccipital Imaging (TCCD) and nonimaging (TCD) Vertebral artery
Basilar artery

Transorbital Imaging (TCCD) and nonimaging (TCD) Ophthalmic artery
Internal carotid artery siphon

Submandibular Imaging (TCCD) and nonimaging (TCD) Extracranial internal carotid artery

Transfrontal Imaging (TCCD) and nonimaging (TCD) Anterior cerebral artery

Posterolateral fontanelle (posterior and 
mastoid)

Imaging (TCCD) and nonimaging (TCD) Posterior circulation in neonates and infants
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using nonimaging devices requires vessel identifica-
tion to occur by knowledge of the typical depth, speed 
and direction of flow in relation to the probe, waveform 
morphology, and sound/pitch for each insonated seg-
ment. This approach does not require angle correction 
and assumes a zero angle between the probe and direc-
tion of blood flow (angle of insonation). Modern TCD 
devices have motion (M)  Doppler mode, which uses 33 
overlapping Doppler samples over 6 cm, which allows the 
user to visualize the depth at which flow is present and 

facilitating localization of the signal [86, 87]. TCCD pro-
vides anatomical B-mode images of insonated segments, 
allowing users to directly visualize the cerebral arteries. 
The TCCD transducer is a phase array probe operating 
at frequencies of 2 to 3.5 MHz. The TCCD user can iden-
tify landmarks such as the midbrain for orientation to the 
anterior and posterior circulations using color flow Dop-
pler. CBFV is superimposed on the anatomical images of 
the blood vessels and flow is color coded with red, indi-
cating flow toward the probe, and blue, indicating flow 

Fig. 5  Vessel segments around the Circle of Willis that can be insonated with transcranial Doppler ultrasound. Insonation of the large intracranial 
arteries with the ultrasound probe placed over the transtemporal window is demonstrated in the figure (illustration by Dr. Marina Mir)

Table 5  Imaging (TCCD) compared to nonimaging (TCD) devices

DICOM, Digital Imaging and Communications in Medicine, TCCD, transcranial color-coded duplex ultrasonography, TCD, transcranial Doppler ultrasonography

Characteristic TCD TCCD

Images Spectral color wave forms Anatomical images with black and white wave forms

Probe 2-MHz flat probe 2–3.5-MHz phase array probe

Hardware Dedicated TCD software and hardware Software package on ultrasound machine

Multichannel monitoring Yes No

Angle correction capability No Yes

DICOM capable Some Yes

Machine size Small, portable Large often with cart or carrying case

Upgradable No Yes

Learning curve Moderate Low
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away from the probe. Once the vessels are identified, a 
defined region of measurement called a gate within the 
B-mode image is identified, from which Doppler shifts 
are recorded, creating a black and white pulse wave Dop-
pler waveform from the sampled section. Pulse wave 
Doppler images from gated samples are often displayed 
alongside the color-coded B-mode image (Fig. 7). TCCD 
allows the user to visualize both the vessel and segment 
from which CBFVs are sampled. Angle correction can 
be applied with imaging devices, but generally this is not 
done with data acquired from TCCD.

Both TCD modalities measure CBFVs in the large 
intracerebral arteries around the Circle of Willis and dis-
play spectral waveforms on the monitor. Under non-
pathologic conditions, cerebral blood flow moves in one 

direction within the vessel lumen and demonstrates flow 
acceleration in systole and stepwise deceleration during 
diastole. Quantitative variables derived from TCD include 
peak systolic velocity (PSV), end-diastolic velocity (EDV), 
and mean flow velocity (MFV) (Fig. 8). Parameters derived 
from these measurements are the resistive index (RI) and 
the pulsatility index (PI), which reflect downstream vascu-
lar resistance. Of note, cardiac disease states, such as aor-
tic insufficiency or persistent ductus arteriosus, may also 
influence measurements of vascular resistance.

 	• PI = (PSV − EDV)/MFV: Normal values for adults 
are 0.6 to 1.2. Higher PI values indicate higher cer-
ebrovascular resistance downstream from the site of 
insonation.

Fig. 6  Waveform patterns in middle cerebral artery with imaging Doppler. a Bilateral high flow velocity pattern consistent with hyperemia in a 
school-aged patient with traumatic brain injury (TBI). b Unilateral high flow velocity pattern with a Lindergaard ratio > 3 suggestive of possible 
vasospasm in a school-aged patient after tumor resection. c Bilateral low-flow velocity high-resistance pattern in a teenager with severe TBI, sug-
gestive of increased intracranial pressure (ICP). d Bilateral low-flow velocity pattern with systolic spikes and absent end-diastolic velocity (EDV) in a 
drowning infant suggestive of cerebral circulatory arrest. MCA, middle cerebral artery, PSV, peak systolic velocity, EDV, end diastolic velocity, Mean, 
mean velocity, PI, pulsatility index
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 	• RI = (PSV − EDV)/PSV: Commonly used in the neo-
natal population, normal is < 0.8.

Qualitative information that can be obtained by 
visual inspection of TCD waveforms includes the 
following:

 	• Waveform morphology: Low-resistance waveforms 
are characterized by sharp systolic upstroke, step-
wise deceleration, and robust EDV. High-resistance 
vascular beds are noted by sharp systolic upstroke, 
stepwise deceleration, and low EDV [91]. In nonpath-
ologic conditions, the cerebral vascular bed is a low-
resistance bed.

 	• Pattern of flow: High-flow velocity pattern may indi-
cate hyperemia (e.g., due to reperfusion injury follow-
ing cardiac arrest, infection, hypercapnia) or arterial 
narrowing (e.g., vasospasm  following subarachnoid 
hemorrhage or tumor resection, or vascular injury in 
TBI). Low-flow velocity pattern may suggest cerebral 
hypoperfusion, perfusion limiting  increased  ICP, or 
low cardiac output.

The integration of TCD into multimodal neuromoni-
toring may allow for the evaluation and analysis of model-
based indices of cerebrovascular dynamics, including 
cerebral autoregulation, critical closing pressure, arte-
rial time constant, and compliance of the cerebrovas-
cular bed, among others. Supplemental Table  1 reviews 
concepts and calculations for model-based indices of 
cerebral hemodynamics. Noninvasive ICP estimation in 
children using a circuit model-based algorithm in a cou-
pled analysis with time-synchronized arterial blood pres-
sure waveforms obtained via radial artery catheterization 
and TCD-derived CBFV measurements may enable con-
tinuous, calibration-free, patient-specific ICP estimation 
in clinical scenarios in which invasive ICP monitoring is 
impractical [92, 93]. Improving in-depth knowledge of 
these factors calculated and observed in real time at the 
bedside may facilitate management of cerebrovascular 
pathologies.

It will be important to standardize the performance 
and reporting of TCD data to minimize interoperator 
variability [93–95] and reduce variability in results within 
and between centers. In 2020, a multidisciplinary group 
of TCD experts undertook a modified Delphi study and 
developed 34 recommendations in four domains for TCD 
practice in pediatric critical care (indication and request 
for examination standards, technical performance stand-
ards, data interpretation standards, and data reporting 
standards). A standard basic TCD protocol and a report-
ing worksheet were created based on the consensus state-
ments [94]. If incorporated into multimodal monitoring, 
standardization of TCD data elements and reporting pro-
cesses may also inform clinical decision-making [96].

Use of TCD Ultrasonography in Clinical Care and Research
Despite the lack of high-quality evidence supporting the 
utility of TCD in the PICU, the use of TCD has been 
explored in a variety of clinical disease states in critically 
ill children. A recent survey of 27 centers found that TCD 
was most commonly used in the evaluation and man-
agement of children in the PICU with intracranial/suba-
rachnoid hemorrhage (20 hospitals), arterial ischemic 
stroke (14 hospitals), and TBI (10 hospitals) [97]. In these 
and other conditions, 74% (20 of 27) of the respondents 
reported that TCD was used to inform clinical care, such 

Fig. 7  Sample image from color duplex transcranial Doppler ultra-
sound (TCCD). MCA, middle cerebral artery, PS, peak systolic velocity, 
ED, end diastolic velocity, TAMAX, time-averaged maximum velocity 
(green envelope tracing), TAMEAN, time-averaged mean velocity 
(blue envelope tracing)

Fig. 8  Normal transcranial Doppler ultrasound waveform with sharp 
systolic flow acceleration, stepwise deceleration, and end-diastolic 
flow observed above the baseline. Additionally, end-diastolic flow 
velocity values in the cerebral arteries are normally between 20 and 
50% of peak systolic flow velocity values
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as when to perform neuroimaging, when to guide cer-
ebral perfusion pressure management, and/or when to 
consider a surgical intervention. A review of the current 
pediatric research literature on TCD in pediatric critical 
care can be found in Supplemental Table 2. The majority 
of these studies investigated the use of TCD as a diagnos-
tic tool. Investigations of the role of TCD as a neuromon-
itoring tool included its use in noninvasive estimation 
of ICP [93], its use in guiding resuscitation after cardiac 
arrest [98], and its use in guiding cerebral perfusion pres-
sure augmentation in high-risk children with central 
nervous system infection [99].

To date, the use of TCD remains investigational in 
children, with the exception of those with sickle cell dis-
ease. For example, the use of TCD for ICP estimation is 
hypothesis-generating because research to date has not 
yet demonstrated in children how model-based estima-
tion of ICP using TCD would perform when ICP is ele-
vated above the threshold for treatment. At the present 
time, clear clinical indications for when TCD should be 
used in critically ill children remain unknown. In these 
authors experiences, TCD is used on an ad hoc basis 
when specific questions around neurovascular pathol-
ogy arise that cannot be answered with traditional imag-
ing techniques. Furthermore, societal-based guidelines 
in adults or children that delineate who should perform 
TCD do not exist. Future research directions should 
focus on guidelines for specific clinical applications for 
TCD in pediatric critical care, who should perform TCD 
(e.g., radiologists,  sonographers  and/or others), and 
which data elements are important to collect and how 
often.

TCD Limitations and Future Directions
TCD is operator dependent, and from the perspective of 
the clinician, mastery in the ICU setting requires exper-
tise in the interpretation of findings in the context of 
underlying clinical conditions and treatments commonly 
encountered in the ICU. TCD-derived CBFV measure-
ments are a surrogate measure of cerebral blood flow as 
long as vessel diameter and blood viscosity remain con-
stant (flow equals velocity times area) [100]. Recently 
it has been reported in adults with delayed neurologic 
deterioration after subarachnoid hemorrhage that TCD-
derived CBFVs in the large cerebral arteries were not 
reflective of cerebral perfusion disturbances in the down-
stream smaller arteries by positron emission tomography 
scan [101], potentially challenging the concept of cer-
ebral vasospasm as a factor in this outcome. More work 
may be needed to better extrapolate when such circum-
stances may occur in children. There is ongoing work 
exploring how imaging TCD can provide an estimate of 
lumen diameter [102], which may allow for an improved 

understanding of actual cerebral blood flow and vol-
ume. Similar to the other noninvasive devices previously 
reviewed, further studies are needed to delineate how 
and when TCD may be incorporated into pediatric criti-
cal care and how it may impact clinical decision-making 
for the betterment of patient outcomes.
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