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Abstract 

Monitoring of brain tissue oxygenation  (PbtO2) is an important component of multimodal monitoring in traumatic 
brain injury. Over recent years, use of  PbtO2 monitoring has also increased in patients with poor-grade subarachnoid 
hemorrhage (SAH), particularly in those with delayed cerebral ischemia. The aim of this scoping review was to sum-
marize the current state of the art regarding the use of this invasive neuromonitoring tool in patients with SAH. Our 
results showed that  PbtO2 monitoring is a safe and reliable method to assess regional cerebral tissue oxygenation 
and that  PbtO2 represents the oxygen available in the brain interstitial space for aerobic energy production (i.e., the 
product of cerebral blood flow and the arterio-venous oxygen tension difference). The  PbtO2 probe should be placed 
in the area at risk of ischemia (i.e., in the vascular territory in which cerebral vasospasm is expected to occur). The most 
widely used  PbtO2 threshold to define brain tissue hypoxia and initiate specific treatment is between 15 and 20 mm 
Hg.  PbtO2 values can help identify the need for or the effects of various therapies, such as hyperventilation, hyperoxia, 
induced hypothermia, induced hypertension, red blood cell transfusion, osmotic therapy, and decompressive craniec-
tomy. Finally, a low  PbtO2 value is associated with a worse prognosis, and an increase of the  PbtO2 value in response 
to treatment is a marker of good outcome.
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Introduction
Nontraumatic subarachnoid hemorrhage (SAH), mostly 
secondary to aneurysmal rupture, accounts for 5% of all 
strokes [1] and is an important cause of morbidity and 
mortality and of potential years of life lost [1, 2]. About 
one quarter of patients admitted to the hospital after 
SAH will eventually die, and among survivors, half will 
have persistent severe neurological disability [3].

Immediately after blood enters the subarachnoid space, 
a complex pathophysiological process called early brain 
injury (EBI) leads to intracranial hypertension, cerebral 
edema, microcirculatory failure, neuroinflammation, 
and cerebral ischemia [4–7]. Patients with SAH are also 
susceptible to late ischemic complications, which can 
worsen prognosis, identified as delayed cerebral ischemia 
(DCI) [8–11].

Multimodal neuromonitoring, including brain tissue 
oxygenation  (PbtO2) monitoring, has been recommended 
to identify patients with EBI and DCI and to optimize 
treatment [12], especially in those in whom neurologi-
cal examination is difficult. Indeed, the primary goal of 
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neuromonitoring is to enable the detection of secondary 
brain insults before they cause irreversible damage to the 
brain [13]. Because the final common pathway in acute 
brain injury is the failure of oxygen delivery [14], detect-
ing low oxygen cerebral states is vital to reduce second-
ary brain damage [15], provide a better understanding 
of complex brain physiology, and help guide manage-
ment [16]. Preliminary observational studies suggest that 
monitoring  PbtO2 and treating patients with low  PbtO2 
values may be associated with improved outcomes after 
SAH [16, 17]. However, there are no randomized control 
trials (RCTs) specifically assessing the impact of  PbtO2 
monitoring and  PbtO2-guided therapy on the outcome 
of patients with SAH. The aim of this scoping review was 
therefore to provide a summary of the role of  PbtO2 in 
the management of adult patients with SAH by assessing 
the existing and emerging literature on this topic [28].

Methods
The review protocol was preregistered on April 11, 2019, 
on the Open Science Framework (https:// osf. io/ zyj7r/) 
and published in open access [18]; further details regard-
ing the search strategy can be found in the Methods 
section of the Electronic Supplementary Material. This 
scoping review followed the five-stage framework pro-
posed by Arksey and O’Malley [19], expanded by Peters 
et al. [20], and further developed by Levac et al. [21] and 
the Joanna Briggs Institute [22]. We also followed the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses extension for scoping reviews guidelines 
[23].

The aims of the review were to describe in patients with 
SAH (1) the physiological bases of invasive brain oxy-
genation monitoring, (2) the technique of invasive brain 
oxygenation monitoring, (3) the indications and the util-
ity of brain oxygenation monitoring, (4) the role of inva-
sive brain oxygenation monitoring to guide medical and 
surgical therapy, and (5) the impact of  PbtO2 monitor-
ing and  PbtO2-guided therapy on the outcome of these 
patients. We included all available scientific information 
from fully peer reviewed articles and gray literature that 
mentioned  PbtO2 monitoring in the context of SAH in 
adult patients. We excluded studies that focused only on 
a pediatric population (patients < 18 years old) and exper-
imental studies performed exclusively in animals. There 
were no language limitations or sample size restrictions.

The search was performed on August 1, 2022. Three 
authors (EGB, MF, and AM) screened different databases 
for relevant abstracts and studies in a two-phase process 
(see Methods section of the Electronic Supplementary 
Material). All disagreements were resolved by consensus. 
Data were extracted to predefined charts, including the 
following information: study population; type of probe 

used; technique and adverse events; the indication for 
 PbtO2 monitoring, including to diagnose neurological 
complications such as EBI and DCI and to guide therapy; 
physiological determinants of  PbtO2 (oxygen delivery, 
oxygen extraction, and oxygen consumption); the effect 
of different treatments and strategies (including but not 
limited to pharmacological, respiratory, and hemody-
namic therapy) on  PbtO2 values; outcomes (neurological 
outcomes and mortality).

Results
The initial search identified 21,550 references, of which 
301 met our inclusion criteria (Fig. 1): 1 pilot RCT, 138 
non-RCTs (prospective or retrospective), 1 cross-sec-
tional study, 30 published abstracts, 16 case reports/case 
series, 20 book chapters, 70 reviews (5 of which were sys-
tematic reviews), 6 consensus statements, 6 editorials, 3 
theses, 2 technical notes, 1 audit, 1 viewpoint, 6 confer-
ence statements/lectures, and 7 letters to the editor. A 
detailed description of all 301 references can be found in 
the Supplementary Tables S1, S2, and S3.

PbtO2 Monitoring: Physiological Bases
PbtO2 values represent the balance between oxygen 
 delivery {DO2 = cardiac output × [1.39 × hemoglobin ×  
oxygen   arterial saturation   SaO2 + (0.003 ×  PaO2)]}, deter-
mined by cerebral blood flow (CBF), hemoglobin, and 
arterial oxygenation and oxygen consumption  [VO2 = (car-
diac output + arterial content of oxygen) − (cardiac out-
put − venous content of oxygen)], determined by brain 
metabolism, mitochondrial function, body temperature, 
and extraction (determined by blood–brain barrier and 
microcirculation) of brain cells [24, 25]. In this setting, 
the reasons for low  PbtO2 values are often multifactorial 
(Fig. 2), and several interventions have the potential to cor-
rect brain hypoxia [26].  PbtO2 can be reduced because of 
a decrease in oxygen delivery either as a consequence of 
reduced CBF, leading to ischemia, or because of changes in 
the arterio-venous oxygen tension difference [27] caused by 
systemic hypoxemia secondary to impaired lung function 
[28, 29] (reduced arterial partial pressure of oxygen  [PaO2]) 
and anemia [30].  PbtO2 can also be reduced because 
of increased oxygen consumption as a consequence of 
hypermetabolic states (e.g., seizures, fever, and shivering), 
because of mitochondrial dysfunction, and/or because of 
impaired oxygen extraction due to limited oxygen diffusion 
caused by brain edema and microvascular dysfunction [15, 
31–34].

Normal  PbtO2 values are highly variable but are gen-
erally defined as values between 23 and 35 mm Hg [35]. 
Several thresholds have been used to describe brain tis-
sue hypoxia in this setting, ranging from 10 to 19  mm 
Hg for at least 5  min [36–39]; the most commonly 
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used threshold is < 20  mm Hg [40, 41]. Tissue necrosis 
and cell death have been associated with  PbtO2 values 
of < 10 and < 5  mm Hg, respectively [42–45]. A  PbtO2 
value of 0  mm Hg usually precedes diagnosis of brain 
death [46].

PbtO2 Monitoring: The Technique
Two methods are used to measure  PbtO2 [47]: the lumi-
nescence quenching method used by the Neurovent-PTO 
(Raumedic AG, Munchberg, Germany), the Oxylab  pO2 
(Oxford Optronix Ltd, Oxford, United Kingdom) probes 
[16, 48], and the polarographic method used by the Licox 
brain oxygen monitor (Integra Neuroscience, Plainsboro, 

New Jersey) [49, 50]. Importantly,  PbtO2 measurements 
from the two methods are not entirely interchangeable 
[47, 51–54].

PbtO2 monitoring involves the insertion of a probe into 
the brain parenchyma, ideally in the subcortical white 
matter, by using a bolt (single or multiple) or by tun-
neling, allowing continuous (every 2  s)  PbtO2 monitor-
ing [34, 40, 55].  PbtO2 is a local measurement [16, 56], 
reflecting the tissue oxygenation of an area of 2 mm to 22 
 mm2, depending on the device used, the type of probe, 
and the probe location (i.e., injured vs. noninjured area) 
[36]. Therefore, a cerebral computed tomography (CT) 
scan is required following the placement of the  PbtO2 
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References iden�fied through database 
(MEDLINE, SCOPUS, EMBASE) and gray 

literature searching  
N=21,550 

Duplicates or unrelated references removed 
(n = 20,921) 

Ar�cles screened 
(n = 629) 

Full-text ar�cles/texts assessed 
for eligibility 

(n =328) 

References excluded by abstract (n=301) 

Not including SAH pa�ents (n=132) 
Experimental (n=51) 

No PbtO2 data (n= 105) 
Pediatric popula�on only (n=13) 

Studies included in the qualita�ve 
synthesis 
(n = 301) 

Ar�cles excluded (n=27) 

No SAH pa�ents included (n=6) 
No PbtO2 data (n=21)

Fig. 1 Flowchart of the screening and selection process. SAH: subarachnoid hemorrhage; PbtO2: brain tissue partial pressure of oxygen.  
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probe to confirm its adequate location [37, 57], as well 
as to exclude peri-procedural complications, which can 
include mispositioning or minor bleeding [33, 58–61].

Placing the  PbtO2 catheter in areas where the ruptured 
aneurysm had been identified can provide reliable moni-
toring of the secondary ischemic insult (vasospasm and 
DCI), specially for aneurysms of the anterior circulation 
[62, 63]. For aneurysms of the posterior circulation, the 
optimal placement position is not well defined. Probe 
placement can potentially be guided by CT scan [64], 
Xenon CT [65], single photon emission CT [66], or tran-
scranial Doppler [67] to increase the likelihood of moni-
toring the at-risk area or penumbra area of ischemia [68].

Importantly, probe placement causes microtrauma to 
the subcortical matter, making the first readings unreli-
able. It is recommended to wait at least 1 h before relying 
on the monitor [33, 59, 61, 69]. For further verification 
of the function and responsiveness of the catheter, an 
oxygen challenge should be performed [33, 59, 61, 69] by 
increasing inspired fraction of oxygen  (FiO2) to 100% for 
2–5 min [28, 33, 70–72]; if the probe is well-positioned 
and accurate, it will show an increase in the  PbtO2 value 
of around two times baseline values [33, 59].

PbtO2 devices are considered safe and accurate with 
negligible zero drift [40, 61]. Hemorrhage and hema-
toma formation rates vary from 0 to 40%, including tract 
hemorrhages, although hematoma needing surgical 

intervention is rare [45, 61, 73–76]. Central nervous sys-
tem infections are also rare [73, 75].

PbtO2 Monitoring: Indications and Uses
In general, patients are selected for  PbtO2 monitoring 
when intracranial pressure (ICP) monitoring is required 
[40] and neurological evaluation is unreliable [77]. Cri-
teria to initiate multimodal monitoring in patients with 
SAH include patients with Glasgow Coma Scale (GCS) < 9 
who are unlikely to regain consciousness within the next 
48 h and have a high probability of surviving for the next 
48 h [78]. Rass et al. initiated multimodal monitoring in 
patients with SAH who required prolonged mechanical 
ventilation and/or had clinical or radiological signs sug-
gestive of increased ICP [79]. Good-grade patients with 
delayed deterioration of their neurological status are also 
candidates for  PbtO2 monitoring in the context of cere-
bral vasospasm and DCI [80].

PbtO2 monitoring has been employed for detect-
ing ischemic events during aneurysm clipping [81, 82] 
and temporary artery occlusion [39, 83–91].  PbtO2 has 
also been used to direct therapy in the operating room 
[92–94]. In the first 72  h of SAH,  PbtO2 monitoring is 
indicated to help detect microvascular injury [95] and 
ischemic events occurring in the context of EBI [96]. 
In fact, brain tissue hypoxia is common in the first 48 h 
after SAH [97].  PbtO2 can be used as a surrogate measure 
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Fig. 2 Physiological determinants of brain tissue oxygenation  (PbtO2).  PbtO2 represents a balance between oxygen delivery  (DO2), oxygen extrac-
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of regional CBF [98, 99], which can aid in the diagnosis 
of vasospasm and DCI [100, 101], especially in coma-
tose patients with suboptimal clinical assessments who 
have angiographic vasospasm as well as in symptomatic 
patients who have suboptimal imaging [102]. In fact, 
several studies have focused on the use of  PbtO2 to help 
detect DCI [77, 80, 103–105] because there appears to be 
a correlation between decreasing  PbtO2 values and cer-
ebral vasospasm detected by transcranial Doppler [85, 
106, 107] when the  PbtO2 probe is adequately placed in 
the at-risk area for vasospasm [108]. A  PbtO2 threshold 
less than 20 mm Hg has a sensitivity of 71% and a speci-
ficity of 89% for prediction of vasospasm, with an area 
under the receiver operating characteristic curve of 0.90 
[100]. Moreover, low  PbtO2 values associated with signs 
of anaerobic metabolism assessed by cerebral microdialy-
sis (CMD) can be present before visible CT scan infarc-
tion, enabling an early diagnosis of silent ischemia [78]. 
In fact, in patients with good-grade and poor-grade SAH, 
introduction of multimodal monitoring, including of 
 PbtO2, resulted in earlier detection and earlier treatment 
of DCI, thus reducing DCI-related infarction [80, 109].

PbtO2 also has a role in assessing autoregulation. 
Impaired cerebral autoregulation is an important patho-
physiological pathway of acute brain injury [110, 111] 
and can represent an independent risk factor for poor 
outcome in patients with SAH [112]. The oxygen reactiv-
ity index (ORx) is expressed as the moving correlation 
coefficient between cerebral  perfusion pressure (CPP) 
and  PbtO2, calculated every 30  s; a high ORx indicates 
impaired autoregulation [32]. The ORx has been pro-
posed as a better predictor of cerebral hypoperfusion, 
DCI, and outcome than  PbtO2 in patients with SAH [32, 
113]. Interestingly, Jaeger et al. found that both ORx and 
 PbtO2 values were lower in a group of patients with poor 
functional outcome [112]. Other studies have failed to 
show an association between ORx and cerebral ischemia 
or neurological outcome [114, 115].

PbtO2 can also be used as an adjunct monitor to assess 
the impact of ictal discharges and seizures in patients 
with SAH [116–118] and to monitor changes in brain 
oxygenation during mobilization of the patients [119, 
120] and during transportation [121–123].

The  PbtO2 probe should be kept in situ for a maximum 
of 7 to 10 days [40, 124] and can be removed if the patient 
is awake (motor GCS of 6 or motor GCS of 5 if patient is 
aphasic or unable to communicate) or if there is a medi-
cal indication for removal of the probe (such as infection 
or bleeding associated with the catheter) [33]; addition-
ally, if ICP is normal (< 20 mm Hg) for 24 h without spe-
cific treatment and  PbtO2 values are > 20 mm Hg for 48 h, 
it is also reasonable to remove multimodal neuromoni-
toring [33].

PbtO2 Monitoring: Assessing the Efficacy 
of Different Therapies
Numerous studies have been performed to monitor the 
efficacy of various therapies, especially focused on vasos-
pasm and DCI. Regarding so-called triple H therapy 
(i.e., hypervolemia, hemodilution, and hypertension), 
Muench et  al. [125] observed that vasopressor-induced 
hypertension, but not hypervolemia and hemodilution, 
could improve  PbtO2 values in a population of patients 
with poor-grade SAH with cerebral vasospasm. Similarly, 
Raabe et al. noted that an increase in  PbtO2 was far more 
frequent in patients who received induced hypertension 
compared with those who received hypervolemia [126]. 
These observations have helped shift treatment strategies 
from triple H therapy to induced hypertension alone.

Transluminal balloon angioplasty, used as rescue ther-
apy to treat refractory vasospasm, can improve  PbtO2 
levels and reduce metabolic distress [103, 127]. In many 
studies,  PbtO2 significantly improved during intermittent 
and continuous chemical spasmolysis with intra-arte-
rial nimodipine (IAN), followed by resolution of vasos-
pasm on angiography [128–133]. A recent observational 
study compared two strategies for treatment of vasos-
pasm refractory to induced hypertension: one group of 
patients was treated with induced hypertension targeting 
a systolic blood pressure (SBP) of 180 mm Hg plus lower 
doses of continuous IAN, and the other group received 
higher doses of IAN without induced hypertension (SBP 
target = 120  mm Hg) [104]. Patients in the latter group 
had higher  PbtO2 levels after IAN without relevant 
adverse events.

The effects of other vasodilatory agents on  PbtO2 have 
also been studied in the context of refractory vasospasm: 
intra-arterial papaverine hydrochloride [134], intraven-
tricular sodium nitroprusside [135], and intra-arterial 
verapamil [136, 137]. Only one studied showed a clear 
improvement in  PbtO2 [136]. Inhaled nitric oxide (iNO) 
was also used in a pilot study to treat refractory DCI in 
seven patients; all patients experienced an increase of at 
least 5  mm Hg in  PbtO2 after iNO [138]. Interestingly, 
the use of erythropoietin in patients with poor-grade 
SAH and vasospasm tended to increase  PbtO2 [139].

PbtO2 can also be used to optimize CPP [126, 140–147] 
because higher CPP is associated with fewer episodes of 
brain tissue hypoxia and cerebral infarction [126, 142, 
148]. In fact, strategies to increase mean arterial pres-
sure (/CPP, such as fluid resuscitation [149], vasopressors 
[125], and the use of inotropes to augment cardiac output 
[150], can also promote an increase in  PbtO2 levels, espe-
cially when accompanied by an increase in cardiac index 
[149, 151] in patients with low baseline  PbtO2 [147, 151].

Osmotic therapy with hypertonic saline to treat intrac-
ranial hypertension has been shown to improve  PbtO2 
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[152, 153]. On the other hand, mannitol may have 
no impact on  PbtO2, especially if the baseline  PbtO2 
is > 20 mm Hg [154]. Decompressive craniectomy to treat 
refractory intracranial hypertension can also improve 
 PbtO2 [155, 156], which typically decreases progressively 
before intervention [157]. The use of barbiturates to treat 
refractory intracranial hypertension may improve  PbtO2 
in some but not all patients with SAH [72].

Because brain temperature can influence CBF and 
 PbtO2 measurements [158], some authors have investi-
gated the effects of antipyretic drugs on  PbtO2 [159] and 
have found that the degree of change in  PbtO2 correlates 
with the reduction in core temperature. Mild hypother-
mia can also improve  PbtO2 [160]. Moreover, in a cohort 
of patients with poor-grade SAH, higher  PbtO2 measures 
were more frequently linked to normothermia (compared 
with fever) [161].

PbtO2 can also be used to monitor the effects of red 
blood cell (RBC) transfusion in optimizing oxygen deliv-
ery. Interestingly,  PbtO2 response to RBC transfusion 
varies, with most patients showing an increase in  PbtO2 
(especially those with baseline hypoxia before transfusion 
and lower hemoglobin levels) and other patients having 
no change or even a decrease in  PbtO2 [162–164].

In patients with acute brain injury and acute respira-
tory distress syndrome,  PbtO2 may assist the clinician in 
assessing the effects of recruitment maneuvers [165] and 
the prone position [29, 166] on brain oxygenation.  PbtO2 
values can also be used to titrate  FiO2 because normo-
baric hyperoxia usually results in increased  PbtO2 [167–
169]. During a hyperoxia challenge, smaller increases 
in  PbtO2 are associated with higher CMD lactate and a 
higher risk of ischemia [170]. Importantly, the impact on 
outcome of improving  PbtO2 by increasing  FiO2 is still 
uncertain [171–173].

The impacts of different sedative drugs, such as propo-
fol and dexmedetomidine, on  PbtO2 were studied, and 
showed that for a similar Richmond Agitation and Seda-
tion Scale, both drugs had a similar impact on cerebral 
oxygenation [174], usually leading to a modest elevation 
in  PbtO2 [175].  PbtO2 has also been used to assess the 
success of a neurological wake-up test, in which reduc-
tion in  PbtO2 was a criterion of test failure [176].

PbtO2 Monitoring: Impact on Outcome in Patients 
with SAH
Several studies found that patients with short- and 
long-term favorable neurological outcomes had higher 
 PbtO2 values for longer periods of time than those with 
unfavorable outcome [85, 101, 133, 152, 177, 178]. The 
association between low  PbtO2 values and unfavorable 
outcome is stronger when concomitant metabolic brain 
dysfunction is present [63]. However, other studies have 

failed to show an independent association between low 
 PbtO2 levels and unfavorable outcome [63, 179].

Nonsurvivors have consistently lower  PbtO2 levels dur-
ing longer periods of time than survivors [148, 180–182]. 
In fact, low  PbtO2 levels are independently associated 
with mortality, especially when accompanied with brain 
energetic dysfunction [28, 148, 183].

The rationale behind  PbtO2 monitoring is that improv-
ing  PbtO2 will translate into a better outcome [33]. 
However, studies that have investigated the impact of a 
 PbtO2-guided therapy have yielded conflicting results. 
Bohman et  al. analyzed patients with SAH managed 
with a goal-directed treatment aimed at maintain-
ing a  PbtO2 ≥ 20  mm Hg. The mean rate of response 
to the directed treatment was independently associ-
ated with a favorable functional outcome (defined as 
modified Rankin Scale < 4 and Glasgow Outcome Scale-
Extended ≥ 3) [178]. Similarly, Al-Rawi et  al. also found 
that a sustained increase in  PbtO2 after treatment (hyper-
tonic saline) was associated with a favorable outcome at 
12 months in patients with SAH [152]. In a mixed cohort 
of patients with traumatic brain injury and SAH who 
underwent treatment when  PbtO2 was 15  mm Hg for 
more than 10 min, patients had a decreased risk of unfa-
vorable outcome and mortality [64]. In another mixed 
cohort of patients, Monteiro et al. found that multimodal 
monitoring (including of  PbtO2) was associated with bet-
ter short- and long-term neurological outcomes [184]. 
Additionally, Veldeman et  al. found similar results for 
long-term outcomes [109].

Conversely, in patients with good-grade SAH who 
developed DCI, multimodal monitoring did not improve 
neurological outcome [80]. The lack of association 
between  PbtO2-guided therapy and outcome can be 
explained by the results of a study conducted by Rass 
et  al. in which, despite a protocolized  PbtO2-guided 
therapy approach, episodes of cerebral hypoxia 
 (PbtO2 < 20  mm Hg) still occurred in 81% of patients 
[179]. Similarly, Gouvea Bogossian et  al. [185] did not 
find an association between ICP/PbtO2-guided therapy 
and outcomes compared with ICP-only guided therapy. 
Importantly, to date, no RCT has investigated the impact 
of  PbtO2-guided therapy on outcome in patients with 
SAH.

Limitations
This review has some limitations that are inherent 
to scoping reviews: the findings are often broad, and 
synthetizing all the results can be challenging. In this 
review, we did not perform quality analysis, and all 
available data were charted and summarized. Because 
of the broad study period, some studies may be out-
dated and concepts may have changed. Therefore, this 
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review provides only a summary of the available evi-
dence regarding  PbtO2 monitoring in patients with 
SAH; a systematic review and meta-analysis are needed 
to answer specific questions with a higher-quality 
standard. Moreover, RCTs in patients with SAH are 
needed to specifically assess if the use of  PbtO2-guided 
therapy can improve outcome.

Conclusions
Maintenance of adequate brain oxygenation represents 
one of the primary objectives in neurocritical care, and 
the assessment of tissue oxygenation is important to 
patient management. Integration of  PbtO2 into a mul-
timodal neuromonitoring approach may help clinicians 
in the early detection of physiological derangements 
that can compromise oxygen supply to the brain, pro-
viding both a trigger and a target for interventions.
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