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Abstract 

This review aimed to analyze the results of investigations that performed external validation or that compared prog‑
nostic models to identify the models and their variations that showed the best performance in predicting mortality, 
survival, and unfavorable outcome after severe traumatic brain injury. Pubmed, Embase, Scopus, Web of Science, 
Cumulative Index to Nursing and Allied Health Literature, Google Scholar, TROVE, and Open Grey databases were 
searched. A total of 1616 studies were identified and screened, and 15 studies were subsequently included for analysis 
after applying the selection criteria. The Corticosteroid Randomization After Significant Head Injury (CRASH) and 
International Mission for Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) models were the 
most externally validated among studies of severe traumatic brain injury. The results of the review showed that most 
publications encountered an area under the curve ≥ 0.70. The area under the curve meta-analysis showed similar‑
ity between the CRASH and IMPACT models and their variations for predicting mortality and unfavorable outcomes. 
Calibration results showed that the variations of CRASH and IMPACT models demonstrated adequate calibration in 
most studies for both outcomes, but without a clear indication of uncertainties in the evaluations of these models. 
Based on the results of this meta-analysis, the choice of prognostic models for clinical application may depend on the 
availability of predictors, characteristics of the population, and trauma care services.

Keywords:  Brain injury, Outcome assessment, Predictive modeling, Prognostic modeling

Introduction
Traumatic brain injury (TBI) is the result of any ana-
tomical injury or functional impairment of brain seg-
ment structures caused by an external acting force [1, 
2]. The pathophysiological mechanisms that start from 
this injury last for days to weeks, causing death and dis-
ability and mainly affecting young people of working 
age [1–3]. The consequences of injuries resulting from 
trauma remain beyond the acute phase of TBI, extending 
and changing for a long period after the traumatic event 
[1–3].

Estimating trauma severity is a constant concern of the 
teams who provide care to victims, as the proper defini-
tion of the severity of injuries—as well as TBI—can guide 
care and predict the patient’s outcome. To do so, trauma 
severity indices were developed, beginning in 1969, to esti-
mate the severity of victims after trauma and to assess the 
quality of care provided [4–9]. Trauma indices are reliable 
methodological tools that are essential for stratifying sever-
ity and predicting patient outcomes. The need to improve 
these scoring systems to assess the severity of patients with 
multiple injuries and to predict their outcome culminated in 
developing scores with anatomical, physiological, and mixed 
components, including the following: the Injury Severity 
Score, New Injury Severity Score, Revised Trauma Score, 
and the Trauma and Injury Severity Score (TRISS) [4–9].
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Prognostic models were developed in the process of 
improving the indices to support early clinical decision 
making and make predictions about the outcomes of 
the pathology or treatment on the basis of informa-
tion collected during hospital admission [9–12]. These 
models are statistical tools that predict clinical out-
comes on the basis of at least two predictors used to 
estimate outcome within a specific period [9–12]. Spe-
cific TBI models have been developed and validated 
in different countries in recent years to help decision 
making and guide the clinical care of these patients 
[10, 11, 13, 14].

Although the Glasgow Coma Scale (GCS) is widely 
used to predict TBI severity and is often associated with 
mortality and unfavorable outcome after this injury, new 
TBI-specific prognostic models have been showing good 
performance in predicting these outcomes and simulta-
neously considering imaging and laboratory test results, 
in addition to GCS, pupillary reactivity, and other physi-
ological variables [9–14].

Several models were observed in the literature that 
have not been submitted to external evaluation and some 
reviews that addressed the predictive capacity of exter-
nally validated models for application after TBI [9, 11]. 
However, the studies that externally analyzed the models 
did not consider the different variations of each type of 
model and did not perform a meta-analysis of the predic-
tive capacity. Given the above, the aim of this study was 
to analyze the results of investigations that performed 
external validation or compared prognostic models to 
identify the models and their variations which showed 
the best performance in predicting mortality, survival, 
and unfavorable outcome after severe TBI.

Method
This systematic review and meta‐analysis were reported 
following the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses checklist [15] and were reg-
istered at the Prospective Register of Systematic Reviews 
(Center for Reviews and Dissemination, University of 
York and the National Institute for Health Research). The 
registration number is CRD42018116498.

Information Sources and Search Strategy
The inclusion criteria were based on the “PICOTS” acro-
nym proposed by Cochrane: population, adult and older 
adult patients with severe TBI; index test, studies with 
externally invalidated prognostic models; comparator, 
no predefined comparator; outcome, death, survival and 
unfavorable outcome; timing, any moment after severe 
TBI; and setting, not specified [16]. We followed the 
guidelines proposed by the Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis 

or Diagnosis statement [17] to consider a study as eligi-
ble. The inclusion of studies was based on the following 
guiding question: which prognostic model has the best 
performance in predicting mortality/survival and unfa-
vorable outcome in patients with severe TBI? Therefore, 
this study sought to find evidence of prognostic models 
and their variations used to make individualized predic-
tions in patients with severe TBI, validated against a set 
of external data (meaning with different participants) to 
the development of the model [16].

The following databases were initially searched: 
National Library of Medicine National Institutes of 
Health (PubMed), Cumulative Index to Nursing and 
Allied Health Literature, Scopus and Web of Science 
using the keywords or descriptors, in agreement with the 
Health Sciences Descriptors, the Medical Subject Head-
ings, and the Emtree of Elsevier Life Science. A partial 
search of the gray literature was performed using the 
Google Scholar, TROVE,  and Open Grey databases. The 
Boolean operators “AND” and “OR” were used to com-
municate descriptors and keywords in the search strategy 
applied in the databases. The full list of expanded search 
terms is available in Supplementary Information 1. The 
searches were customized according to the characteris-
tics of each database.

The initial search was performed concomitantly in 
all databases on December 10, 2020, and included all 
records found in these databases without language 
restrictions or time limits in the inclusion criteria. After 
performing the search in the databases, the records were 
stored in the EndNote tool (EndNote X9, Thomson Reu-
ters) and classified in different folders, and the duplicates 
were excluded using the EndNote computer software 
program (EndNote X9, Thomson Reuters).

Eligibility Criteria
The following inclusion criteria were adopted: articles 
that assessed prognostic models; articles in which the 
studied population was patients with severe TBI; and 
articles that assessed the predictive capacity of exter-
nally validated prognostic models through discrimination 
and calibration analysis, in addition to being available in 
selected databases. In our review, mild and moderate TBI 
were not included.

The following exclusion criteria were adopted for 
selecting the records: experimental studies in animals 
and titles that did not evaluate prognostic models in TBI 
alone; titles that analyzed models of biomarkers to pre-
dict outcomes; titles without an abstract; or titles without 
the full article/text. Theses, dissertations, book chapters, 
case series, comments, editorials, forum abstracts, litera-
ture review, systematic reviews and meta-analyses were 
not included in the review.
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Study Selection Data Collection Process
A selection process was conducted by two independent 
reviewers (RCAV and JCPS). Titles and abstracts were 
screened using an online software program (Rayyan, 
Qatar Computing Research Institute; https://​rayyan.​qcri.​
org/​welco​me) and the eligibility criteria were applied by 
the reviewers separately. Any discrepancies were resolved 
by a consensus discussion with a third reviewer (RMCS) 
who was involved to make a final decision, if necessary.

The publications that were retained after this review 
assessed the predictive ability of the tools for mortality/
survival and unfavorable patient outcome after severe 
TBI. Thus, studies that evaluated the accuracy of the 
models in predicting outcomes through discrimination 
by applying the area of the curve (AUC) or C statistic 
tests, in addition to calibration as a statistical analysis, 
were analyzed. In our review, AUC ≥ 0.80 was an indica-
tion of good discrimination ability, with AUCs from 0.70 
to 0.80 indicating acceptable performance and an AUC 
below 0.70 indicating poor discrimination [18]. Calibra-
tion is a measure of agreement between predicted and 
observed probabilities of outcomes across the full range 
of probabilities. Adequate calibration (intercept and slope 
not statistically different than zero or one, respectively, or 
p < 0.05) indicates that outcome probabilities predicted 
by the models were similar to those observed [18–20].

Data Extraction
Data extraction was performed according to the Critical 
Appraisal and Data Extraction for Systematic Reviews 
of Prediction Modeling Studies checklist [21] by two 
researchers (JCPS and RCAV). In cases in which it was 
necessary to obtain information beyond what was pub-
lished, the reviewers contacted the authors of the materi-
als included in the analysis by email in order to clarify the 
question and include or exclude the study for quantitative 
analysis.

The EndNote program was used to sort the results of 
each database according to title, author, year of publi-
cation, and abstract into different folders, and it also 
excluded duplicate publications. The collected data were 
categorized and entered into a Microsoft Office Excel 
2016 spreadsheet and organized into tables to facilitate 
interpreting the results. At this stage, the manual search 
for additional studies in the reference sections of the 
included studies was also performed by the first and sec-
ond reviewer.

Risk of Bias and Quality Assessment
The selected studies were assessed by using the Pre-
diction Model Risk of Bias Assessment Tool [22] to 
assess risk of bias and applicability of the models. Two 

reviewers (JCPS and RCAV) independently evaluated 
the included studies and all decisions about the scor-
ing system were agreed on by all reviewers prior to 
critical appraisal assessments. The tool comprises four 
domains: participants, predictors, outcome, and analy-
sis, each appraised separately and answered with “no,” 
“probably no,” “probably yes,” “yes,” or “no information.” 
If one or more questions in a domain were answered 
with “probably no” or “no,” the study was considered at 
high risk of bias regarding that domain. Studies were 
assumed to be at a low risk of bias if it scored low in all 
domains, high risk if anyone domain had a high risk of 
bias, and unclear risk of bias for any other rating.

There is no Grading of Recommendations, Assess-
ment, Development, and Evaluation system guidance 
available to judge the quality of evidence across prog-
nostics models; therefore, this type of assessment was 
not performed.

Data Synthesis
The quantitative analysis of results was performed by dif-
ferences between AUC and calibration results. The esti-
mated AUC and its 95% confidence interval (95% CI) 
were evaluated separately for each outcome (mortality/
survival and unfavorable outcome).

A meta-analysis was conducted to evaluate the dis-
crimination of externally validated models using the 
random-effects model [16, 23]. A prognosis meta‐anal-
ysis was performed on the AUC of each model in each 
study. A logistic transformation was applied in the AUC 
and its variance was computed as suggested in Ruscio 
[24]. Meta-regression models were also conducted using 
mixed-effects models, using the AUC as a dependent 
variable and the CRASH model, IMPACT model, risk of 
bias, and age were used as independent variables. A sen-
sitivity analysis was conducted to evaluate studies with 
low and unclear risk of bias and observational studies. All 
analyses were conducted using the R version 4.1.3 soft-
ware program using the metafor package.

Summarizing the estimates of calibration mortality and 
unfavorable outcomes in the external validation of each 
model was not performed because the predicted outcome 
frequency per group at a specific time point and the stud-
ies reported different types of summary statistics calibra-
tion. This made it impossible to extract and compare the 
information from different models on the total number of 
observed and expected events ratio of the overall model 
calibration [23].

Results
The search in the databases resulted in 1616 records, with 
1400 from the five databases, 214 from the gray literature, 
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and 2 were added through analysis of the reference list of 
previously eligible publications. Using the EndNote tool, 
927 duplicate records were identified that were excluded, 
leaving 689 records selected for the analysis of titles and 
abstracts. Of the 689 records, 655 were excluded accord-
ing to exclusion criteria, as can be seen in Fig. 1.

Of the total of 15 eligible scientific articles included in 
our study [25–39], 8 (53.33%) studies externally validated 
only one model and 7 (46.66%) studies compared the per-
formance of different prognostic predictors. Among the 
publications that analyzed one model, five analyzed the 
International Mission for Prognosis and Analysis of Clin-
ical Trials in Traumatic Brain Injury (IMPACT), one ana-
lyzed the Corticosteroid Randomization After Significant 
Head Injury (CRASH), and two publications developed 
and externally validated other models. The seven arti-
cles that compared the performance of prognostic pre-
dictors used the CRASH and IMPACT (n = 4), CRASH, 
IMPACT, and TRISS (n = 1), Mortality Probability Model 
(MPM II), Simplified Acute Physiology Score II (SAPS II) 
(n = 1), and Rotterdam Computer Tomography (CT) and 
Helsinki CT score system (n = 1).

Studies have been published in Europe, Singapore, 
China, India, Japan, United States of America, and South 
America, of which 26.66% (n = 4) were conducted in the 
United States and 13.33% (n = 2) in Sweden. The publica-
tion period of the 15 articles included in the review was 

from 2006 to 2020. The number of events per variable for 
mortality mean was 29.20 (standard deviation of 29.96) 
in 33 studies, and for unfavorable outcome the events per 
variable mean was 32.37 (standard deviation of 30.44) in 
31 studies, and the age range ranged from 8 to 98 years. 
The studies were originally cohort in 73.33% and derived 
from randomized clinical trials in 26.67% of the articles 
(Supplementary Information 2).

AUC of External Validation Studies
The data in Taable 2 show the eight external validation 
studies [25, 27, 28, 30, 31, 33, 34, 36] included in the 
review. The eight selected studies had an AUC for mor-
tality from 0.67 to 0.89 and an AUC for an unfavorable 
outcome from 0.68 to 0.81. In the mortality analyses, 
one of the models proposed and externally validated by 
the authors reached AUC ≥ 0.80, in addition to studies 
that evaluated the IMPACT in the extended and labora-
tory proposal. The IMPACT also reached AUC ≥ 0.80 
for unfavorable outcome in a study in the core modal-
ity and in another for laboratory, as well as the model 
developed by Cremer et al. [25]. On the other hand, Sun 
et  al. [34] showed AUC < 0.70 for the IMPACT core in 
the analysis of the two outcomes and for the extended 
and laboratory IMPACT when mortality was the studied 
outcome. Olivecrona et al. [31] observed AUC = 0.69 for 
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Records total (n = 1400)

Scopus (n = 453), Embase (n =
405), Web of Science (n =
275), Pubmed (n = 209) e

Cinahl (n = 58)

Records removed before screening

- Duplicate records removed (n = 747)

Records screened (n = 653)

Records excluded (n = 627)

- Publication type (n = 121)
- Don’t show specific results for severe TBI
(n = 414)
- Don’t assess diagnostic accuracy (n = 43)
- Don’t evaluate prognostic models (n = 39)
- Analyze models of biomarker to predict
outcomes (n = 6)
- No full article (n = 4)

Reports assessed for
eligibility

(n = 26)

Reports excluded (n = 13)

- Don´t develop external validation (n = 13)
- Studies included in database

(n = 13)
- Studies included in others research

(n = 2)

Records total (n = 216)

Trove (n = 114), Google
Scholar (n = 100), Open Grey
(n = 0) e search on references

(n = 2)

Records screened (n = 36)

Records excluded (n = 34)

- Publication type (n = 12)
- Don’t show specific results for
severe TBI (n = 18)
- Don’t assess diagnostic accuracy
(n = 4)

Reports assessed for
eligibility

(n = 2)

Don’t show specific results for severe TBI: general TBI(n = 152), moderate and severe TBI (n = 78), pediatrics (n = 47), trauma (n = 44), mild TBI (n = 34), stroke (n = 22), animals (n = 17), cardiorespiratory arrest
(n = 6), ophthalmological (n = 4), spinal cord injury (n = 5), epilepsy (n = 4), moderate and mild TBI (n = 5), cancer (n = 3), human immunodeficiency virus (n = 2), moderate TBI (n = 2), multiple sclerosis (n = 2),
escort training (n = 2), pancreatitis (n = 1), acute kidney injury (n = 1), cardiomyophaty (n = 1), diabetics (n = 1) e mandibulectomy (n = 1)

Publication type: review (n = 73), event summaries (n = 36), comment (n = 6), case report (n = 4), letter to author (n = 3), guideline (n = 3), editorial (n = 2), book chapter (n = 2), workshop (n = 1), meta-analysis (n
= 1) e series (n = 1)

Records removed before
screening

- Duplicate records removed (n =
180)

Fig. 1  Flow diagram of the literature search and selection criteria adapted from the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses Checklist. TBI, traumatic brain injury
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an unfavorable outcome when they analyzed the CRASH 
CT (Table 1).

AUC of the Comparison Studies
Table  2 shows the seven studies [26, 29, 32, 35, 37–39] 
that compared the prognostic models, in which five stud-
ies [29, 32, 35, 37, 39] used IMPACT and CRASH as 
comparisons. The AUC results ranged from 0.64 to 0.90 
for mortality and 0.60–0.89 for an unfavorable outcome. 
The models that showed good results (AUC ≥ 0.80) in 
predicting mortality were: MPM II (AUC between 0.81 
and 0.90), SAPS II (AUC between 0.84 and 0.87), Helsinki 
CT score system (AUC = 0.82), CRASH CT and basic 
(AUC 0.83 and 0.80, respectively), as well as IMPACT 
core, extended and laboratory (AUC 0.80, 0.81 and 0.80, 
respectively). The models that presented AUC ≥ 0.80 
for an unfavorable outcome were: CRASH basic and 
CT (AUC = 0.86 and 0.89, respectively), IMPACT core, 
extended and laboratory (AUC = 0.84, 0.88 and 0.87, 
respectively). The study by Roozenbeek et  al. [29], in 
which CRASH basic and IMPACT core were applied in 
three large databases, showed AUC < 0.70 for both out-
comes when applying the models in the Pharmos data 
set and AUC = 0.69 when applying the CRASH basic 
in the National Acute Brain Injury Study data set in the 
unfavorable outcome analysis. Charry et  al. [35] found 
weak discrimination capacity for unfavorable outcome 
in CRASH CT and IMPACT lab, whereas Wongchareon 
et  al. [39] observed AUC < 0.70 for mortality when 

applying CRASH basic and CT and in IMPACT core 
(Table 2).

Risk of Bias and Applicability
In evaluating the 15 studies by using the Prediction 
Model Risk of Bias Assessment Tool [22], it was observed 
that six studies had low risk of bias [25, 26, 32–34, 39], 
four studies had an unclear risk of bias [28–30, 38], and 
five studies had a high risk of bias [27, 31, 35–37]. For the 
judgment of applicability, only two studies were classified 
as high applicability [36, 38] and five as unclear [26, 27, 
29, 31, 34] applicability (Fig. 2).

Meta‑analysis
The results in Figs. 3 and 4 describe the mixed-effects 
models for meta-regression estimated by restricted 
maximum likelihood for the studies included in the 
meta-analysis. To increase the accuracy of the esti-
mated effect, studies with less than 100 participants 
with the outcome of interest were excluded from the 
meta-analysis [27, 31] and a model in which the authors 
applied CRASH at a different time to that proposed in 
their validation [35]. The remaining 12 studies analyzed 
nine models, of which seven (two developed models 
for authors, MPMII, SAPS II, Rotterdam CT, Helsinki 
CT, and TRISS) were excluded from the meta-analy-
sis because they were tested in a single data set. After 
these exclusions, CRASH and IMPACT remained with 

Table 1  Discrimination results of the eight studies that performed external validation

AUC, area under the curve; CI, confidence interval; CRASH, Corticosteroid Randomization After Significant Head Injury; IMPACT, International Mission for Prognosis and 
Analysis of Clinical Trials in Traumatic Brain Injury; Lab, laboratory

Author Outcome Model AUC or C statistic mortality AUC or C statis‑
tic unfavorable 
outcome

Cremer et al. [25] Functional recovery or disability 
after 12 months

Developed model – 0.81

Olivecrona et al. [27] 6-month mortality and unfavorable outcome IMPACT​ Core: 0.74
Extended: 0.75
Lab: 0.78

Core: 0,.73
Extended: 0.72
Lab: 0.81

Roozenbeek et al. [28] 14-day mortality IMPACT​ Core: 0.79 (95% CI 0.77–0.81)
Extended: 0.83 (95% CI 0.81–0.85)

–

Panczykowski et al. [30] 6-month mortality and unfavorable outcome IMPACT​ Core: 0.78
Extended: 0.83
Lab: 0.83

Core: 0.76
Extended: 0.78
Lab: 0.76

Olivecrona et al. [31] 14-day mortality and 6-month unfavorable 
outcome

CRASH Do not have this statistical analy‑
sis for mortality

CT: 0.69

Gómez et al. [33] Early death (within 48 h) Developed model 0.89 (95% CI 0.84–0.93) –

Sun et al. [34] 6-month mortality and unfavorable outcome IMPACT​ Core: 0.67
Extended: 0.69
Lab: 0.69

Core: 0.68
Extended: 0.70
Lab: 0.71

Wan et al. [36] 6-month mortality and unfavorable outcome IMPACT​ Core: 0.76
Extended: 0.76
Lab: 0.73

Core: 0.80
Extended: 0.79
Lab: 0.77
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Table 2  Discrimination results of the seven selected comparison studies

AUC, area under the curve; CI, confidence interval; CRASH, Corticosteroid Randomization After Significant Head Injury; CT, computerized tomography; IMPACT, 
International Mission for Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury; MPM II, Mortality Probability Model; NABIS, National Acute Brain Injury 
Study; Lab, laboratory; SAPS II, Simplified Acute Physiology Score II; TBI, traumatic brain injury; TRISS, Trauma and Injury Severity Score
a  In the study by Roozenbeck et al. [29], only severe TBI data related to the prediction of mortality and unfavorable outcome were extracted
b  NABIS data set is a clinical trial conducted in the United States with 392 patients investigating the effect of hypothermia on severe TBI
c  Cerestat is an unpublished randomized controlled multicenter study in a combined group of North American and European centers investigating the effect of 
Aptiganel HCl, a noncompetitive N-methyl-d-aspartate receptor antagonist in patients with TBI severe (n = 547)
d  Pharmos is a multicenter, randomized, placebo-controlled, phase III study that investigated the safety and efficacy of dexanabinol in patients with severe TBI 

Author Outcome Model AUC mortality AUC unfavorable outcome

Fischler et al. [26] Hospital- mortality and 1-year 
mortality

Mortality Probability Model II 
(MPM II) and Simplified Acute 
Physiology Score II (SAPS II)

MPM II
Hospital mortality:
Zero hour: 0.83 (95% CI 

0.77–0.88) and 24 h: 0.90 
(95% CI 0.86–0.94)

One-year mortality
Zero hour: 0.81 (95% CI 

0.75–0.87) and 24 h: 0.89 
(95% CI 0.85–0.93)

SAPS II
Hospital mortality: 0.87 (95% CI 

0.82–0.92)
One-year mortality: 0.84 (95% 

CI 0.78–0.89)

–

Roozenbeek et al. [29]a 14-day and 6-month mortality 
and 6-month unfavorable 
outcome

CRASH and IMPACT​ CRASH
Basic: 0.69b

Basic: 0.74c

Basic: 0.65d

IMPACT​
Core: 0.70b

Core: 0.75c

Core: 0.65d

CRASH
Basic: 0.74b

Basic: 0.75c

Basic: 0.68d

IMPACT​
Core: 0.73b

Core: 0.71c

Core: 0.66d

Han et al. [32] 14-day mortality, 6-month 
mortality and 6-month unfa‑
vorable outcome

CRASH and IMPACT​ CRASH
Basic: 0.80 (95% CI 0.75–0.85)
CT: 0.83 (95% CI 0.78–0.87)
IMPACT​
Core: 0.80 (95% CI 0.75–0.85)
Extended: 0.81 (95% CI 

0.76–0.86)
Lab: 0.80 (95% CI 0.75–0.86)

CRASH
Basic: 0.86 (95% CI 0.81–0.90)
CT: 0.89 (95% CI 0.84–0.93)
IMPACT​
Core: 0.84 (95% CI 0.80–0.89) 

Extended: 0.88 (95% CI 
0.83–0.92)

Lab: 0.87 (95% CI 0.82–0.92)

Charry et al. [35] 14-day and 6-month mortality, 
and 6-month unfavorable 
outcome

CRASH and IMPACT​ CRASH
CT: 14-day death: 0.71 (CI 95% 

0.59–0.82); 6-month death: 
0.70 (95% CI 0.58–0.81)

IMPACT​
Lab: 6-month death: 0.75 (95% 

CI 0.65–0.84)

CRASH
CT: 0.60 (IC 95% 0.50–0.71)
IMPACT​
Lab: 0.67 (95% CI 0.57–0.76)

Maeda et al. [37] Hospital mortality and 6-month 
unfavorable

TRISS, CRASH and IMPACT​ TRISS
0.75 (95% CI 0.72–0.79)

CRASH
Basic: 0.86 (95% CI 0.82–0.90)
CT: 0.86 (95% CI 0.82–0.89)
IMPACT​
Core: 0.81 (95% CI 0.77–0.85)
Extended: 0.85 (95% CI 

0.80–0.89)

Pargaonkar et al. [38] 3-month mortality Rotterdam CT and Helsink CT 
score system

Rotterdam: 0.75
Helsinki: 0.82

–

Wongchareon et al. [39] 14-day and 6-month mortality 
and 6-month unfavorable 
outcome

CRASH and IMPACT​ CRASH
Basic: 0.64 (95% CI 0.59–0.68)
CT: 0.66 (95% CI 0.62–0.70)
IMPACT​
Core: 0.68 (95% CI 0.63–0.73)
Extended: 0.73 (95% CI 

0.67–0.77)
Lab: 0.73 (95% CI 0.68–0.77)

CRASH
Basic: 0.72 (95% CI 0.68–0.75)
CT: 0.73 (95% CI 0.69–0.76)
IMPACT​
Core: 0.76 (95% CI 0.71–0.79)
Extended: 0.77 (95% CI 

0.73–0.81)
Lab: 0.77 (CI 95% 0.73–0.81)
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their variations, which were evaluated in nine studies 
[28–30, 32, 34–37, 39].

In Figs. 3 and 4, we can see the result of pooled AUC 
ROC for mortality and unfavorable outcome of the stud-
ies included in the meta-analysis [28–30, 32, 34–37, 
39]. The studies for mortality included n = 7012 par-
ticipants, and it was observed that all models had an 
acceptable pooled AUC (> 0.70) with substantial het-
erogeneity (tau2 = 0.08; standard error [SE] = 0.03; 
I2 = 78.81%) between studies.

A total of 5134 participants were analyzed for unfa-
vorable outcome at 6 months, and all models presented 
pooled AUC > 0.70 (Fig.  4); however, the meta-analysis 
for unfavorable outcome exhibited considerable hetero-
geneity (tau2 = 0.11; SE 0.04; I2 = 82.96%). The analysis of 
the results of Figs. 3 and 4 did not show the superiority of 
any model for predicting mortality and unfavorable out-
come when considering the 95% CI of the pooled AUC 
[28–30, 32, 34–37, 39].

Meta‑regression
The meta-regression analysis using to examine if the 
models (CRASH and IMPACT), risk of bias and age 
(mean/median) of a study can be used to predict its 
effect size, mortality, and unfavorable outcome exhib-
ited the effect size of the studies have increased over 
time (Table 3). For mortality (tau2 = 0.0011; SE 0.0006; 
I2 = 59.7%; R2 = 61.14%; p < 0.001 [test of moderators]), 
IMPACT extended had AUC 0.073 times greater than 
CRASH basic, unclear risk of bias had AUC 0.130 
times greater than high risk of bias, and each additional 
year in the age (mean/median) increase the AUC by 
0.004. Unfavorable outcome (tau2 = 0.0012; SE 0.0007; 
I2 = 61.65%; R2 = 61.73%; p < 0.001 [test of moderators]) 
showed low risk of bias had AUC 0.134 times greater 
than high risk of bias, and unclear risk of bias had AUC 
0.108 times greater than high risk of bias.

(n = 861) conducted in Europe, Israel, Australia, and the United States

Table 2  (continued)

Study Model

Prediction Model Risk of Bias Assessment Tool (PROBAST)
Overall judgement of risk of bias

Domain 1:
Participants

Domain 2:
Predictors

Domain 3:
Outcome

Domain 4:
Analysis

Overall
judgement

Charry et al 2017
(cohort)

CRASH and
IMPACT Low Low Unclear High High

Maeda et al 2019
(cohort)

TRISS, CRASH
and

IMPACT
Low Unclear Low High High

Wongchareon et al
2020 (cohort)

CRASH and
IMPACT Low Low Low Low Low

Wan et al 2017
(cohort) IMPACT Low High Low Unclear High

Olivecrona et al
2012 (randomized
controlled trial)

IMPACT Low High Low High High

Cremer et al 2006
(cohort) Model developed Low Low Low Low Low

Fischler et al 2007
(cohort)

SAPS II and
MPM II Low Low Low Low Low

Gómez et al 2014
(cohort) Model developed Low Low Low Low Low

Han et al 2014
(cohort)

CRASH and
IMPACT Low Low Low Low Low

Roozenbeek et al
2012 ( randomized
controlled trial )

CRASH and
IMPACT Low Low Low Unclear Unclear

Panczykowski et al
2012 (cohort) IMPACT Low Low Low Unclear Unclear

Roozenbeek et al
2012 (cohort) IMPACT Low Low Low Unclear Unclear

Sun et al 2016
(randomized

controlled trial)
IMPACT Low Low Low Low Low

Olivecrona et al
2012 (randomized

trial)
CRASH Low Low Low High High

Pargaonkar et at
2019 (cohort)

Rotterdam and
Helsinki Low Low Low Unclear Unclear

Study Model

Prediction Model Risk of Bias Assessment Tool
(PROBAST)

Overall judgement of applicability
Domain 1:
Participants

Domain 2:
Predictors

Domain 3:
Outcome

Overall
judgement

Charry et al 2017
(cohort)

CRASH and
IMPACT Low Low Low Low

Maeda et al 2019
(cohort)

TRISS, CRASH and
IMPACT Low Low Low Low

Wongchareon et al
2020 (cohort) CRASH and IMPACT Low Low Low Low

Wan et al 2017
(cohort) IMPACT High Low Low High

Olivecrona et al 2012
(randomized

controlled trial)
IMPACT Unclear Low Low Unclear

Cremer et al 2006
(cohort) Model developed Low Low Low Low

Fischler et al 2007
(cohort) SAPS II and MPM II Unclear Low Low Unclear

Gómez et al 2014
(cohort) Model developed Low Low Low Low

Han et al 2014
(cohort) CRASH and IMPACT Low Low Low Low

Roozenbeek et al 2012
(randomized

controlled trial)
CRASH and IMPACT Unclear Low Low Unclear

Panczykowski et al
2012 (cohort) IMPACT Low Low Low Low

Roozenbeek et al 2012
(cohort) IMPACT Low Low Low Low

Sun et al 2016
(randomized

controlled trial)
IMPACT Unclear Low Low Unclear

Olivecrona et al 2012
(randomized trial) CRASH Unclear Low Low Unclear

Pargaonkar et at 2019
(cohort)

Rotterdam and
Helsinki High Low Low High

Fig. 2  Risk of bias and applicability (PROBAST) assessment of the prediction models after severe TBI. CRASH, Corticosteroid Randomization After 
Significant Head Injury; IMPACT, International Mission for Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury; ISS, Injury Severity Score; 
MPM II, Mortality Probability Model; NABIS, National Acute Brain Injury Study; PROBAST, Prediction Model Risk of Bias Assessment Tool; TBI, traumatic 
brain injury; TRISS, Trauma and Injury Severity Score; SAPS II, Simplified Acute Physiology Score II
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Sensitivity Analysis
Studies with low or unclear risk of bias [28–30, 32, 34, 39] 
selected for the meta-analysis were analyzed separately to 
assess the model performance robustness, as these were 
observational studies [28, 30, 32, 35, 36, 39] (Supplemen-
tary Information 3 and 4) Randomized clinical trials were 
excluded in this last analysis because they may not be 
representative for all individuals with severe TBI [29, 34].

Although observational studies showed higher pooled 
AUC values and lower I2 values for mortality and an 

unfavorable outcome at 6  months, it was not possible 
to state that the sensitivity analyses showed better per-
formance when compared with the meta-analyses that 
included all studies (Figs. 3 and 4). Similar to previous 
findings (Figs. 3 and 4), there was no evidence of supe-
riority of any prognostic model in the sensitivity analy-
ses for both outcomes according to 95% CI of pooled 
AUC.

Fig. 3  Meta-analysis of the AUC for prediction models of mortality after severe TBI. Weights are from random-effects analysis. AUC, area under the 
curve; CI, confidence interval; CERESTAT, Cerestat data set; CT, computerized tomography; CRASH, Corticosteroid Randomization After Significant 
Head Injury; IMPACT, International Mission for Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury; Lab, laboratory; NABIS, National 
Acute Brain Injury Study; Pharmos, Pharmos data set; SE, standard error; TBI, traumatic brain injury
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Calibration of Studies
Tables 4 and 5 show the calibration results of the mod-
els, in which 11 studies analyzed mortality and 7 articles 
analyzed unfavorable outcomes. IMPACT was the most 
evaluated model in terms of calibration for these two 
outcomes.

For mortality (Table  4), the Hosmer–Lemeshow (HL) 
test showed adequate fit for the proposed models and 
externally validated by the authors themselves for MPM 
II/24  h (hospital mortality), MPM II/initial (mortality 
one year after TBI), and SAPS II (in-hospital and 1-year 
mortality). The HL test and the logistic fit indicated 

Fig. 4  Meta-analysis of the AUC for prediction models of an unfavorable outcome after severe TBI. Weights are from random-effects analysis. AUC, 
area under the curve; CI, confidence interval; CERESTAT, Cerestat data set; CT, computerized tomography; CRASH, Corticosteroid Randomization 
After Significant Head Injury; IMPACT, International Mission for Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury; Lab, laboratory; 
NABIS, National Acute Brain Injury Study; Pharmos, Pharmos data set; SE, standard error; TBI traumatic brain injury
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adequate fitting of IMPACT and CRASH for mortality in 
four studies. On the other hand, Wongchareon et al. [39] 
observed poor calibration in all variations of CRASH and 
IMPACT in their analysis.

The slope and intercept values differed in the studies 
when IMPACT and CRASH were analyzed for the mor-
tality outcome (Table 4). The values of these parameters 
for the IMPACT core ranged from 0.73 to 1.14 for slope 
and − 0.77 to + 0.81 for intercept [29, 32]; the slope in the 
extended IMPACT varied between 0.76 and 1.15 and the 
intercept between − 0.66 to + 0.59 [32, 34]; and the labo-
ratory IMPACT varied between 0.76 and 1.17 for slope 
and − 0.59 and + 0.81 for intercept [32, 34]. The CRASH 
basic presented a slope variation between 0.64 and 0.95, 
in the intercept between − 1.00 and + 0.51 [29, 32], and 
the CT, which was only evaluated in two samples, pre-
sented results of 0.85 and 1.05 for slope and + 0.03 
and + 0.07 for intercept [32, 39].

HL and logistic fit tests for unfavorable outcome 
showed adequate fit for the IMPACT core and extended 
models in four out of five samples [27, 30, 32, 36, 39] 
and in all analyses performed with IMPACT laboratory. 
CRASH basic was evaluated in two studies [32, 39], with 
a poor calibration result for one of them [39], whereas 
the CRASH CT presented poor results in one of the 
three analyses carried out with this model variation [31, 
32, 39].

The slope and intercept in the unfavorable outcome 
analyses (Table  5) also showed important differences in 
the values found. The variation for the IMPACT core was 
from 0.64 to 1.37 for slope [29, 32] and − 0.36 to + 1.07 
for intercept [29, 32]; in the extended IMPACT, values 
between 0.72 and 1.58 were observed for slope [32, 34] 
and − 0.01 and 0.88 for intercept [32, 39]; the IMPACT 
laboratory presented values between 0.71 and 1.46 for 

slope [32, 34] and + 0.11 to + 0.94 [32, 39] for intercept. 
CRASH basic ranged from 0.64 to 1.34 for slope [29, 
32] and − 0.01 to 2.39 for intercept [29, 32], whereas the 
slope values in CRASH CT were 0.98 and 1.22 and the 
intercept values were + 0.17 and + 1.78 in two analyses 
performed [32, 39].

Discussion
In the present systematic review and meta-analysis, we 
evaluated the effectiveness of prognostic models that 
went external validation in predicting mortality/survival 
and unfavorable outcome after severe TBI. This review is, 
to our knowledge, the first to identify published studies 
attempting to evaluate prognostic models specifically for 
patients with severe TBI and systematically analyze the 
CRASH and IMPACT variation. In a recent systematic 
review, Dijkland et al. [11] found more than 67 internally 
and externally validated prognostic models in patients 
with moderate and severe TBI in the literature. Although 
the brilliant review by Dijkland et al. [11] brought several 
contributions, the authors did not compare CRASH and 
IMPACT in a meta-analysis with other evaluated models 
(e.g., Helsinki, Hukkelhoven and Nijmegen) due to the 
limited number of validations found. Though similarities 
between our results and the results of Dijkland et al. [11] 
were observed, the variations of CRASH and IMPACT 
models (e.g., CRASH basic, CRASH CT, IMPACT core, 
IMPACT extended and IMPACT lab) were not included 
in Dijkland et al. [11], and patients with severe TBI were 
not analyzed separately, but these aspects were explored 
in our current review.

CRASH and IMPACT are regression-based models 
derived from large databases of randomized, obser-
vational studies which have tested specific treatments 
in patients with TBI [10, 13]. As a result, the eligibility 

Table 3  AUC Meta-regression analysisa with means AUC, and CRASH model, IMPACT model, risk of bias, and age

AUC, area under the curve; CRASH, Corticosteroid Randomization After Significant Head Injury; CT, computerized tomography; IMPACT, International Mission for 
Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury

Significant values are highlighted in bold
a  This is the expected effect size when predictor reference is CRASH basic, high risk of bias, and age is zero
b  Age analysis included ten studies

Mortality Unfavorable outcome

Models estimate Z value p value Models estimate Z value p value

CRASH CT 0.065 1.732 0.083 0.024 0.580 0.562

IMPACT core 0.025 1.011 0.312  − 0.016  − 0.644 0.520

IMPACT extended 0.073 2.697 0.007 0.011 0.363 0.717

IMPACT lab 0.068 2.342 0.019 0.008 0.263 0.793

Low risk of bias 0.079 2.192 0.028 0.134 3.091 0.002
Unclear risk of bias 0.130 3.365 0.001 0.108 2.372 0.018
Age (mean/median)b 0.004 4.424  < 0.001 0.004 4.956  < 0.001
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Table 4  Calibration results of the prognostic models for mortality

Calibration test Model Results Author

Hosmer–Lemeshow Developed model p = 0.28 Cremer et al. [25]

Developed model p = 0.32 Gómez et al. [33]

CRASH basic p > 0.05 Han et al. [32]

CRASH CT p > 0.05

IMPACT core p > 0.05

IMPACT extended p > 0.05

IMPACT lab p > 0.05

IMPACT core p = 0.70 Panczykowski et al. [30]

IMPACT extended p = 0.89

IMPACT lab p = 0.80

IMPACT core p = 0.28 Wan et al. [36]

IMPACT extended p = 0.25

IMPACT lab p = 0.58

CRASH basic p = 0.051 Wongchareon et al. [39]

CRASH CT p = 0.001

IMPACT core p = 0.040

IMPACT extended p = 0.049

IMPACT lab p = 0.002

MPM II Hospital:
Zero hour: 17.83; p = 0.02
24 h: 10.68; p = 0.22
One year:
Zero hour: 14.21; p = 0.08
24 h: 18.14; p = 0.02

Fischler et al. [26]

SAPS II Hospital: 7.15; p = 0.52
One year: 5.67; p = 0.68

Logistic fit IMPACT core p = 0.03 Olivecrona et al. [27]

IMPACT extended p = 0.03

IMPACT lab p = 0.02

Goodness-of-fit test Developed model Intercept: + 0.03 Slope: 0.83 Gómez et al. [33]

Calibration plots and cali‑
bration-in-the-large or Cox 
calibration

IMPACT core Intercept: − 0.61 Slope: 1.06 Roozenbeek et al. [28]

IMPACT extended Intercept: + 0.03 Slope: 1.12

CRASH basic Intercept: − 0.65 Slope: 0.67a

Intercept: − 0.65 Slope: 0.89b

Intercept: − 1.00 Slope: 0.64c

Roozenbeek et al. [29]d

IMPACT core Intercept: − 0.40 Slope: 0.84a

Intercept: − 0.22 Slope: 1.05b

Intercept: − 0.77 Slope: 0.73c

CRASH basic Intercept: + 0.51 (95% CI 0.20–0.82) Slope: 0.95 (95% CI 0.71–1.18) Han et al. [32]

CRASH CT Intercept: + 0.03 (95%CI − 0.24 to 0.31) Slope: 0.85 (95% CI 0.64–1.05)

IMPACT core Intercept: + 0.81 (95% CI 0.48–1.13) Slope: 1.14 (95% CI 0.85–1.43)

IMPACT extended Intercept: + 0.59 (95% CI 0.29–0.89) Slope: 1.15 (95% CI 0.86–1.43)

IMPACT lab Intercept: + 0.81 (95% CI 0.48–1.15) Slope: 1.17 (95% CI 0.86–1.49)

IMPACT core Intercept: − 0.70 Slope: 0.81 Sun et al. [34]

IMPACT extended Intercept –0.66 Slope: 0.76

IMPACT lab Intercept: − 0.59 Slope: 0.76

CRASH basic Intercept: + 0.10 Slope: 0.76 Wongchareon et al. [39]

CRASH CT Intercept: + 0.07 Slope: 1.05

IMPACT core Intercept: + 0.07 Slope: 0.98

IMPACT extended Intercept: + 0.03 Slope: 1.08
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criteria of the participants of these databases can inter-
fere with the efficiency of the generated prognostic 
models, which will fit better for certain case mixes. Our 
meta-analysis results that analyzed the discriminative 
capacity showed similar performance of the prognostic 
models and their variations. The studies [29, 32, 35, 37, 
39] that compared the CRASH and IMPACT models 
showed that both have good performance in predicting 
mortality and unfavorable outcomes in their populations. 
However, some studies warn that a discrimination com-
parison between CRASH and IMPACT models may be 
influenced by the inclusion criteria regarding patient age, 
countries, trauma care organization, treatment, predictor 
effects, outcome distribution and lack of available data 
[34, 39–43]. Therefore, the difference in case-mix distri-
bution between the databases of the models submitted 
for validation and development can influence the pre-
dictive capacity. Therefore, some researchers [29, 34, 37] 
recommend fitting the coefficients of the models for the 
target population before its implementation in clinical 
practice to correct these interferences [11, 34].

Although contemporary clinical studies indicate the 
continuing relevance of CRASH and IMPACT, in a 
recent study, Wongchareon et al. [39] propose updating 
prognostic models, including new predictors, to main-
tain currency and generalizability, as these models were 
derived from a database that included patients from 1985, 
and advances in the treatment and diagnostic resources 
of patients with TBI may have altered the performance of 
the models. Understanding the role of prognostic models 
could be helpful for risk stratification; however, external 
validation is recommended to assess prediction in a new 
setting. CRASH and IMPACT showed moderate to good 
discrimination results; however, the calibration analysis 
showed overestimated risks for mortality and underes-
timated risks for unfavorable results [11]. Although, in 
this review, IMPACT extended and CRASH CT led to 
high pooled AUC values when predicting mortality and 
unfavorable outcomes, the meta-analysis did not show 
the superiority of CRASH and IMPACT variations in 
predicting outcomes. The present systematic review 
confirmed that heterogeneous models that used blood 

biomarkers, imagining biomarkers and clinical character-
istics could be used as a caution for global prediction out-
come, being recommended to update the model (external 
validation) per setting.

Over the past decades, CT scans, GCS, pupillary 
changes, and age have been frequently used as predictors 
to estimate the outcome after TBI in prognostic models. 
Dijkland et al. [11] observed that age, GCS motor score, 
and pupils were the most common components of the 
models and that CRASH and IMPACT were the most fre-
quently submitted to external validation. By identifying 
the need to predict the outcome of patients with severe 
TBI readily, some authors have externally validated mod-
els using only variables that can be reliably investigated 
after trauma. The findings of these studies showed that 
the models proposed and externally validated by Gómez 
et al. [33] and Cremer et al. [25] performed well in pre-
dicting mortality at 48 h (AUC = 0.89) [33] and unfavora-
ble outcomes after 12  months (AUC = 0.81) [25]. In the 
past decade, CRASH and IMPACT models have been 
used in patients with TBI (GCS 3–14). Although CRASH 
and IMPACT models were development in large cohorts 
with different severity, it is recommended that these 
models are adjusted according to the local and clinical 
characteristics population.

In the descriptive analysis, it was observed that all the 
studies except for the study by Wongchareon et  al. [39] 
indicated adequate calibration of IMPACT and CRASH 
for both outcomes by the HL test, but without a clear 
indication regarding the type and extent of the calibra-
tion error identified by the slope and intercept of the Cox 
calibration, which had widely varied values in the studies 
included in this review. Using the HL test, the study by 
Wongchareon et  al. [39] showed that the CRASH basic 
and IMPACT laboratory models presented adequate fit 
(p > 0.05) for mortality and unfavorable outcome, respec-
tively. However, from the calibration plots and intercept, 
CRASH and IMPACT generally predicted lower proba-
bilities of both outcomes (mortality and unfavorable out-
come) than what was observed, except for the IMPACT 
CT model, which was more accurate in predicting an 
unfavorable outcome at six months, only if the expected 

CI, confidence interval; CRASH, Corticosteroid Randomization After Significant Head Injury; CT, computerized tomography; IMPACT, International Mission for 
Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury; lab, laboratory; MPM II, Mortality Probability Model; NABIS, National Acute Brain Injury Study; SAPS II, 
Simplified Acute Physiology Score II; TBI, traumatic brain injury
a  NABIS Dataset
b  Cerestat Dataset
c  Pharmos Dataset
d  In the study by Roozenbeck et al. [29], data related to the prediction of mortality and unfavorable outcome were considered only after severe TBI

Table 4  (continued)

Calibration test Model Results Author

IMPACT lab Intercept: + 0.05 Slope: 1.05
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Table 5  Calibration results of the prognostic models for unfavorable outcome

CI, confidence interval; CRASH, Corticosteroid Randomization After Significant Head Injury; CT, computerized tomography; IMPACT, International Mission for 
Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury; lab, laboratory; MPM II, Mortality Probability Model; NABIS, National Acute Brain Injury Study; SAPS II, 
Simplified Acute Physiology Score II; TBI, traumatic brain injury
a  NABIS Dataset
b  Cerestat Dataset
c  Pharmos Dataset
d  In the study by Roozenbeck et al. [29], data related to the prediction of mortality and unfavorable outcome were considered only after severe TBI

Calibration test Model Results Author

IMPACT core p = 0.39 Panczykowski et al. [30]

IMPACT extended p = 0.17

IMPACT lab p = 0.78

CRASH basic p > 0.05 Han et al. [32]

CRASH CT p > 0.05

IMPACT core p > 0.05

IMPACT extended p > 0.05

IMPACT lab p > 0.05

IMPACT core p = 0.35 Wan et al. [36]

IMPACT extended p = 0.23

IMPACT lab p = 0.55

CRASH basic p = 0.00 Wongchareon et al. [39]

CRASH CT p = 0.04

IMPACT core p = 0.00

IMPACT extended p = 0.002

IMPACT lab p = 0.16

Logistic fit IMPACT core p = 0.003 Olivecrona et al. [27]

IMPACT extended p = 0.007

IMPACT lab p = 0.0005

CRASH CT p < 0.01 Olivecrona et al. [31]

Calibration plots or calibration-in-the-large 
or Cox calibration

CRASH Basic Intercept: + 0.04 Slope: 0.80a

Intercept: − 0.72 Slope: 0.95b

Intercept: − 0.01 Slope: 0.64c

Roozenbeek et al. [29]d

IMPACT core Intercept: + 0.42 Slope: 0.89a

Intercept: − 0.36 Slope: 0.81b

Intercept: + 0.29 Slope: 0.63c

CRASH basic Intercept: + 2.39 (95% CI 1.84–2.95) Slope: 1.34 
(95% CI 1.01–1.67)

Han et al. [32]

CRASH CT Intercept: + 1.78 (95% CI 1.33–2.22) Slope: 1.12 
(95% CI 0.85–1.39)

IMPACT Core Intercept: + 1.07 (95% CI 0.74–1.39)
Slope: 1.37 (95% CI 1.02–1.71)

IMPACT extended Intercept: + 0.88 (95% CI 0.55–1.21)
Slope: 1.58 (95% CI 1.20–1.97)

IMPACT lab Intercept: + 0.94 (95% CI 0.59–1.30)
Slope: 1.46 (95% CI 1.09–1.83)

IMPACT Core Intercept: + 0.23 Slope: 0.72 Sun et al. [34]

IMPACT extended Intercept + 0.34 Slope: 0.72

IMPACT lab Intercept: + 0.42 Slope: 0.71

CRASH basic Intercept: + 0.17 Slope: 0.88 Wongchareon et al. [39]

CRASH CT Intercept: + 0.17 Slope: 0.98

IMPACT Core Intercept: + 0.07 Slope: 1.01

IMPACT extended Intercept: − 0.01 Slope: 1.15

IMPACT lab Intercept: + 0.11 Slope: 1.04
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outcome is less severe (probability from 0 to approxi-
mately 20%) [39].

The meta-regression analysis of the CRASH and 
IMPACT models showed higher AUC for studies with a 
low risk of bias when compared with an increased risk of 
bias in both outcomes (mortality and unfavorable out-
come). This may be attributable to the studies assessing 
discrimination but not providing the model calibration 
analysis, thereby increasing the risk of bias. In this case, 
the model’s performance in providing accurate individual 
probabilities is completely unknown [22]. Moreover, we 
observed that studies with a higher risk of bias analyzed 
in this review had not complete information about the 
predictors available, which may result in the overestima-
tion of discrimination. Thus, using specific guidelines to 
assess the risk of bias is essential to prevent overestima-
tion discrimination and identify if the results are dis-
torted estimates of model performance [22]. Another 
interesting observation is about the increase of AUC val-
ues with age. This may be related to the good ability of 
the models to predict the outcomes in older patients. It is 
known that increased age is related to diminished func-
tional capacity and ability to recover [40].

It is important to emphasize that studies included in 
this review applied different types of statistical analyses 
to assess the calibration of the models (11 studies have 
conducted calibration), with the HL test and Cox cali-
bration being more frequent. Furthermore, some stud-
ies did not report the 95% CI values and did not report 
estimated probabilities at each calibration point, making 
it impossible to perform the meta-analysis of the calibra-
tion for the models in our study.

The use of prognostic models after severe TBI can 
guide the team in predicting resources, informing the 
family about the patient’s prognosis, and assessing the 
quality of care provided. However, their use should be 
cautioned because these models predict group estimates 
of patients, and they cannot accurately predict individual 
outcomes or are not recommended for clinical decision 
making [32]. It is known that the consequences and out-
comes caused by severe TBI are different in patients with 
mild and moderate TBI, so it is important that studies 
carry out validation of models according to the severity 
of the injury, identifying whether this is an interfering 
variable in its accuracy. Therefore, the authors recom-
mend taking into account the inclusion criteria adopted 
in the studies of the model used and the application of 
the AUC case-mix in the studies in order to make the 
results generalizable [34, 39, 41–43].

Some difficulties occurred in the analysis of the stud-
ies included in the review, with a discrepancy in the 
inclusion criteria observed in the studies and a lack of 

similarity in the information presented in the results of 
the articles standing out. Nevertheless, it was notable 
that the discrimination and calibration results present 
adequate levels when the inclusion criteria of the stud-
ies are the same or very similar to those of the validation 
study of the developed model, indicating an accurate esti-
mation of the outcomes by the models [11, 34, 39]. We 
also noted that a lack of clear information on the meth-
odology used for model validation, identification of com-
plete AUC and calibration results, and information on 
the number of deaths were also difficulties faced during 
the analyses.

Conclusions
The results of this review showed that the IMPACT and 
CRASH models were the most validated and externally 
compared in patients with severe TBI and generally pre-
sented acceptable performance in predicting the studied 
outcomes. Among these two models and their variations, 
a similarity in the ability to discriminate for mortality and 
unfavorable outcome was observed, indicating that both 
models can contribute to estimate prognosis in clini-
cal practice in patients with severe TBI. The results also 
showed that the variations of the CRASH and IMPACT 
models had adequate calibration for both outcomes in 
most studies, but without a clear indication of uncertainties 
in the evaluations of these models. Overall, the analyses did 
not show a model that performed better than the others.
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