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Abstract 

Background: Prolonged external ventricular drainage (EVD) in patients with subarachnoid hemorrhage (SAH) leads 
to morbidity, whereas early removal can have untoward effects related to recurrent hydrocephalus. A metric to help 
determine the optimal time for EVD removal or ventriculoperitoneal shunt (VPS) placement would be beneficial in 
preventing the prolonged, unnecessary use of EVD. This study aimed to identify whether dynamics of cerebrospinal 
fluid (CSF) biometrics can temporally predict VPS dependency after SAH.

Methods: This was a retrospective analysis of a prospective, single-center, observational study of patients with aneu-
rysmal SAH who required EVD placement for hydrocephalus. Patients were divided into VPS-dependent (VPS+) and 
non–VPS dependent groups. We measured the bicaudate index (BCI) on all available computed tomography scans 
and calculated the change over time (ΔBCI). We analyzed the relationship of ΔBCI with CSF output by using Pearson’s 
correlation. A k-nearest neighbor model of the relationship between ΔBCI and CSF output was computed to classify 
VPS.

Results: Fifty-eight patients met inclusion criteria. CSF output was significantly higher in the VPS+ group in the 7 
days post EVD placement. There was a negative correlation between delta BCI and CSF output in the VPS+ group 
(negative delta BCI means ventricles become smaller) and a positive correlation in the VPS- group starting from days 
four to six after EVD placement (p < 0.05). A weighted k-nearest neighbor model for classification had a sensitivity of 
0.75, a specificity of 0.70, and an area under the receiver operating characteristic curve of 0.80.

Conclusions: The correlation of ΔBCI and CSF output is a reliable intraindividual biometric for VPS dependency after 
SAH as early as days four to six after EVD placement. Our machine learning model leverages this relationship between 
ΔBCI and cumulative CSF output to predict VPS dependency. Early knowledge of VPS dependency could be studied 
to reduce EVD duration in many centers (intensive care unit length of stay).
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Introduction
Acute hydrocephalus is a known complication of 
subarachnoid hemorrhage (SAH), with an incidence 
of 15–87% [1–4]. Acute hydrocephalus requires the 
placement of an external ventricular drain (EVD), but 
the disturbance of cerebrospinal fluid (CSF) hydrody-
namics persists in almost half (45%) of these patients 
requiring a ventriculoperitoneal shunt (VPS) [5–7]. 
The optimal management of EVD in the setting of SAH 
remains controversial. Prolonged use of EVD is asso-
ciated with complications and worse functional out-
comes, and premature removal of EVD might put the 
patients at risk of recurrent hydrocephalus with adverse 
consequences for recovery from SAH [8–12]. There are 
conflicting recommendations in the literature regard-
ing the optimal timing and method of EVD weaning 
[4, 13–15]. Early recognition of VPS dependency or 
EVD liberation may prevent prolonged EVD duration 
and complications while expediting transfer out of the 
intensive care unit in many centers.

Several studies have identified risk factors associ-
ated with VPS dependency; few have created classifiers 
to support individual prediction, and none have used 
time-varying measurements. The examined risk factors 
include high Hunt and Hess scale, low Glasgow Coma 
Scale score at presentation, high Graeb and LeRoux 
score, high Fisher grade, older age (≥60 years of age), 
computed tomography (CT) findings (hemorrhage, 
third ventricle diameter, bicaudate index), posterior cir-
culation aneurysm, aneurysm treatment modality (sur-
gical clipping vs. endovascular coiling), and CSF output 
[1, 12, 16–22]. All these risk factors were assessed once 
at the onset of SAH (CSF output was evaluated imme-
diately after EVD placement). Bicaudate index (BCI), 
defined as the ratio of the distance encompassing the 
lateral ventricles and the distance between the inner 
tables of the skull at the level of the caudate nucleus 
[23], has been assessed as a risk factor either at the 
onset of SAH [1, 3, 24] or right before VPS placement 
[2].

We hypothesized that time-varying features related 
to CSF hydrodynamics could accurately identify VPS 
dependence by using a machine learning statistical 
classification model. Among known risk factors for 
VPS, the BCI and CSF output offer dynamic or time-
varying information, as opposed to static clinical scales 
and aneurysm characteristics.

Methods
Study Population
We studied consecutive patients with aneurysmal SAH 
who had an EVD placed and who were admitted to the 
neurological intensive care unit. They were enrolled in a 
prospective observational study of SAH outcomes. Con-
sent was obtained from the patient or a surrogate. The 
medical center’s institutional review board approved the 
study. This was a retrospective analysis of the prospective 
observational study.

Patients were divided into two groups: the VPS-
dependent group (VPS+) and the non–VPS dependent 
group (VPS−). They were the patients who required or 
did not require a VPS placement prior to hospital dis-
charge, respectively. We collected data on demographics, 
neuroimaging, Hunt and Hess grades, Fisher scale [3, 17, 
25], CSF output, EVD, and VPS placement date. Exclu-
sion criteria were patients who died in the hospital, as 
VPS planning would not be relevant. This study follows 
the Strengthening the Reporting of Observational Studies 
in Epidemiology reporting guidelines.

EVD Management and Weaning Practices
In our institution, EVDs are placed for the treatment of 
symptomatic hydrocephalus and kept open at 20 cm  H2O 
until the aneurysm is secured. After aneurysm secure-
ment, the EVD is set open to drain continuously at 10 cm 
 H2O during the vasospasm window. EVD weaning trials 
are started after the vasospasm window and whether the 
patient has a good neurological examination to follow. 
Weaning trials include raising the EVD by increments of 
5 cm  H2O daily, and then clamping after reaching 20 cm 
 H2O for 24 hours. The clamp trial is aborted if there are 
adverse clinical changes (headache, vomiting, or deterio-
ration of consciousness level), intracranial pressure eleva-
tions exceeding 20 mm Hg for more than 20 minutes, 
or CSF leakage. At the end of the clamp trial, if there is 
radiographic evidence of hydrocephalus, this is also con-
sidered a failed clamp trial. Patients are considered can-
didates for VPS placement after failing two clamp trials. 
Ventriculitis can delay VPS placement until CSF profiles 
are adequately normalized with antibiotic treatment.

Neuroimaging and CSF Data
We measured BCIs in all available CT studies during the 
patient’s hospital stay. Readers were blinded to demo-
graphic data, clinical baseline, CSF output, and VPS 
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outcome. The BCI was calculated by using a linear meas-
ure of the width of the frontal horns where the heads of 
the caudate nuclei produced the maximum indentation 
of the lateral ventricle, divided by the corresponding dis-
tance between the inner tables of the skull at this level 
[23]. The measurement was obtained at the CT section 
that included the foramen of Monro. When the foramen 
of Monro was not clearly seen, the measure was made in 
two adjacent CT sections, and the mean value of the BCI 
was used. All readers (CR, KT, BW, LC, JF, RR, HK, and 
AA) participated in group and individual training ses-
sions for BCI measurements. The training materials con-
tained radiological neuroanatomy imaging and examples 
of BCI measurements. Adequate time was allocated to 
each reader to understand the interpretative and meas-
urement process fully. Readers had the training materials 
available later in the active phase of the study. To evaluate 
the reader’s agreement, readers were paired. Two authors 
measured the BCI in ten CT scans together; afterward, 
they separately measured BCI in an additional 20 CT 
scans and crosschecked their results.

Delta BCI were calculated by subtracting the BCI value 
of the first CT scan (after EVD placement) from the BCI 
value of subsequent candidate CTs. CSF output data was 
available from nursing flowsheets in 2 hour intervals. 
Cumulative CSF volumes (in mL) were calculated to cor-
respond to the timing of each CT scan (starting from and 
accumulating since the time of the first post-EVD scan). 
Delta BCIs and corresponding cumulative CSF outputs 
were calculated for seven consecutive days after EVD 
placement. For example, on day 4 after EVD placement, 
delta BCI would equal day 4 BCI (if CT available) minus 
BCI of the first post-EVD CT, and the corresponding CSF 

output would be cumulative between the times of those 
two scans.

Statistical Analysis
Pearson correlation coefficients were calculated between 
BCI and cumulative CSF output and between ΔBCI and 
cumulative CSF output for each day. A p value <0.05 was 
considered statistically significant. Figures 1 and 2 dem-
onstrate Fisher’s Z-transformation that was performed 
between the correlation values of VPS+ group and VPS− 
group for each day from days one to seven after EVD 
placement.

Weighted k-nearest neighbor (KNN) [26] was applied 
to compute a classification model for VPS depend-
ency. KNN is an algorithm that classifies an object by a 
majority vote on the basis of the k number of neighbors 
from the feature map, in which k is an integer. KNN is 
a Lazy Learner (meaning that it does not require train-
ing) and works well with smaller data sets. Weighted 
KNN is a type of KNN, but it gives a different weight on 
each neighbor according to its distance. A neighbor with 
a closer distance has a higher weight compared with a 
neighbor with more space away from the data point.

Two models were generated on the basis of ΔBCI or 
daily BCI. Other features that were used as inputs were 
cumulative CSF output, age, Hunt and Hess score, Fisher 
Score, and sex. A tenfold cross-validation method was 
used to evaluate the models. The whole data set was 
divided randomly into ten different subsamples; nine sub-
samples were used to train the model, and the remain-
ing subsample was used for validation. This process was 
repeated ten times, using a different subsample for vali-
dation each time. The models were further examined by 

Fig 1. Correlation coefficient between ΔBCI and CSF output. Horizontal lines are lines of best fit on the basis of the Pearson correlation coefficient 
on days one to seven (a to g, respectively) and change in correlation over the period of 7 days (h). BCI, bicaudate index, CSF, cerebrospinal fluid, VP, 
ventriculoperitoneal.
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using the area under the receiver operating characteristic 
curve (AUC).

All data analysis was performed by using MATLAB 
2020a (MathWorks, MA) and Microsoft Excel 2010 
(Microsoft, Redmond, WA).

Results
A total of 119 consecutive patients with SAH with EVD 
placement who were admitted between April 2006 and 
September 2014 were included. Sixty-one patients were 
removed on the basis of the following criteria: missing 
CSF output data (n = 41), patients who died in the hos-
pital (n = 13), patients without ΔBCI value after EVD 
placement (n = 7) (Supplemental Digital Content Fig. 1). 
The study was undertaken during a transition between 
electronic medical record systems, and some flowsheets 
and images were no longer accessible. There was no sig-
nificant difference in age, sex, clinical SAH presenta-
tion severity, and Fisher score between the two groups 
(Table  1). CSF output was significantly higher in the 
VPS+ than the VPS− group over the 7 days after EVD 
placement (p= 0.008) (Table 1). The average overall EVD 
duration was 11.8 ± 4.7 days (range 3.5–24.3). The EVD 
duration in the VPS+ group was 12.8 ± 6 days and 8.6 ± 
4.7 days in the VPS− group (p = 0.003). The rate of ven-
triculitis in the VPS+ group was 7 (23.3%), and the rate 
in the VPS− group was 5 (17.9%; p = 0.749). There was 
no difference in the mean BCI and ΔBCI between the 
two groups (Fig. 3).

Delta BCI and CSF output negatively correlated in the 
VPS(+) groups on days two to seven after EVD place-
ment (Figure  1). (Delta DCI is negative when ventricles 
become smaller from post-EVD CT to subsequent CT). 

In contrast, there was a positive correlation between 
delta BCI and CSF output in the VPS(-) group. (Figure 1) 
The correlation of delta BCI and CSF output was statis-
tically significantly different between VPS(+) and VPS(-) 
from days four to six. (Table 2) There was no significant 
difference between groups in the correlations between 
mean daily BCI and CSF output. (Figure 2)

The classification accuracy of predicting VPS depend-
ency with the ΔBCI model was 0.72, with a sensitivity of 
0.75, a specificity of 0.70, and an AUC of 0.80 (Fig. 4). The 
result of mean daily BCI model was 0.64, 0.68, and 0.60, 
respectively, for accuracy, sensitivity, and specificity, with 
an AUC of 0.63 (Fig. 4). The specificity and sensitivity are 
reported at an optimal threshold of 0.53 for the ΔBCI 
model (and 0.44 for the mean BCI model), corresponding 
to the maximum Youden index [27].

Discussion
Our study showed that the intra-individual correlation 
between decreasing BCI and increasing CSF output 
on days four to six after EVD placement is associated 
with VPS dependency in patients with SAH. Our model 
showed that we can leverage this correlation as a feature 
to classify or predict patients who will need VPS with 
moderately good accuracy (AUC 0.8). The negative corre-
lation of delta BCI and CSF output in the VPS dependent 
group suggests a ventricular system which, unaided, can 
not independently accommodate for either high resist-
ance to CSF outflow or CSF overproduction requiring a 
drain or shunt to release the pressure. The positive cor-
relation of delta BCI and CSF output in the VPS- group 
suggests an appropriately accommodating ventricular 
system.

Fig. 2 Correlation coefficient between average BCI and CSF output. Horizontal lines are lines of best fit based on Pearson correlation coefficient 
on days one to seven (a to g, respectively) and change in correlation over the period of 7 days (h). BCI, bicaudate index, CSF, cerebrospinal fluid, VP, 
ventriculoperitoneal.
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Table 1 Baseline characteristics

Statistically significant values are given in bold

BCI, bicaudate index, CSF, cerebral spinal fluid, CT, computerized tomography, EVD, external ventricular drain, SD, standard deviation, VSP−, non–ventriculoperitoneal 
shunt dependent, VPS+, ventriculoperitoneal shunt–dependent.

Characteristics VPS+ (n = 28) VPS− (n = 30) p value

BCI, mean (SD) 0.175 (±0.05) 0.161 (±0.113) 0.55

ΔBCI in all available CT scans, mean (SD) − 0.002 (±0.047) − 0.034 (±0.136) 0.242

Cumulative CSF output at 7 days, mean (SD) (mL) 1354.47 (±687.63) 897.79 (±565.92) 0.008
Age, mean (SD) (yr) 56.66 (±14.44) 54.97 (±12.23) 0.633

Hunt & Hess scale 0.665

 1 1 1

 2 2 1

 3 12 8

 4 7 12

 5 8 6

Fisher score 0.096

 1 0 0

 2 1 4

 3 26 23

 4 3 1

Female sex, n (%) 20 (71.4) 22 (73.3) 1

EVD duration, mean (SD) (d) 12.8 (±6) 8.6 (±4.7) 0.003
Ventriculitis, n (%) 7 (23.3) 5 (17.9) 0.749

Fig. 3 Values during the 7 days for average BCI, ΔBCI, and CSF output. Visual plot of all data during the 7 days of external ventricular drain place-
ment. (a) Average BCI, (b) ΔBCI, (c) and CSF output. BCI, bicaudate index, CSF, cerebrospinal fluid, VP, ventriculoperitoneal.

Table 2 Pearson correlation coefficient between mean BCI and CSF output and between mean delta BCI and CSF output

Statistically significant values are given in bold

BCI, bicaudate index, CSF, cerebrospinal fluid, VSP−, non–ventriculoperitoneal shunt dependent, VPS+, ventriculoperitoneal shunt–dependent.

Days Mean ΔBCI Mean BCI

VPS+ VPS− p value VPS+ VPS− p value

1 − 0.468 − 0.239 0.234 0.133 − 0.021 0.336

2 − 0.283 0.095 0.195 0.011 0.024 0.484

3 − 0.251 0.154 0.077 0.067 0.063 0.494

4 − 0.293 0.213 0.0035 − 0.001 0.068 0.405

5 − 0.268 0.22 0.039 − 0.08 0.07 0.298

6 − 0.259 0.194 0.051 − 0.121 0.042 0.281

7 − 0.171 0.229 0.072 − 0.184 0.045 0.203
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Several risk factors have been used in prior models, 
such as patient baseline characteristics (age and sex) [7, 
17, 25], SAH severity [28, 29], aneurysm location [20, 
21], laboratory studies [30], aneurysm treatment modal-
ity [25, 31, 32], EVD weaning [33–35], EVD drainage vol-
ume [12, 36–40], and course of disease [3, 17, 25], but no 
time-varying biometrics have yet been used. For example, 
although BCI has been validated as an objective measure-
ment of hydrocephalus, all studies looking for an asso-
ciation of BCI with VPS dependency have used the BCI 
at a single point during the hospitalization. Two studies 
measured BCI in the admission CT scan and showed that 
VPS was required in patients with a BCI greater than 
0.2 [3, 24]. An older study used the measured BCI at the 
time of shunting. In that study, BCI was stratified by the 
patients’ normal upper age limit and divided the patients 
into three relative BCI groups. They found that patients 

with higher relative BCI values were associated with VPS 
placement [2]. To our knowledge, our study is the first 
study to incorporate BCI at multiple time points into a 
model for VPS dependency, and notably it outperformed 
a model using single measurements of BCI.

CSF output alone has also been studied as a predictor 
of VPS dependency [12, 36–40], but although some have 
suggested an important threshold (>214 mL/day in first 
72 hours [38], >204 mL/day [12], >201 mL/day [40]), oth-
ers have found a lower threshold (>130 mL/day) [37] that 
directly contradicts important thresholds for VPS− pre-
diction (<162 mL/day) [40]. Moreover, some studies did 
not even find an association between the CSF output and 
VPS dependency after SAH [36].

Existing scoring systems, such as the CHESS [41], 
SDASH [28], PS3 [29], and CARAS [42], use varia-
bles present at the time the patient presents with acute 

Fig. 4 Weighted KNN analysis. Showing receiver operating characteristic curve for ventriculoperitoneal shunt dependency based on A) aver-
age BCI model, B) delta BCI model, and confusion matrices for C) average BCI model and D) delta BCI model. Other features that were used 
as inputs were cumulative CSF output, age, Hunt and Hess score, Fisher score, and gender. BCI=bicaudate index.; KNN=k-nearest neighbor; 
VPS=ventriculoperitoneal shunt.
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hydrocephalus requiring EVD placement, but these are 
unable to give time-varying knowledge of shunt depend-
ency (or ability to wean from EVD) or have an AUC 
that is comparable with our model. The recent MAGE 
[12] score also included mean daily CSF output, but the 
model’s AUC was only 0.6. There is wide diversity among 
these scores’ prognostic factors [1, 7, 28, 29, 41–43], their 
variable accuracy in their predictions [44], and their 
applicability in modern practice [45].

We relate CSF output with the change in ventricle 
size over time, which could be considered a biometric 
informed by intracranial compliance and resistance to 
CSF outflow. The correlation of decreasing hydrocepha-
lus and CSF output suggests a ventricular system that, 
unaided, cannot independently accommodate for either 
high resistance to CSF outflow or CSF overproduc-
tion. Our model incorporates dynamism or change over 
time in ventricular size in relation to CSF drainage and 
improves upon a model using standalone BCI values. Our 
model may serve as a tool for early estimation of shunt 
dependency and recognition of patients requiring rela-
tive pressures to drive flow through CSF efflux pathways 
to decrease EVD placement days and associated compli-
cations. Our study is a positive step toward the develop-
ment of objective and reproducible dynamic parameters 
that can help identify patients that will become VPS 
dependent.

There are limitations to our study. First, this study had 
a small sample size (n = 58), limiting the complexity of 
the model that we can derive. Although the classification 
performance is good, it does not achieve a level of sensi-
tivity and specificity to be clinically useful yet. We seek 
to increase the sample size for enhanced model devel-
opment. Further, the model results depend on the BCI, 
which requires (albeit minimal effort from) skilled indi-
viduals. The automatic calculation of BCI would make 
our methodology even more feasible. Additionally, our 
model doesn’t include an EVD level relative to the tragus, 
which might be a confounder in our study. Although the 
practice of keeping the EVD level at 10 cm  H2O above the 
tragus during the vasospasm window is standard at our 
institution, we cannot exclude the possibility that the rare 
instance of an EVD being set unusually low or high could 
introduce bias by the changes in CSF output in relation to 
the EVD setting. This should be data that will be included 
in future validation of this model.

Conclusions
Our study suggests that using validated, objective, 
and reproducible biometrics of CSF hydrodynamics, 
CSF output, and ΔBCI can help physicians recognize 
patients destined for VPS dependency or patients with 
the ability for EVD to be weaned in a timely way. The 

model showed moderate accuracy (comparable perfor-
mance with other well-known scoring systems). Future 
studies are needed to validate our findings.
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