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Abstract 

Background:  Abstraction of critical data from unstructured radiologic reports using natural language processing 
(NLP) is a powerful tool to automate the detection of important clinical features and enhance research efforts. We pre-
sent a set of NLP approaches to identify critical findings in patients with acute ischemic stroke from radiology reports 
of computed tomography (CT) and magnetic resonance imaging (MRI).

Methods:  We trained machine learning classifiers to identify categorical outcomes of edema, midline shift (MLS), 
hemorrhagic transformation, and parenchymal hematoma, as well as rule-based systems (RBS) to identify intraven-
tricular hemorrhage (IVH) and continuous MLS measurements within CT/MRI reports. Using a derivation cohort of 
2289 reports from 550 individuals with acute middle cerebral artery territory ischemic strokes, we externally validated 
our models on reports from a separate institution as well as from patients with ischemic strokes in any vascular 
territory.

Results:  In all data sets, a deep neural network with pretrained biomedical word embeddings (BioClinicalBERT) 
achieved the highest discrimination performance for binary prediction of edema (area under precision recall 
curve [AUPRC] > 0.94), MLS (AUPRC > 0.98), hemorrhagic conversion (AUPRC > 0.89), and parenchymal hematoma 
(AUPRC > 0.76). BioClinicalBERT outperformed lasso regression (p < 0.001) for all outcomes except parenchymal 
hematoma (p = 0.755). Tailored RBS for IVH and continuous MLS outperformed BioClinicalBERT (p < 0.001) and linear 
regression, respectively (p < 0.001).

Conclusions:  Our study demonstrates robust performance and external validity of a core NLP tool kit for identifying 
both categorical and continuous outcomes of ischemic stroke from unstructured radiographic text data. Medically 
tailored NLP methods have multiple important big data applications, including scalable electronic phenotyping, aug-
mentation of clinical risk prediction models, and facilitation of automatic alert systems in the hospital setting.
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Introduction
Natural language processing (NLP) is a powerful tool 
to abstract and categorize critical data from unstruc-
tured radiologic reports for research and clinical pur-
poses [1]. Assembling large cohorts for clinical and 
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epidemiologic studies has historically required inten-
sive manual chart review, limiting both sample size 
and generalizability [2–5]. Such efforts are particularly 
laborious in the case of critical outcomes after ischemic 
stroke, such as life-threatening edema and hemorrhagic 
transformation, for which dedicated disease classifica-
tion codes may be inaccurate or nonexistent. Direct 
derivation of relevant data from radiology reports 
(electronic phenotyping) [6] represents an emerging 
strategy to improve the quality of retrospective data 
sets and develop clinical systems for triaging patients 
with critical findings [7].

NLP, a subfield of artificial intelligence dedicated to the 
study of human language [8], has emerged as a promising 
new approach to retrieve clinically rich data contained in 
medical records and diagnostic reports [2, 3, 9, 10]. NLP 
makes use of a variety of approaches to analyze language 
and classify text according to predefined outcomes of 
interest. Methods that identify desired text-based infor-
mation include specifically tailored rule-based systems 
(RBSs) [11] as well as more general combinations of fea-
turization methods (the conversion of text to numerical 
values) with supervised learning methodologies [12]. In 
the field of neurology, recent NLP studies have focused 
on identifying and subtyping ischemic stroke [13–15] 
and cerebral aneurysms [16], predicting neurologic out-
comes after ischemia [17], and triaging patients with 
transient ischemic attack [18]. However, few studies have 
focused on feasibly implementable methods to classify 
critical and acute stroke sequelae [19].

Previously, we tested a variety of featurization and 
machine learning classification methods to detect the 
presence, acuity, and location of ischemic stroke [4]. In 
the present work, we sought to expand our electronic 
phenotyping of neuroradiology reports by applying vari-
ous NLP methodologies to detect critical complications 
of stroke relevant to neurocritical care contexts. Specifi-
cally, we characterized the following intracranial abnor-
malities using both computed tomography (CT) and 
magnetic resonance imaging (MRI) reports: (1) edema, 
(2) midline shift (MLS), (3) hemorrhagic conversion, (4) 
parenchymal hematoma (within hemorrhagic conver-
sion), and (5) intraventricular hemorrhage (IVH). We 
hypothesized that recently developed machine learning 
models pretrained on biomedical text would demon-
strate improved classification of binary outcomes com-
pared with traditional machine learning algorithms [20]. 
Moreover, we also hypothesized that customized RBSs 
would perform better at detecting rare and continuous 
outcomes of stroke than more general machine-learning-
based approaches. Our work expands progress in large-
scale neurocritical care research by demonstrating the 
application of NLP methods for electronic phenotyping 

of relevant emergent radiographic complications of 
ischemic stroke.

Methods
Study Population and Data Sources
To derive and assess the performance and generalizability 
of our NLP models, we accrued and labeled three distinct 
data sets of head CT, CT angiography, MRI, and magnetic 
resonance angiography radiology reports from patients 
18  years or older with an International Classification of 
Diseases, Ninth Revision (ICD-9) (433.01, 433.11, 433.21, 
433.31, 433.81, 433.91, 434.01, 434.11, 434.91) or Interna-
tional Classification of Diseases, 10th Revision (ICD-10) 
(I63) diagnosis of ischemic stroke during admission. The 
three data sets are described as follows:

1.	 MGB MCA Ischemic Stroke: This data set consisted 
of 2289 reports from 550 individuals presenting to 
Massachusetts General or Brigham and Women’s 
(MGB) hospitals with acute ischemic stroke occur-
ring in the middle cerebral artery (MCA) territory 
between 2006 and 2018. Reports were identified 
by our previous NLP algorithm [4] from an initial 
Research Patient Data Registry query of 60,654 radi-
ology reports, and the presence of MCA stroke was 
confirmed by expert reviewers (BB, CJO, HS).

2.	 BMC MCA Ischemic Stroke: This data set comprised 
377 randomly selected reports from 154 patients out 
of a total of 4818 reports from 2069 patients with 
NLP-identified acute MCA ischemic stroke from 
Boston Medical Center (BMC) between 2005 and 
2018. BMC, New England’s largest safety net hospi-
tal, features a population with notable socioeconomic 
and demographic differences relative to the MGB 
system despite geographic proximity. Acute MCA 
ischemic stroke and outcomes of interest were con-
firmed and labeled by trained experts (JK, MIM, OB).

3.	 MGB Any Territory Ischemic Stroke: This data 
set comprised 520 reports from 214 patients with 
ICD-9/ICD-10-identified ischemic stroke in any vas-
cular territory (not only MCA territory) from MGB 
hospitals between 2003 and 2018. Trained experts 
(HS, KV, MT) labeled all outcomes. No reports over-
lapped with the MGB MCA Ischemic Stroke data set.

The MGB Human Research Committee and Bos-
ton University Medical Center Internal Review Boards 
(2017P002564, H-38431) approved this study.

Radiographic Report Labeling
We sought to identify a core set of outcomes covering 
major inflammatory and hemorrhagic sequelae of acute 
ischemic stroke. Therefore, all reports included in this 
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study were manually labeled for the presence of edema, 
MLS, hemorrhagic conversion, parenchymal hematoma 
(as inferred according to ECASS-II criteria [21]), and 
IVH. Full labeling criteria are included in the Supple-
mentary Methods. Notably, we further subdivided MLS 
detection into two separate prediction tasks: a categorical 
task, in which we labeled reports for the binary presence 
of any MLS, and a continuous task, in which we recorded 
the precise degree of MLS in millimeters. Research staff 
received training from three board-certified neurologists 
(BB, CJO, SMS) who performed regular audits of data 
collection to ensure accuracy and consistency. Deidenti-
fied reports were randomly distributed among study team 
members, and data sets were managed using a Research 
Electronic Data Capture electronic database [22]. Addi-
tionally, a board-certified neuroradiologist (AM) inde-
pendently and in a blinded fashion assessed the accuracy 
of all labels in a random sample of 75 reports (25 per data 
set) to provide expert-level benchmarking of study labels.

Text Preprocessing
To reduce heterogeneities that impact classification, we 
processed raw radiology reports across all data sets in the 
following ways:

1.	 We converted all text to lowercase and removed 
excess white space.

2.	 We removed all text within the report header, dei-
dentified the names of providers and patients, and 
removed any other instances of nonnarrative text 
(e.g., characters representing divisions between 
report sections).

3.	 We “tokenized” terms to quantify common word pat-
terns describing a single entity by condensing com-
monly used groups of words to their corresponding 
“n-grams” (e.g., “subdural hematoma” → “subdural-
hematoma”, “altered mental status” → “altermental-
status”). The full token list is provided in the Supple-
mentary Methods.

Featurization Methods
Following preprocessing, we used three methods to con-
vert (“featurize”) unstructured text reports into numeri-
cal features capable of being used as direct input for 
statistical learning [8].

The first and simplest of these approaches, known as 
“Bag of Words” (BOW), counts each unique word or 
n-gram within a radiology report as a unique feature 
known as a “token.” The value of each token is deter-
mined by the number of times each given word occurs in 
a unique report.

Term frequency-inverse document frequency (TF-IDF) 
is similar to BOW but penalizes the value of each token 

according to the total number of reports in which that 
token occurs so that common words and n-grams, such 
as “and” and “the,” are assigned lower values.

Word-embedding strategies are more sophisticated 
NLP featurization methods that assign values to tokens 
on the basis of their relationship to other words [23]. 
We used an embedding method called the Bidirectional 
Encoder Representations from Transformers (BERT) 
model for our binary classification tasks [23]. Specifi-
cally, we used a domain-specific version of BERT embed-
dings (“BioClinicalBERT”) pretrained on 18 billion 
words worth of PubMed articles [24] and approximately 
880 million words worth of critical care notes from the 
Medical Information Mart for Intensive Care-III v1.4 
data set [25]. These embeddings, originally developed by 
Alsentzer and colleagues [26], acted as a starting point 
for training of our stroke-specific classifiers.

Classifier Training
For each binary task, we trained lasso regression [27], 
K-nearest neighbor [28], random forest [29], and mul-
tilayer perceptron [30] algorithms using the BOW and 
TF-IDF featurization techniques. We also further devel-
oped a BioClinicalBERT transformer network using pre-
trained BERT embeddings, as described above. This type 
of network is a specialized type of sequential deep learn-
ing model that could be further fine-tuned for detec-
tion of poststroke outcomes. For the task of continuous 
MLS estimation, we employed linear regression with 
both BOW and TF-IDF. Further details regarding the 
merits and hyperparameter tuning of each algorithm are 
included in our Supplementary Methods. We employed a 
standard desktop central processing unit (CPU) for train-
ing of all models, with the exception of our BioClinical-
BERT transformer, in which we used graphics processing 
units (GPU) for training and testing.

We trained our models on 80% of the original MGB 
MCA Ischemic Stroke cohort and tested it on a with-
held set of 20% for internal validation. For our derivation 
cohort, we used bootstrapping to randomly split the data 
five times into training and testing sets. Both external 
validation cohorts were tested in full across all five splits 
of the data. For the parenchymal hematoma outcome, 
training and testing were conducted only on reports with 
a ground truth label of hemorrhagic conversion. Given 
that there were multiple tasks with differing prevalence 
and clinical relevance, we used 0.5 as the initial decision 
threshold for all classifiers.

We performed hyperparameter tuning with a grid 
search and tenfold cross-validation during each round 
of bootstrapping. BioClinicalBERT models were trained 
for ten epochs with a maximum sequence length of 512 
and a learning rate of 4 × 10−5, which corresponds closely 
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with hyperparameters reported in previous studies [26]. 
All models were developed and tested in Python 2.7 using 
the scikit-learn [31] package for non-BERT classifiers and 
the “simpletransformers” library for the BioClinicalBERT 
transformer. The detailed codebase is available within our 
Github repository (https://​github.​com/​matth​ewmil​ler22/​
STROKE_​NLP_​2022).

RBS
We hypothesized that the previously described 
approaches would be ill suited for rare and continu-
ous outcomes. Therefore, we employed alternative RBSs 
to identify IVH (a relatively infrequent complication of 
ischemic stroke [32]) and continuous MLS measure-
ments. For IVH, we replaced phrases with periods that 
led to misclassification, including other hemorrhage 
subtypes (e.g., “subdural hemorrhage”), phrases associ-
ated with ventricular effacement (e.g., “compression [of 
the ventricles]”), and terms associated with neurosur-
gical procedures (e.g., “ventriculoperitoneal [shunt]”). 
We identified regular expression rules capturing both 
negative (e.g., “no ventricular blood”) and positive (e.g., 
“layering of blood”) phraseology for IVH. To identify 
continuous MLS, we extended our preprocessing pipeline 
by removing superfluous numerical characters, dates, 
and times. We assigned a value of 0 to cases in which 
there was an absence of “shift,” “deviation,” or “hernia-
tion,” as well as those in which there was explicit mention 
of “no midline shift” or “without midline shift.” We then 
split individual text reports by sentence and abstracted 
numeric values in proximity to words such as “shift,” 
“deviation,” or “herniation.” Regular expressions were 
constructed with the Regex library in Python 2.7. Further 
details of the design and implementation of each RBS are 
included in the Supplementary Data.

Evaluation and Statistical Analysis
To assess interrater reliability between labelers and a 
board-certified neuroradiologist, we calculated Cohen’s κ 
statistic. We report discrimination using the area under 
precision recall curve (AUPRC), sensitivity, specificity, 
and precision (positive predictive value). Similar to other 
work in machine learning for neurocritical care [33], we 
chose AUPRC to be our main performance metric given 
that raw accuracy and area under receiver operating 
characteristic curve (AUROC) may overestimate per-
formance in imbalanced data sets [34]. We do, however, 
demonstrate receiver operating characteristic curves for 
all classifiers in Supplementary Fig. S1 and supply full 
performance metrics, including accuracy and AUROC, 
within Supplementary Tables S1-S5. Calibration curves 
for classifier probabilities are also provided in Supple-
mentary Fig. S2.

To compare the performance of our two best per-
forming classifiers for each binary task, we used McNe-
mar’s test [35], a statistical procedure used in previous 
NLP studies to assess the equivalence of two models 
tested on the same data. We also used McNemar’s test 
for comparison of our IVH RBS to the best performing 
machine learning classifier. For each clinical outcome, 
we report the average χ2 value across all five data parti-
tions with 95% confidence intervals and p values. Given 
that McNemar’s test assumes independent observations, 
we performed this procedure using a dedicated data set 
containing only one randomly selected report patient. 
To assess the performance of our RBS for continuous 
MLS, we compared the absolute errors of RBS MLS esti-
mates with linear regression estimates using a one-sided 
Student’s t-test. To account for our six total hypotheses, 
we used a Bonferroni correction [36] and set the signifi-
cance level for all hypotheses to α = 0.008. All statistical 
tests were performed using the scipy.stats library within 
Python 2.7.

A graphical overview of our methods, including cohort 
selection and model development, is illustrated within 
Fig. 1.

Results
In our MGB MCA Ischemic Stroke data set, we labeled 
2289 CT and MRI radiology reports for all stroke out-
comes (Fig.  1). For external validation, we labeled 377 
reports in the BMC MCA Ischemic Stroke set and 520 
reports from the MGB Any Territory Ischemic Stroke 
data set. The baseline characteristics of the overall 
cohort, including demographics and clinical outcomes, 
are described in Tables 1 and 2. Across all three data sets, 
we calculated the Cohen’s κ values for interrater reliabil-
ity in categorical outcomes, finding strong consistency 
for labeling of edema (κ = 0.70–1.00), MLS (κ = 0.74–
1.00), hemorrhagic conversion (κ = 0.82–1.0), and IVH 
(κ = 1.00) and moderate reliability for parenchymal 
hematoma (κ = 0.46–0.623) [37]. Full Cohen’s κ results 
may be found within Supplementary Table S6.

For our binary outcomes, we compared performance 
of lasso regression, K-nearest neighbor, random forest, 
multilayer perceptron, and BioClinicalBERT algorithms. 
In our internal test set of MGB MCA Ischemic Stroke, 
BioClinicalBERT consistently outperformed other classi-
fiers trained with BOW and TF-IDF featurizations. Spe-
cifically, BioClinicalBERT achieved high performance in 
detecting edema (AUPRC 0.98, sensitivity 0.99, specific-
ity 0.92), MLS (AUPRC 1.00, sensitivity 0.99, specificity 
0.99), and hemorrhagic conversion (AUPRC 0.95, sensi-
tivity 0.87, specificity 0.97). BioClinicalBERT detected 
parenchymal hematoma slightly less well (AUPRC 
0.80, sensitivity 0.79, specificity 0.78). Our RBS for IVH 
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detection yielded respective sensitivity and specificity of 
0.94 and 0.99 in the MGB MCA Ischemic Stroke data set.

In both external validation data sets BioClinical-
BERT discriminated well between reports with edema 
(AUPRC > 0.94, sensitivity > 0.91, specificity > 0.87), 
MLS (AUPRC > 0.98, sensitivity > 0.95, specificity > 0.99), 
hemorrhagic conversion (AUPRC > 0.89, sensitiv-
ity > 0.72, specificity > 0.94), and parenchymal hematoma 

(AUPRC > 0.76, sensitivity > 0.79, specificity > 0.70). Preci-
sion recall curves for all data sets, outcomes, and classi-
fiers are included in Fig. 2.

We compared BioClinicalBERT with the next-best 
performing classifier (lasso regression) using McNemar 
testing in the MGB MCA Ischemic Stroke derivation 
cohort. We found statistically significant improvements 
in the detection of edema (χ2 = 12.07, p < 0.001), MLS 

Fig. 1  Model testing and development framework. A graphic display of data labeling, preprocessing, featurization, and model training and 
development is illustrated. BMC Boston Medical Center, BOW Bag of Words, IVH intraventricular hemorrhage, KNN K-nearest neighbor, M number of 
reports, MCA middle cerebral artery, MGB Massachusetts General Brigham and Women’s, MLS midline shift, MLP multilayer perceptron, N number of 
patients, RF random forest, TF-IDF term frequency-inverse document frequency
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(χ2 = 29.43, p < 0.001), and hemorrhagic conversion 
(χ2 = 18.64, p < 0.001) using BioClinicalBERT. Perfor-
mance metrics for these two models are compared side-
by-side within Table 3, and further details on McNemar 
testing are available in Supplementary Tables S7-S11.

Additionally, we observed strong external per-
formance from the RBS for IVH and continuous 
MLS. The IVH RBS achieved sensitivities > 90% and 
specificities > 99% across all data sets. McNemar’s 
testing demonstrated this system to outperform 

Table 1  Cohort characteristic by individual

For unique patients, we report demographics and characteristics, and clinical outcomes are illustrated in tabular form for the MGB MCA Ischemic Stroke, BMC MCA 
Ischemic Stroke, and MGB Any Territory Ischemic Stroke data sets

BMC, Boston Medical Center, MCA, middle cerebral artery, MGB, Massachusetts General or Brigham and Women’s, MLS, midline shift
a  Hemorrhagic subtypes calculated as a percentage of patients/reports with hemorrhagic conversion. For patients with varying severities of hemorrhagic conversion, 
we report the most severe subtype observed

MGB MCA ischemic stroke 
(n = 550)

BMC MCA ischemic stroke 
(n = 154)

MGB any territory 
ischemic stroke 
(n = 214)

Demographics

 Age (years), mean (SD) 68.3 (14.2) 63.6 (17.1) 68.6 (15.0)

 Female sex, n (%) 265 (48.2) 75 (48.7) 86 (40.2)

Clinical outcomes, n (%)

 Edema 420 (76.3) 101 (65.6) 88 (41.1)

 MLS (binary) 223 (40.5) 47 (30.5) 24 (11.2)

 Hemorrhagic conversiona 260 (47.2) 45 (29.2) 63 (29.4)

 Parenchymal hematoma 81 (31.2) 11 (24.4) 11 (17.5)

 Petechial hemorrhage 164 (63.1) 34 (75.6) 47 (74.6)

 Indeterminate 15 (5.8) 0 (0.0) 5 (7.9)

 Intraventricular hemorrhage 39 (7.1) 6 (3.9) 10 (4.7)

Table 2  Cohort characteristic by report

Given that a single patient may have multiple radiology reports included within the analysis, we provide baseline information across all individual stroke reports. For 
all reports, we provide diagnostic modalities and clinical outcomes for the MGB MCA Ischemic Stroke, BMC MCA Ischemic Stroke, and MGB Any Territory Ischemic 
Stroke data sets

BMC, Boston Medical Center, CT, computed tomography, MCA, middle cerebral artery, MGB, Massachusetts General or Brigham and Women’s, MLS, midline shift, MRA, 
magnetic resonance angiography, MRI, magnetic resonance imaging
a  Only indicates reports with MLS present
b  Hemorrhagic subtypes calculated as a percentage of patients/reports with hemorrhagic conversion

MGB MCA ischemic stroke 
(n = 2289)

BMC MCA ischemic stroke 
(n = 377)

MGB any territory 
ischemic stroke 
(n = 520)

Imaging modality, n (%)

 CT 1846 (80.6) 225 (59.7) 276 (53.1)

 CT angiography 97 (4.2) 63 (16.7) 8 (1.5)

 MRI/MRA 346 (15.2) 89 (23.6) 236 (45.4)

Clinical outcomes

 Edema, n (%) 1534 (67.0) 233 (61.8) 179 (34.4)

 MLS (binary), n (%) 623 (27.2) 126 (33.4) 47 (9.0)

 MLS (mL), mean (SD)a 7.2 (4.1) 6.8 (3.9) 6.1 (3.7)

 Hemorrhagic conversion,b n (%) 819 (35.8) 86 (22.8) 119 (22.9)

 Parenchymal hematoma 277 (33.8) 23 (26.7) 15 (12.6)

 Petechial hemorrhage 463 (56.5) 58 (67.4) 89 (74.8)

 Indeterminate 79 (9.6) 5 (5.8) 15 (12.6)

 Intraventricular hemorrhage, n (%) 109 (4.8) 12 (3.2) 18 (3.5)
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Fig. 2  Precision (positive predictive value) recall curves. Precision recall curves are demonstrated for binary classification of edema, midline shift, 
hemorrhagic conversion, and parenchymal hematoma* per ECASS-II criteria. Results are demonstrated for BioClinicalBERT, lasso regression, random 
forest, multilayer perceptron, and K-nearest neighbors algorithms. For all models other than BioClinicalBERT, the precision recall curve is shown 
for the text featurization algorithm (BOW or TF-IDF) that maximized the AUPRC value. Precision recall curves, unlike ROC curves, are influenced by 
class imbalance as well as performance metrics (sensitivity, specificity, and precision) that are reflective of clinical heuristics. This allows notable 
differences in binary classification to stand out when ROC analysis might otherwise not highlight salient differences. *Indicates parenchymal hema-
toma only trained using reports with ground-truth-labeled hemorrhagic conversion. AUPRC area under precision recall curve, BOW Bag of Words, 
European-Australasian Acute Stroke Study-II, ROC receiver operating characteristic, TF-IDF term frequency-inverse document frequency

Table 3  BioClinicalBERT versus lasso regression
BioClinicalBERT Lasso

AUPRC Sensitivity Specificity Precision 
(PPV)

AUPRC Sensitivity Specificity Precision 
(PPV)

Featurization

Edema 0.98
(0.97, 1.00)

0.99
(0.98, 0.99)

0.92
(0.89,0.96)

0.98 
(0.96,0.98)

0.98
(0.98, 0.99)

0.87
(0.84, 0.89)

0.84
(0.89, 0.98)

0.97
(0.95, 0.99)

TF-IDF

MLS 1.00
(1.00, 1.00)

0.99
(0.98, 1.00)

0.99
(0.98, 1.00)

0.97
(0.95, 0.99)

0.95
(0.92, 0.98)

0.81
(0.77, 0.86)

0.96
(0.94, 0.98)

0.90
(0.86, 0.95)

BOW

Hemorrhagic
Conversion

0.95
(0.93, 0.97)

0.89
(0.85, 0.93)

0.97
(0.95, 0.99)

0.94
(0.91, 0.97)

0.89
(0.86, 0.91)

0.80
(0.75, 0.84)

0.89
(0.85, 0.92)

0.81
(0.75, 0.87)

BOW

Parenchymal 
Hematoma

0.80
(0.77, 0.84)

0.79
(0.75, 0.83)

0.78
(0.76, 0.79)

0.62
(0.52, 0.65)

0.64
(0.58, 0.70)

0.75
(0.59, 0.90)

0.75
(0.60, 0.89)

0.70
(0.50, 0.89)

BOW

MGB 
MCA 

Ischemic 
Stroke

IVH 0.66
(0.48, 0.83)

0.57
(0.41, 0.73)

0.99
(0.98, 0.99)

0.71
(0.53, 0.89)

0.76
(0.67, 0.84)

0.37
(0.13, 0.60)

0.99
(0.99, 1.00)

0.94
(0.80, 1.00)

BOW

Edema 0.99
(0.99, 1.00)

0.98
(0.97, 0.99)

0.88
(0.84, 0.92)

0.93
(0.91, 0.95)

0.98
(0.97, 0.98)

0.76
(0.74, 0.78)

0.96
(0.95, 0.97)

0.97
(0.97, 0.98)

TF-IDF

MLS 1.00
(1.00, 1.00)

0.99
(0.97, 1.00)

1.00
(1.00, 1.00)

1.00
(1.00, 1.00)

0.80
(0.80, 0.81)

0.81
(0.79, 0.83)

0.84
(0.83, 0.85)

0.69
(0.68, 0.71)

TF-IDF

Hemorrhagic
Conversion

0.89
(0.85, 0.93)

0.72
(0.69, 0.76)

0.99
(0.98, 1.00)

0.96
(0.93, 0.98)

0.75
(0.74, 0.76)

0.61
(0.58, 0.63)

0.96
(0.95, 0.96)

0.82
(0.79, 0.84)

TF-IDF

Parenchymal 
Hematoma

0.78
(0.75, 0.82)

0.79
(0.75, 0.84)

0.74
(0.70, 0.78)

0.55
(0.49, 0.61)

0.43
(0.41, 0.45)

0.24
(0.20, 0.29)

0.97
(0.96, 0.97)

0.53
(0.47, 0.59)

TF-IDF

BMC 
MCA 

Ischemic 
Stroke

IVH 0.59
(0.23, 0.96)

0.54
(0.09, 1.00)

0.99
(0.97, 1.00)

0.59
(0.14, 1.00)

0.82
(0.76, 0.87)

0.15
(0.06, 0.24)

1.00
(1.00, 1.00)

1.00
(1.00, 1.00)

TF-IDF

Edema 0.94
(0.91, 0.97)

0.91
(0.88, 0.94)

0.97
(0.95, 0.98)

0.93
(0.90, 0.96)

0.89
(0.89, 0.90)

0.64
(0.62, 0.66)

0.97
(0.97, 0.98)

0.93
(0.91, 0.93)

TF-IDF

MLS 0.98
(0.95, 1.00)

0.96
(0.92, 1.00)

1.00
(1.00, 1.00)

0.99
(0.97, 1.00)

0.82
(0.80, 083)

0.89
(0.88, 0.90)

0.96
(0.95, 0.96)

0.67
(0.64, 0.71)

TF-IDF

Hemorrhagic
Conversion

0.90
(0.86, 0.93)

0.78
(0.73, 0.83)

0.94
(0.92, 0.96)

0.81
(0.75, 0.87)

0.77
(0.76, 0.79)

0.66
(0.64, 0.68)

0.92
(0.92, 0.93)

0.73
(0.71, 0.75)

TF-IDF

Parenchymal 
Hematoma

0.76
(0.69, 0.84)

0.87
(0.86, 0.89)

0.71
(0.70, 0.72)

0.33
(0.31, 0.35)

0.37
(0.34, 0.40)

0.14
(0.11, 0.17)

0.94
(0.94, 0.94)

0.52
(0.48, 0.56)

TF-IDF

MGB 
Any 

Territory 
Ischemic 
Stroke

IVH 0.89
(0.67, 1.00)

1.00
(1.00, 1.00)

0.97
(0.95, 1.00)

0.57
(0.40, 0.74)

0.94
(0.89, 0.99)

0.94
(0.94, 0.94)

0.99
(0.96, 1.00)

0.74
(0.36, 1.00)

TF-IDF

We demonstrate comparative performance statistics (AUPRC, sensitivity, specificity, and precision) for BioClinicalBERT and lasso regression for binary classification 
tasks. Across three data sets and four outcomes (edema, hemorrhagic conversion, MLS, and parenchymal hematoma), BioClinicalBERT demonstrated the greatest 
balanced performance, whereas lasso regression generally outperformed other machine learning classifiers. For each data set and outcome, lasso performance is 
shown according to the text featurization algorithm, which yielded the highest AUPRC value. Full model results across all classifiers and featurizations may be found in 
Supplemental Tables S2–S6

AUPRC, area under precision recall curve, BMC, Boston Medical Center, BOW, Bag of Words, IVH, intraventricular hemorrhage, MCA, middle cerebral artery, MGB, 
Massachusetts General Brigham and Women’s, MLS, midline shift, PPV, positive predictive value, TF-IDF, term frequency-inverse document frequency
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BioClinicalBERT (average χ2 = 427.0, p < 0.001; Sup-
plementary Table  S12). For continuous MLS estima-
tion, the mean absolute error of our RBS was less than 
0.2 mm for all data sets (Table 4, Fig. 3). In comparing 
absolute errors of this system with those of standard 
regression models, one-sided t-testing revealed that 
the RBS provided substantial improvements in absolute 
error over linear regressions trained with both BOW 
(t = 21.14, p < 0.001) and TF-IDF (t = 22.06, p < 0.001). 
(Supplementary Tables S13-S14).

Lastly, among traditional machine learning classi-
fiers, we observed the fastest CPU runtimes in lasso 
regression and K-nearest neighbor models, which each 
took < 60  s per round of bootstrapping. Runtimes for 
BioClinicalBERT on a GPU similarly took < 60  s per 
epoch. Full runtime statistics may be found in Supple-
mentary Tables S15-S16.

Discussion
NLP is a promising approach to classify important 
unstructured data for research and clinical purposes [6, 
38, 39]. In the present study, we analyzed a variety of NLP 
methods tailored to specific tasks in neurocritical care. 
Overall, we observed that a BioClinicalBERT transformer 
network pretrained on large critical care corpora outper-
formed other binary classifiers trained with both BOW 
and TF-IDF featurizations for detection of edema, MLS, 
hemorrhagic conversion, and parenchymal hematoma 
after acute ischemic stroke. Specifically, our fine-tuned 
BioClinicalBERT network discriminated well between 
reports with and without edema (AUPRC > 0.94), 
MLS (AUPRC > 0.98), and hemorrhagic conversion 
(AUPRC > 0.89) across three separate data sets that dif-
fered by hospital and ischemic stroke location. We found 
that performance was not quite as good for parenchy-
mal hematoma (AUPRC > 0.76), which we speculate may 

Table 4  RBS performance

Sensitivity Specificity Precision Accuracy MAE (mm)

MLS 0.95
(0.94, 0.96)

0.95
(0.95, 0.97)

0.92
(0.91, 0.93)

0.97
(0.96, 0.97)

0.18
(0.16, 0.20)MGB MCA 

Ischemic 
Stroke IVH 0.94

(0.92, 0.95)
0.99

(0.99, 0.99)
0.85

(0.82, 0.88)
0.99

(0.98, 0.99) --

MLS 0.96
(0.95, 0.96)

0.96
(0.95, 098)

0.95
(0.94, 0.95)

0.98
(0.97, 0.98)

0.14
(0.13, 0.16)BMC MCA 

Ischemic 
Stroke IVH 0.91

(0.89, 0.93)
0.99

(0.99, 1.00)
0.83

(0.80, 0.85)
0.99

(0.99, 1.00) --

MLS 0.95
(0.94, 0.96)

0.95
(0.93, 0.99)

0.95
(0.94, 0.96)

0.99
(0.98, 1.00)

0.03
(0.03, 0.04)

MGB Any 
Territory 
Ischemic 
Stroke IVH 0.94

(0.92, 0.96)
0.99

(0.99, 1.00)
0.85

(0.83, 0,87)
0.99

(0.99, 1.00) --

RBSs were developed for the detection of IVH as well as the quantification of MLS. In the case of our quantitative RBS for MLS, correct numerical detection was 
converted to true and false positives and negatives. Thus, for both outcomes, we report sensitivity, specificity, precision, and accuracy. Mean absolute error in 
millimeters is reported in the final column for the quantitative MLS system

BMC, Boston Medical Center, IVH, intraventricular hemorrhage, MAE, Mean average error, MCA, middle cerebral artery, MGB, Massachusetts General Brigham and 
Women’s, MLS, midline shift, RBS, rule-based system

Fig. 3  RBS for quantitative midline shift. Scatterplots are demonstrated with overlap of RBS-detected midline shift (“model estimates”) and ground 
truths from computed tomography and magnetic resonance imaging reports in three separate cohorts. Points representing individual radiology 
reports are randomly selected from each cohort for visualization and arranged according to their order (“index”) within the overall sample. Signifi-
cant concordance is seen between RBS-detected midline shift and ground truths. Full metrics for RBSs, including midline shift, are found in Table 3. 
BMC Boston Medical Center, MCA middle cerebral artery, MGB Massachusetts General Brigham and Women’s, RBS rule-based system
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be related to variations in how hemorrhage is described 
and the difficulty in distinguishing between confluent 
petechiae versus parenchymal hematoma from report 
alone. Notably, BioClinicalBERT ran efficiently on GPU 
hardware, with runtimes of < 60  s per epoch across all 
outcomes. We observed similar computational efficiency 
when training our second-highest performing model 
(lasso regression) on a standard desktop CPU. Finally, for 
IVH and continuous MLS detection, we found that cus-
tomized RBS outperformed more generalized machine 
learning methods.

The field of neurocritical care is increasingly recogniz-
ing the potential for clinical and research applications 
that leverage the ability of NLP to organize information 
from unstructured radiologic data sets. In our own work, 
we previously reported improved detection of ischemic 
stroke, stroke location, and acuity using a modality-
agnostic approach with word embeddings adapted from 
neurologic texts [4], which notably demonstrated sig-
nificant mismatches between patient outcomes and offi-
cially documented diagnostic codes. Our current study 
expands the scope of these efforts by classifying sequelae 
of stroke and identifying which features are better suited 
to machine learning approaches versus expert-tailored 
RBS. Importantly, given variations in radiologist docu-
mentation [13], we have also shown that our current tool 
kit achieved robust external performance across differing 
hospital systems and patient populations.

Although our results demonstrate successful electronic 
phenotyping of neuroradiology reports, the full scope 
of applications for such NLP tools remains to be fully 
explored. From a research perspective, we believe that 
our methods can help expedite, scale, and control qual-
ity in clinical investigative endeavors by automating or 
semiautomating the identification of important outcomes 
in large retrospective data sets. Past work has highlighted 
the potential for inaccuracy when relying on administra-
tive records, such as ICD codes, for classifying ground 
truth hospital outcomes [40, 41]. This mismatch is of 
direct consequence to stroke research, with Mandava and 
colleagues [42] notably arguing that the heterogeneous 
nature of stroke subtypes contributes to mistaken statisti-
cal inferences on clinical trial data. Consequently, further 
development of NLP methodologies such as ours could 
enable appropriate stratification of retrospective patient 
information according to critical stroke sequelae, thereby 
furthering efforts already underway in the field to auto-
matically characterize ischemic stroke phenotypes [14, 
15]. Additionally, NLP tools could potentially facilitate 
timely identification of patients for prospective stud-
ies. Improved characterization of stroke from radiologic 
reports may be used to screen for inclusion or exclu-
sion criteria in clinical trials, which may in turn optimize 

administrative efficiency [43]. Applying NLP to identify 
or flag potentially eligible patients for research studies 
could decrease labor and costs associated with prospec-
tive investigation and lower the barrier for these research 
endeavors [44]. Although automated text mining for trial 
recruitment has been shown in other disciplines, such 
as oncology [45, 46], our work may help to bring similar 
NLP strategies into prospective trials for stroke.

We also envision a range of clinical applications for this 
work in the future. Notably, we feel that NLP tools such 
as these may be used to safeguard the timely communi-
cation of critical radiologic results in hospital settings. 
Although standardized systems for reporting are avail-
able in many tertiary care centers, delays in communica-
tion between radiologists and bedside providers remain 
a potential source of error in patient care [47], espe-
cially during periods of understaffing, including nights, 
weekends, and holidays. Moreover, given that radiolo-
gists in high-income nations are increasingly participat-
ing in global health delivery via teleradiology, our work 
also has implications for low-resource settings where 
critical results reporting may be underused [48]. Beyond 
improvements in communication, we also suggest that 
automated flagging of stroke sequelae could facilitate 
automated quality improvement initiatives. Escobar and 
colleagues [49] demonstrated better 30-day outcomes 
after implementing an automated model identifying con-
cerning data trends that triggered a series of response 
protocols. Conceivably, our tools could be similarly used 
to develop quality improvement initiatives, including 
electronic-health-record-based warnings, such as flag-
ging anticoagulation use in patients with documented 
hemorrhage on radiology reports or suggested stepwise 
protocols for level of care escalation in response to cere-
bral edema. Finally, additional work has shown how med-
ical NLP systems could be potentially integrated with 
evidence-based guidelines to manage specific conditions 
identified by imaging reports [50]. Automatic retrieval of 
such information may allow for immediate review of evi-
dence-based guidelines for providers’ convenience rather 
than relying on the clinician to initiate database searches 
de novo.

Although the potential applications of NLP may be 
intriguing, we acknowledge that the necessary techno-
logical infrastructure is lacking for immediate clinical 
translation of our findings. Although other studies have 
suggested pathways toward implementation of NLP sys-
tems in neurocritical care settings, including improved 
prehospital stroke diagnosis [7], prediction of stroke 
outcome from radiology reports [17], and automated 
phenotyping of stroke subclass [15] for treatment rec-
ommendations, only a fraction of medical NLP applica-
tions reach the level of in-hospital deployment [3]. It is 
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important to recognize that fundamental proofs of prin-
ciple in machine learning often fall short of effectively 
providing clinicians with the kind of clinical support sys-
tems that they often suggest to be possible [51]. With this 
perspective, we must state that our present NLP models, 
although well performing overall, still require the devel-
opment of user-friendly interfaces, external validation, 
and well-designed implementation trials before they can 
be regarded as ready for patient care [47]. We concede 
that our work is foundational and hope that it can serve 
as a guide toward clinician-led directives that leverage 
technology to serve patients and improve outcomes. At 
the present time, we advocate that our NLP methods are 
best viewed as a promising analytic strategy for others 
conducting big data research in neurocritical care rather 
than a ready tool for clinical use.

We also recognize several methodological limitations 
within our study. Although our manually labeled data 
set of neurologic complications after ischemic stroke is 
one of the largest in literature to date, we acknowledge 
that we had a modest sample size and number of unique 
patients. We also note that our gold standard labeling of 
radiology reports reflects a professional interpretation 
of raw imaging data and may not represent the clini-
cal ground truth of a patient’s condition. Additionally, 
we found lower performance of parenchymal hema-
toma detection relative to other outcomes, which may 
be, in part, due to our annotation strategy. Our label-
ers assigned parenchymal hematoma occurrence on the 
basis of interpretation of ECASS-II criteria and not direct 
specific radiology phrases, leading to more heterogene-
ity and lower interrater reliability. It is also possible that 
we overestimated the degree of external validity of our 
methods. Given that our clinical data sets contain some 
patients with multiple reports, models might have been 
trained with linguistically correlated data, which could 
potentially limit generalizability to other unseen data 
sets. Because the two hospital systems used for com-
parison are located within the same city in the United 
States, a substantial number of staff radiologists between 
the two institutions have received training or experience 
between both hospitals during their careers. Therefore, 
it is possible that reporting styles in the MGB and BMC 
data sets may be more similar than comparators derived 
from other regions.

Nevertheless, our results suggest that a new generation 
of NLP models holds promise for characterizing and sub-
typing large amounts of radiologic text data in ischemic 
stroke. Future studies may apply our methodology and 
models to identify cohorts, outcomes of interest, and/
or covariates for epidemiologic and clinical research in 
neurocritical care. Further work in this area is necessary 

to ensure generalizability of these methods for future 
research and clinical applications.

Conclusions
Automated NLP approaches detect critical complications 
of ischemic stroke, including edema, MLS, hemorrhagic 
conversion, parenchymal hematoma, and IVH. A pre-
trained BioClinicalBERT model yielded the highest over-
all performance in detecting common binary outcomes 
and outperformed traditional machine learning classi-
fiers trained with BOW and TF-IDF featurizations. Our 
fine-tuned BioClinicalBERT also demonstrated strong 
external validity, generalizing well from our derivation 
cohort of MCA territory ischemic strokes to external 
data sets from a separate institution and to patients pre-
senting with a variety of locations of cerebral infarctions. 
Our results reinforce the utility of deep attention neural 
networks in clinical NLP tasks. The presented approach 
has multiple important clinical and research applications, 
including scalable electronic phenotyping, augmentation 
of clinical risk prediction models, and facilitation of auto-
matic alert systems in the hospital setting. Additional 
research in this area will continue the development of 
novel strategies for electronic phenotyping in neurocriti-
cal care.
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