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Abstract 

Background: Perihematomal edema (PHE) has been proposed as a radiological marker of secondary injury and 
therapeutic target in intracerebral hemorrhage (ICH). We conducted a systematic review and meta‑analysis to assess 
the prognostic impact of PHE on functional outcome and mortality in patients with ICH.

Methods: We searched major databases through December 2020 using predefined keywords. Any study using logis‑
tic regression to examine the association between PHE or its growth and functional outcome was included. We exam‑
ined the overall pooled effect and conducted secondary analyses to explore the impact of individual PHE measures 
on various outcomes separately. Study quality was assessed by three independent raters using the Newcastle–Ottawa 
Scale. Odds ratios (per 1‑unit increase in PHE) and their confidence intervals (CIs) were log transformed and entered 
into a DerSimonian‑Laird random‑effects meta‑analysis to obtain pooled estimates of the effect.

Results: Twenty studies (n = 6633 patients) were included in the analysis. The pooled effect size for overall outcome 
was 1.05 (95% CI 1.02–1.08; p < 0.00). For the following secondary analyses, the effect size was weak: mortality (1.01; 
95% CI 0.90–1.14), functional outcome (1.04; 95% CI 1.02–1.07), both 90‑day (1.06; 95% CI 1.02–1.11), and in‑hospital 
assessments (1.04; 95% CI 1.00–1.08). The effect sizes for PHE volume and PHE growth were 1.04 (95% CI 1.01–1.07) 
and 1.14 (95% CI 1.04–1.25), respectively. Heterogeneity across studies was substantial except for PHE growth.

Conclusions: This meta‑analysis demonstrates that PHE volume within the first 72 h after ictus has a weak effect 
on functional outcome and mortality after ICH, whereas PHE growth might have a slightly larger impact during this 
time frame. Definitive conclusions are limited by the large variability of PHE measures, heterogeneity, and different 
evaluation time points between studies.
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Introduction
Intracerebral hemorrhage (ICH) has high morbidity and 
mortality and is a leading cause of permanent disability 
[1, 2]. There is an unmet need to find specific and effec-
tive therapies for this devastating disease. In recent years, 
there has been increased attention on the role of second-
ary injury after ICH [3, 4] and investigations of therapies 
targeting secondary injury as potential treatments for 
ICH [5–8].
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Perihematomal edema (PHE) is considered a radio-
logical marker of secondary brain injury after ICH and 
is increasingly used as a surrogate measure to assess 
the potential efficacy of newly developed therapies in 
improving ICH outcomes [9, 10].

Various studies investigated the association between 
PHE and outcomes in patients with ICH, but results 
have been inconclusive [11–15]. To summarize the avail-
able data and get a better understanding of the prognos-
tic value of PHE, we conducted a systematic review and 
meta-analysis of published studies to assess the associa-
tion between PHE and outcome in patients with ICH.

Methods
Search Strategy and Data Sources
We followed the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses statement for ran-
domized controlled trials [16]. Five large databases, 
Medline (PubMed), Cochrane, Embase, Web of Sci-
ence, and ScienceDirect, were searched from inception 
through December 2020. An additional search was done 
in Google Scholar, and we used bibliographies from rel-
evant articles to identify further articles. We restricted 
the search to studies that were published in English. The 
following search terms were employed: (Intracerebral 
hemorrhage OR intracerebral haemorrhage OR cerebral 
hemorrhage or cerebral haemorrhage OR brain hemor-
rhage OR brain haemorrhage OR hemorrhagic stroke OR 
haemorrhagic stroke OR ICH) AND (PHE OR PHO OR 
perihematomal edema OR perihaematomal edema  OR 
perihematomal oedema OR perihaematomal oedema) 
AND (outcome OR predictor OR prognosis OR mortality 
OR death).

Study Selection
Studies that met all the relevant criteria were included in 
the analysis.

Inclusion criteria were the following:

  • Clinical trials, cohort, case–control, retrospec-
tive, and prospective studies in human participants 
reporting at least one of the following outcomes: 
functional outcome or mortality

  • Using logistic regression to examine the association 
between PHE and outcome and reporting the odds 
ratio

  • Using computed tomography (CT) or magnetic reso-
nance imaging to assess ICH and PHE

Exclusion criteria were the following:

  • Inadequate data

  • Poor rating on quality assessment scale, as described 
below

  • Studies not reporting odds ratios
  • Studies on traumatic or secondary ICH, not sponta-

neous ICH

Data Extraction and Quality Assessment
Two of the authors (SM and MS) performed the literature 
search and subsequently screened the titles and abstracts 
for eligibility. Full texts of potentially eligible articles were 
reviewed for inclusion; SM then extracted data on study 
design, demographics, PHE measurement(s), and out-
comes. After the final set of eligible studies was identi-
fied, three investigators (SH, JT, and SM) independently 
evaluated those articles for quality and study eligibility 
using the Newcastle–Ottawa quality assessment scale 
(NOS) for cohort studies, which is a tool recommended 
by the Cochrane Collaboration [17, 18]. All disagree-
ments were resolved in a consensus meeting and 100% 
consensus was achieved.

The NOS is a validated and widely used instrument to 
assess the quality of nonrandomized studies. The three 
categories—selection, comparability of the study groups, 
and ascertainment of outcome—comprise eight items 
the studies are judged on. Comparability deals with the 
control variables used in the identified studies. For the 
purpose of our analysis, the most important variable to 
control for was hematoma volume. In addition, three 
out of the following four variables had to be present as 
control factors: age, hematoma location, intraventricular 
hemorrhage, and Glasgow Coma Scale or National Insti-
tutes of Health Stroke Scale. The maximum NOS score 
is 9. However, because we only included prediction stud-
ies in the current analysis, item two in the study selec-
tion group (selection of nonexposed cohort) was omitted 
from our assessment, and the maximum awarded score 
for the highest quality studies in this meta-analysis was 
8. Studies with a NOS score > 7 were considered of high 
methodological quality, between 4 to 7 moderate, and < 4 
insufficient [19]. The latter studies were excluded from 
our analysis.

All procedures performed in studies involving human 
participants were in accordance with the ethical stand-
ards of the institutional and/or national research com-
mittee and with the 1964 Helsinki declaration and its 
later amendments or comparable ethical standards.

Statistical Analysis
All statistical analyses were performed with STATA 
16 [20]. The primary outcome labeled as outcome in 
the  identified articles included  both  mortality and/or 
functional outcome as assessed by modified Rankin Scale 
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(mRS). The odds ratios and their corresponding confi-
dence intervals (CIs) were extracted from each study. 
Before entering the data into the STATA 16 meta-anal-
ysis tool using the DerSimonian-Laird random-effects 
model, the natural logarithm of the odds ratios and the 
lower and upper CIs were calculated due to of the asym-
metry of the CIs. The random-effects model is more 
conservative in dealing with heterogeneity than the fixed-
effects model as it takes into account within-study and 
between-study variances [21]. The odds ratio represents 
the increase in odds of the outcome per 1 unit increase in 
PHE. All odds ratios used for the analyses were adjusted 
for various common variables as presented in Supple-
mentary Table S1. Three studies did not explicitly report 
the variables used for adjustment but clearly stated that 
potential confounders were used to adjust [22–24]. The 
forest plots all display odds ratios and CIs.

Secondary analyses were conducted to evaluate the 
impact of different components of PHE measurements 
(volume and growth) on different outcomes; mortality or 
functional outcome at any time, on hospital discharge, or 
at 90 days.

Heterogeneity across the studies used in the meta-anal-
ysis was estimated using the I2, which tests for the per-
centage of variability across studies, and the Cochrane’s 
Q homogeneity test [25]. To test for publication bias, we 
used a simple funnel plot for visual inspection and the 
Egger’s regression test for the statistical confirmation 
[26].

We conducted a detailed sensitivity analysis using the 
leave-one out method. This involves performing a meta-
analysis on each subset of studies by sequentially leaving 
out one study at a time. It allows for the determination 
of each study’s effect on the overall effect size. Sensitiv-
ity analysis was calculated in STATA 16 using the odds 
ratio, lower CI, and upper CI of each study utilizing the 
“metaninf” command.

Results
Search Results
The initial search across all databases resulted in a total 
of 1165 publications, of which 388 duplicate titles were 
removed with the help of Endnote’s duplicate finder tool 
[27]. The remaining 777 publications were filtered for 
relevance regarding our investigated topic by reading 
the titles. This process excluded additional 556 articles. 
One-hundred and forty-nine articles were excluded after 
reviewing the abstract because they were either review 
articles or commentaries, the content was irrelevant, or 
they were conference abstracts. Full texts were acquired 
and assessed for the remaining 72 articles; 47 were elimi-
nated for various reasons, such as inclusion/exclusion 
criteria not met, data duplicated in another study, no data 

available for our question, or no multivariate analysis 
done or proportions provided. The additional search in 
Google Scholar, bibliographies and other sources did not 
add any new publications to the final selection. A total of 
25 studies initially met our eligibility criteria; however, 
5 of these studies were later excluded for the following 
reasons. One study assessed PHE using the acute diffu-
sion coefficient value in a voxel-based magnetic reso-
nance imaging analysis. The authors reported cytotoxic 
and vasogenic edema separately and hence was not com-
parable to the other studies, which primarily used CT 
[28]. Another study subdivided the data based on ICH 
location (deep vs. lobar), and did not report data for 
the combined cohorts [29]. A third study was excluded 
because the same sample was reported in another publi-
cation by the same group [30]. The fourth study assessed 
factors influencing 7-day mortality, but PHE growth did 
not survive multivariate testing [31]. The fifth study was 
excluded because the reported odds ratio was 0.00, mak-
ing it impossible to calculate the beta-coefficients [32]. 
The final analysis included 20 studies. Altogether, these 
studies included a total of 6633 patients. Figure  1, the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses flowchart, illustrates the study selection 
process.

Quality Assessment
The average NOS score across all studies was 7.5, with a 
range from 6 to 8. Thirteen of the 20 included studies had 
a NOS score of 8, four had a score of 7, and only three 
had a score of 6, indicating that all studies had a moder-
ate or high quality. None had to be excluded due to poor 
quality.

Systematical Review
Study Characteristics
Table  1 summarizes the characteristics of the included 
studies. Of the 20 included studies, published between 
1989 and December, 2020: 3 were prospective, 12 were 
retrospective, and 5 were secondary or post hoc analyses 
of prospective data. All studies used CT scans to assess 
PHE. Data were acquired in various international loca-
tions in five studies [33–37]; in China, South Korea and 
Australia in one study [38], USA in five studies [13, 15, 
24, 39, 40], Germany in three studies [41–43], Iran in two 
studies [22, 23], China in two studies [14, 44], Turkey in 
one study [45], and Finland in one study [11].

Participants
The included studies reported data from 6633 patients 
with spontaneous ICH, which included 2376 women and 
3682 men. Four studies [24, 36, 40, 41] did not report a 
breakdown of sex, hence the difference in total number of 
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patients versus number of men plus number of women. 
The overall mean age was 65.16 ± 14.62  years. The age 
was reported as median and interquartile range in 7 
out of the 20 studies. We used the proposed estimation 
method by Luo et  al. [46] and Wan et  al. [47] (online 
calculator provided by Hong Kong Baptist University 
Department of Mathematics http:// www. math. hkbu. 
edu. hk/ ~tongt/ papers/ media n2mean. html) to convert 
median and interquartile range into mean and standard 
deviation for each study and subsequently combined 
them using the method described in the Cochrane hand-
book [48].

Clinical Outcomes
Modified Rankin Scale and Mortality
Fifteen studies reported (dichotomized) mRS as the 
outcome measure and five reported mortality; three 
reported both. In the latter scenario, we used the out-
come employed in the primary analysis. The mRS scale 
was dichotomized in all studies. Seven reported a dichot-
omization of 3–6 for poor outcome [14, 22, 33–35, 38, 
40], five studies chose 4–6 [15, 37, 39, 42, 43], and for two 
of them poor outcome meant a mRS of 2–6 [13, 44]. One 
study used mRS but didn’t report the cut off for dichoto-
mization [36] (see Supplementary Table S1).

Outcome Assessment Period
Likewise, not all studies used the same time point for 
outcome assessment. Seven studies used in-hospital or 
discharge assessments, and 11 used 90-day outcomes. 

Fig. 1 Preferred reporting items for systematic reviews and meta‑analyses flowchart illustrates the study selection process
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Table 1 Study Characteristics

EED, edema extension distance, mRS, modified Ranking Scale, PHE, perihematomal edema
a Used ABC/2 method to measure PHE
b Entire reported group was 780 patients; however, for PHE prediction analysis only, 754 were used
c The data acquisition time slightly overlaps, so the possibility of a few duplicates cannot be excluded
d Entire reported group was 861 patients; however, for PHE prediction analysis, only 852 were used
e EED on 72-h scans were interpolated

Author/year Sample size, n Study design PHE measure/
parameter

Timing of PHE 
assessment

Outcome Timing 
of outcome 
assessment

Appelboom et al. 
(2013)

133 Prospective Absolute PHE vol‑
ume, relative PHE, 
PHE volume growth

Baseline and 24 h 
scans

mRS Discharge

Arima et al. (2009) 270 Secondary analysis 
of prospectively 
collected data

Absolute PHE vol‑
ume, PHE volume 
growth

Baseline and repeat 
(24–72 h) scans

Mortality/Depend‑
ency

90 days

Bakhshayesh et al. 
(2014)

63 Prospective PHE volume growth Baseline and repeat 
(after 72 h) scans

Mortality In‑hospital

Bakhshayesh et al. 
(2014a)

98 Prospective Absolute PHE volume Baseline  scana Mortality In‑hospital

Gebel et al. (2002) 48 Secondary analysis 
of prospectively 
collected data

Relative PHE volume 20 h scan mRS 90 days

Huan et al. (2020) 159 Retrospective Absolute PHE volume 72 h scan mRS 90 days

Hurford et al. (2019) 1,028 Retrospective EED, change in EED Baseline and 72 h 
scans

mRS 90 days

Leasure et al. (2019) 754b Post hoc analysis of 
prospectively col‑
lected data

PHE expansion rate Baseline and 24 h 
scans

mRS 90 days

Levine et al. (2007) 98 Retrospective Absolute PHE vol‑
ume, relative PHE 
volume

Baseline scan Mortality 90 days

Murthy et al. (2015) 596 Retrospective Absolute PHE volume 
growth

Baseline and 72 h 
scans

mRS 90 days

Ozdinc et al. (2016) 106 Retrospective Absolute PHE vol‑
ume, PHE absolute 
area

Baseline scan Mortality 30 days

Peng et al. (2019) 121 Retrospective Absolute PHE volume Baseline, 5–9, and 
12–20 days scans

mRS Discharge

Sansing et al. (2003) 80 Retrospective Absolute PHE volume Baseline scan mRS Discharge

Sansing et al. (2011) 287 Secondary analysis 
of prospectively 
collected data

Absolute PHE volume 72 h scan mRS 90 days

Staykov et al. (2011) 219 Retrospective Absolute PHE volume 
growth, relative 
PHE change

Baseline and up to 
22 days repeat 
scans

Mortality In‑hospital

Urday et al. (2016) 58 Retrospective PHE expansion rate Baseline, 24 h, and 
72 h scans

mRS 90 days

Volbers et al. (2016)c 220 Retrospective Absolute PHE peak 
volume

Five cluster time 
points (baseline to 
12 days)

mRS Discharge

Volbers et al. (2018)c 292 Retrospective Absolute PHE peak 
volume

5 cluster time points mRS 90 days

Wu et al. (2017) 852d Retrospective Edema extension 
distance

Baseline and 72 h 
 scanse

Mortality/Depend‑
ency

90 days

Yang et al. (2015) 1,138 Secondary analysis 
of prospectively 
collected data

Absolute PHE volume 
growth

Baseline and 24 h 
scans

Mortality/Depend‑
ency

90 days
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Two studies used 30-day [45] and 6  months outcome 
period [11], respectively. We excluded these two from the 
secondary analyses exploring outcomes based on assess-
ment time points.

PHE
The studies employed manifold measures and param-
eters for PHE, and the times of assessments were vari-
able. Most studies (n = 13) assessed PHE volume [11, 14, 
15, 23, 24, 33, 36, 39, 40, 42–45]. Six studies used baseline 
scans; two assessed PHE after 72  h from ictus [14, 36]; 
two studies used the peak absolute volume out of a clus-
ter of five time points from day 1 through day 12 [42, 43], 
one used relative PHE volume [40], and two used edema 
extension distance [11, 33]. Seven studies assessed abso-
lute or relative PHE growth over time, usually at 24 or 
72 h after baseline scans [13, 22, 34, 35, 37, 38, 41]. One 
study utilized three different measures for PHE, absolute 
and relative volume as well as PHE expansion rate [13]. 
For this study, we only used the PHE growth at 72 h for 
the purpose of this meta-analysis because this was part 
of their primary analysis and the results of association 
with functional outcome were reported. Seventeen of 
the included studies assessed absolute PHE volume and 
growth, whereas only three studies used the following 
parameters: edema extension distance (n = 2), relative 
PHE (n = 1).

Meta‑Analysis
Overall Effect
The overall pooled effect size of PHE (all measures) on 
outcome was 1.05 (95% CI 1.02–1.08; p < 0.00). The I2 was 
71.87%, indicating very high heterogeneity between the 
studies. Four of the 20 studies showed an inverse associa-
tion, while 16 showed a direct association. However, the 
majority of these studies had an effect which was either 
below or very close to one (see Fig. 2a).

Secondary Analyses
Association Between PHE and Mortality and Functional 
Outcome
The pooled effect size was 1.01 (95% CI 0.90–1.14) for 
studies assessing mortality and 1.04 (95% CI 1.02–1.07) 
for studies that evaluated functional outcome (mRS). 
Heterogeneity for both of these groups was substantial 
with an I2 of 70.97% and 72.14%, respectively (Fig. 2b).

Association Between PHE and In‑Hospital/Discharge Versus 
90‑Day Outcomes
When studies were grouped based on the timing of out-
come assessment, the effect size was negligible for in-
hospital/discharge assessments (1.04; 95% CI 1.00–1.08) 
and at 90  days (1.06; 95% CI 1.02–1.11). Heterogeneity 
was substantial for both time points; I2 of 67.88% and 
75.40%, respectively (Fig. 2c).

PHE Volume and PHE Growth
In studies that assessed PHE volume, the effect size was 
1.04 (95% CI 1.01–1.07). The I2 was at 75.46%. On the 
other hand, the effect size in studies that evaluated PHE 
growth was 1.14 (95% CI 1.04–1.25), and heterogeneity 
was moderate to high (I2 = 60.18%) (see Fig. 2d).

Publication Bias and Sensitivity Analysis
Visual inspection of our funnel plot (Fig.  3a) reveals a 
slightly asymmetrical right-ward pattern. This seemed to 
be attributed to substantial heterogeneity between stud-
ies. Since the visual assessment can be subjective, we 
tested our funnel plot asymmetry statistically using the 
Egger’s test which revealed a z value of − 0.75 and a p 
value of 0.45, indicating an absence of bias.

The conducted sensitivity analysis using the leave-
one-out method indicates that the meta-analysis is sta-
ble. No removal of any study significantly changed the 
overall effect size. Although in Gebel et al. 2002 [40] the 
lower CI was exactly 1.00—the lower margin of statisti-
cal significance—this was a very small study with a very 
low odds ratio and its inclusion is unlikely to change our 
overall assessment (Fig. 3b).

Discussion
This meta-analysis yielded a weak association between 
PHE and outcome in ICH with very high heterogeneity 
between the 20 included studies. Secondary analyses that 
investigated PHE volume and growth separately revealed 
that PHE volume on CT scan has only a weak impact on 
functional outcome and/or mortality after ICH. Con-
versely, PHE growth might adversely influence functional 
outcome and mortality, albeit the effect size is relatively 
small and the heterogeneity in measurement methods 
and adjustment for confounders too high to derive defini-
tive conclusions.
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Arima, 2009

Bakhshayesh, 2014

Bakhshayesh, 2014a

Levine, 2007

Ozdinc, 2016

Staykov, 2011

Wu, 2017

Yang, 2015

Appelboom, 2013

Gebel, 2002

Huan, 2020

Hurford, 2019

Leasure, 2019

Murthy, 2015

Peng, 2019

Sansing, 2003

Sansing, 2011

Urday, 2016

Volbers, 2016

Volbers, 2018

Mortality

Functional Outcome

Overall

Heterogeneity: τ2 = 0.01, I2 = 70.97%, H2 = 3.44

Heterogeneity: τ2 = 0.00, I2 = 72.14%, H2 = 3.59

Heterogeneity: τ2 = 0.00, I2 = 70.47%, H2 = 3.39

Homogeneity Test of θi = θj: Q(7) = 24.11, p = 0.00

Homogeneity Test of θi = θj: Q(11) = 39.48, p = 0.00

Homogeneity Test of θi = θj: Q(19) = 64.34, p = 0.00

Test of group differences: Qb(1) = 0.26, p = 0.61
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Growth
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Overall

Heterogeneity: τ2 = 0.01, I2 = 60.18%, H2 = 2.51

Heterogeneity: τ2 = 0.00, I2 = 75.46%, H2 = 4.07
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All studies included in this meta-analysis that investi-
gated absolute PHE growth used a second imaging time 
point between 24 to 72  h after ictus. Most calculated 
interscan absolute PHE volume growth, but two calcu-
lated the rate of PHE growth between scanning time 
points [13, 37]. Using the rate of PHE growth has been 
proposed as an alternative to absolute change in PHE 
volume because the speed at which the hematoma mass 
lesion expands is important in determining neurologi-
cal injury and likely outcome [49]. While one study [13] 
reported that PHE expansion rate at 72  h was signifi-
cantly associated with poor outcome, another study [37] 
found an association with poor outcome only in basal 
ganglia ICH. The findings that PHE growth, but not abso-
lute volume, is associated with functional outcome and 

mortality might, in part, be explained by the fact that 
PHE volume is a static measure whereas PHE growth 
mirrors the progression of the PHE and its evolution over 
time [50–52].

The formation of PHE involves multiple complex 
pathophysiological processes including clot retraction, 
thrombin formation, activation of the complement and 
coagulation cascade, hemolysis of erythrocytes and sub-
sequent hemoglobin and iron-mediated toxicity, inflam-
mation, and blood brain barrier disruption [50–53]. 
These processes also contribute to secondary brain injury 
[3, 54, 55]. Perihematomal edema starts early after ICH 
onset, increases most rapidly during the first 2 days, and 
lasts for ~ 2–3  weeks [50–53]. The resulting mass effect 
can lead to increased intracranial pressure, ventricular 
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compression, or even herniation. Therefore, there is 
pathophysiological plausibility to link PHE and its growth 
to poor outcomes after ICH. The temporal evolution of 
PHE development correlates with the development of 
secondary injury. Delayed PHE has been attributed to 
lysis of red blood cells and accumulation of hemoglobin 
degradation products and resulting neuroinflammation 
and iron-mediated toxicity [56]. These pathophysiologi-
cal mechanisms of secondary injury have been linked 
to recovery and behavioral outcomes in experimental 
models of ICH, and their role in humans is the subject 
of ongoing intense investigations. Published studies on 
the association between PHE and ICH outcomes have 
reported variable results [13–15, 40]. Interpretation of 
this incertitude is difficult because several of the clinical 
factors that influence ICH outcomes, such as ICH vol-
ume and hematoma expansion, may also influence PHE 
and its severity [15, 38, 57]. Our meta-analysis confirms 
that heterogeneity is high between these studies. Further-
more, most studies included in this analysis examined 
PHE within the first 24  h after ictus, with few studies 
extending into 72 h. Therefore, it should be pointed out 
that this meta-analysis does not fully capture the effects 
of delayed PHE and its potential impact on outcome.

As for the variability in used PHE measures, absolute 
PHE was the most widely used in the studies included 
in this meta- analysis; however, the results for this 
group still revealed a high heterogeneity. Furthermore, 
there were differences in how absolute PHE volume was 
derived and its timing between studies. While some 
measured the absolute PHE volume on baseline CT 
scan [15, 23, 24, 36, 39, 44], others measured PHE vol-
ume on CT scans obtained at ~ 72  h after ictus [13, 14] 
or measured the peak absolute PHE volume in a string of 
five cluster time points [42, 43]. In one study, the abso-
lute volume on the slice showing the largest perihema-
tomal lesion was chosen [45]. Considering the temporal 
evolution of the PHE formation, longer assessment peri-
ods after ICH onset might seem intuitive and preferable 
since early assessment of PHE soon after ictus is likely to 
miss the PHE peak. To explore this possibility, we ran a 
supplementary analysis including the groups (1) abso-
lute volume at baseline, (2) absolute volume at 72 h, (3) 
growth at 24 h and (4) growth at 72 h. The results con-
firm the larger trend shown in the secondary analyses in 
that the growth measures yield larger effects sizes for the 
time points after 24 and 72 h over the baseline volume, 
and a slightly higher result compared to the absolute vol-
ume measure at 72 h. These results indicate that from a 
pathophysiological viewpoint, measuring later in the 
PHE evolution might be more beneficial (see supplemen-
tary results).

Some studies suggest that PHE might be associated 
with early neurological deterioration and poor in-hospi-
tal and short-term outcomes [42, 57, 58]. We performed 
exploratory secondary analyses to examine the associa-
tions between PHE and functional outcome or mortality 
at hospital discharge and at 90 days separately. We found 
only a weak association between PHE and either mortal-
ity or functional outcome at either time point. Heteroge-
neity was likewise high in these groups.

An additional layer of heterogeneity and complex-
ity pertains to methods of PHE measurements. Previ-
ous studies have used several methods and parameters 
to assess PHE; each has its drawbacks and advantages 
[59]. The processing of images and measuring PHE vol-
umes utilized numerous software and algorithms such as 
the standard ABC/2 methods, manual, semiautomated, 
automated, or threshold and edge detection methods. 
While the ABC/2 method was shown to be too inaccu-
rate to measure PHE volume [60, 61], manual methods 
are time-consuming and present with high rates of int-
rarater and interrater variability [62]. On the other hand, 
semiautomatic methods—despite presenting with better 
intraobserver and interobserver reliabilities—are limited 
by several issues such as lack of external validation, small 
derivation sample sizes, omission of segmentation time 
comparisons [50]. A novel approach which combines an 
edge detection algorithm and allegedly takes the patho-
physiology of PHE formation into consideration was pro-
posed by Urday’s group [13], although, as they point out 
themselves, the study was based on retrospective data 
and only used a very small sample size.

Our meta-analysis has limitations; most are inher-
ent to all meta-analyses and include variability of the 
published studies as well as the different criteria used 
for assessment of clinical and radiological outcomes. 
The included studies used various PHE and outcome 
measures assessed at different timepoints. These differ-
ences in design increase the clinical as well as the sta-
tistical heterogeneity as confirmed by I2 and Cochrane’s 
Q results. To address the issue of heterogeneity, we 
applied a random-effects model, which is based on the 
assumption that the different study effects are not iden-
tical but follow some distribution (Cochrane handbook 
9.1, 9.5.4). Furthermore, the evolution and progression 
of PHE can vary dramatically between patients. Our 
meta-analysis is based on overall results extracted from 
different studies, and not a patient-level meta-analysis. 
Therefore, the overall conclusions may not be applica-
ble to all patients with ICH. Another limitation is the 
disparity in the adjustment for confounding prognostic 
variables between various studies. We decided a-priori 
on a minimum set of prognostic variables that must be 
adjusted for in our quality assessment of eligible studies 
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to address this limitation. However, we were still not able 
to account for other potential predictors of outcome such 
as hematoma growth, withdrawal of care, acute treat-
ments, or comorbidities. Lastly, our analysis predomi-
nantly included studies using measures of absolute PHE 
volume and growth. Other parameters of PHE such as 
edema extension distance [63], PHE growth rate [13], and 
peak PHE volume [43] were either not assessed or only 
assessed in a handful of studies. Therefore, the prognos-
tic value of these parameters was not fully evaluated. The 
reported odds ratios for most of the studies included in 
this meta-analysis were small; all except for three studies 
were between zero and one or slightly above one. These 
small individual effect sizes together with a large hetero-
geneity might be responsible for the negligible effect size.

Despite rising interest and publications regarding PHE 
and outcome after ICH and its role as a potential thera-
peutic target, there is paucity of meta-analyses on this 
topic. We are only aware of one previous systematic 
review which calculated a few smaller meta-analyses [64]. 
The authors probed 21 trials which investigated the prog-
nostic role of PHE in ICH, but unlike our study they did 
not run an overall meta-analysis. Their few small meta-
analyses which never included more than three studies 
per analysis—as they only combined those utilizing the 
exact same PHE measures—showed an advantage for 
PHE growth and expansion rate over PHE volume. Our 
meta-analysis represents an advance on the analysis by 
Yu et  al. [64], given the new publications on this topic, 
particularly those from randomized clinical trials as 
well as calculating an effect size across all eligible stud-
ies. Overall, these two investigations seem to have similar 
results reaffirming the call for future studies to adopt a 
more coordinated, systematic, and standardized assess-
ment, design, and analyses [59].

Conclusions
To summarize, this meta-analysis demonstrates that PHE 
volume within the first 72 h after ictus has a weak effect 
on functional outcome and mortality after ICH, whereas 
PHE growth might have a slightly larger impact. Defini-
tive conclusions are limited by the large variability of PHE 
measures, heterogeneity, and different evaluation time 
points between studies. This meta-analysis highlights 
the challenges related to interpretation of existing data 
on the relationship between PHE and outcome, given the 
variability in imaging techniques, timing of PHE and out-
come assessments, and PHE parameters between vari-
ous studies. Our findings call into attention the need for 
future studies to use standardized timing, measures, and 

quantification of PHE to accurately assess the relation-
ship between PHE and outcome after ICH.
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