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Abstract 

Background:  Large hemispheric infarction (LHI) is an ischemic stroke affecting at least two-thirds of the mid-
dle cerebral artery territory, with or without involvement of the anterior cerebral artery or posterior cerebral artery, 
and approximately 77% of LHI patients have early consciousness disorder (ECD). We constructed a functional brain 
network for LHI patients with an acute consciousness disorder to identify new diagnostic markers related to ECDs by 
analyzing brain network characteristics and mechanisms.

Methods:  Between August 1, 2017, and September 30, 2018, patients with acute (< 1 month) LHI were admitted to 
the neurocritical care unit at Xuanwu Hospital of Capital Medical University. Electroencephalography (EEG) data were 
recorded, and the MATLAB platform (2017b) was used to calculate spectral power, entropy, coherence and phase 
synchronization. The quantitative EEG and brain network characteristics of different consciousness states and different 
frequency bands were analyzed (α = 0.05). EEG data were recorded 38 times in 30 patients, 25 of whom were in the 
ECD group, while 13 patients were in the conscious group.

Results:  (1) Spectral power analysis: The conscious group had higher beta relative spectral power across the whole 
brain, higher alpha spectral power in the frontal-parietal lobe on the infarction contralateral side, and lower theta and 
delta spectral power in the central-occipital lobe on the infarction contralateral side than the ECD group. (2) Entropy 
analysis: The conscious group had higher approximate entropy (ApEn) and permutation entropy (PeEn) across the 
whole brain than the ECD group. (3) Coherence: The conscious group had higher alpha coherence in nearly the whole 
brain and higher beta coherence in the bilateral frontal-parietal and parietal-occipital lobes than the ECD group. (4) 
Phase synchronization: The conscious group had higher alpha and beta synchronization in nearly the whole brain, 
particularly in the frontal-parietal and parietal-occipital lobes, than the ECD group. (5) Graph theory: The conscious 
group had higher small-worldness in each frequency band than the ECD group.

Conclusion:  In patients with LHI, higher levels of consciousness were associated with more alpha and beta oscilla-
tions and fewer delta and theta oscillations. Higher ApEn, PeEn, total brain connectivity, and small-worldness and a 
wider signal distribution range corresponded to a higher consciousness level.
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Introduction
Impairment of consciousness results from pathologies 
capable of interfering with or abolishing the capacity to 
be awake and aware, which encompass a spectrum of 
conditions ranging from somnolence, stupor, coma, con-
fusion, and delirium in the acute stage and vegetative 
state/unresponsive wakefulness syndrome (VS/UWS) 
and minimally conscious state (MCS) in the chronic 
stage. Many patients in early stages of acute ischemic 
stroke show acute disorder of consciousness, a condi-
tion known as early consciousness disorder (ECD). Large 
hemispheric infarction (LHI), which is primarily caused 
by an occlusion of either the internal carotid or the proxi-
mal middle cerebral artery, is the most malignant type 
of supratentorial ischemic stroke [1], and approximately 
77% of LHI patients have ECD [2]. ECD is associated 
with higher frequencies of stroke-related complications 
and 3-month death/disability.

Recent functional magnetic resonance imaging (fMRI) 
functional network studies in consciousness disorder 
patients at rest have provided promising but divergent 
accounts about the spatial extent and topography of 
functional brain changes. For patients in the acute phase 
of disorders of consciousness, fundamental network 
characteristics were preserved, but a restructuring of 
hubs was noted [3]. The varying degrees of preservation 
of intrinsic default mode network (DMN) connectivity 
accurately discriminated comatose patients who regained 
consciousness from those who did not [4, 5]. Moreover, 
Fisher et al. [6] reported that injury to a small region in 
the pontine tegmentum is significantly associated with 
coma. For patients in the chronic stage of consciousness 
disorders, the DMN is somewhat stronger in an MCS 
than in VS/UWS but is severely impaired compared to 
that in healthy subjects [7, 8]. However, fMRI is associ-
ated with considerable expenses and difficulty, limiting 
the possibility of wider clinical application in patients. 
Meanwhile, the time resolution of most fMRI techniques 
does not enable detection of fast neural oscillations, 
which are involved in conscious perception and informa-
tion transfer between regions [9], limiting possibilities to 
study synchronization-based communication with fMRI.

Electroencephalography (EEG) has been widely used 
in studies of consciousness disorders as a portable, 
cost-effective, convenient bedside and objective moni-
toring and analysis technique [10]. Traditional EEG 
analysis techniques have been able to accurately predict 
poor outcomes (brain death or vegetative state) [11–13], 
while prediction of awakening is still difficult. In the 

past 5 years, the construction of a functional brain net-
work based on resting-state EEG has achieved some 
progress. EEG has a high time resolution and precision 
and allows dynamic analysis [14], enabling prediction of 
consciousness recovery. Studies have found that brain 
network connectivity analysis can differentiate differ-
ent consciousness states; in particular, compared with 
patients in a persistent vegetative state (PVS) or with 
UWS, MCS patients and healthy controls had higher 
alpha frequency coherence in the parietal-occipital cor-
tex, lower theta frequency coherence in the frontal and 
frontal-parietal cortices [15–17], and enhanced approxi-
mate entropy (ApEn) in the whole brain and permutation 
entropy (PeEn) in the central and temporal cortices [18–
20]. However, these studies mainly focused on chronic 
consciousness disorders, while functional brain network 
studies for acute consciousness disorders have been rare. 
Therefore, we constructed a functional brain network 
for LHI patients with an acute consciousness disorder to 
identify new diagnostic markers related to ECD by ana-
lyzing brain network characteristics and mechanisms.

Materials and Methods
Materials
Between August 1, 2017, and September 30, 2018, 
patients with acute LHI were admitted to the neurocriti-
cal care unit (NCU) at Xuanwu Hospital of Capital Medi-
cal University. The inclusion criteria were as follows: (1) 
18–80 years of age; (2) within 1 month of symptom onset; 
and (3) unilateral LHI with a volume of at least 2/3 of the 
territory of the middle cerebral artery as determined neu-
roradiologically by computed tomography (CT) or mag-
netic resonance imaging (MRI). The exclusion criteria 
were as follows: (1) brainstem involvement of the respon-
sible lesion; (2) premorbid conditions such as neurologi-
cal or psychological disease, brain trauma or surgery; 
(3) treatment with central nervous system suppressive 
drugs (such as anesthetics, sedatives and antipsychotics) 
within 24 h before data collection; and (4) simultaneous 
multiple organ dysfunction with unstable vital signs. The 
study observed the principles of the Helsinki Declaration 
and was approved by the Ethics Committee of Xuanwu 
Hospital, Capital Medical University, Beijing. Informed 
consent was obtained from the family members or desig-
nated surrogates of all participants.

Methods
The trial was designed as a prospective, blinded cohort 
study. Participants were dichotomized as the ECD group 
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or the conscious group according to assessments by 
two experienced neurologists according to Adams and 
Victor’s Principles of Neurology (9th edition) [21] by 
evaluating the patient’s wakefulness, verbal and motor 
response, orientation to person, place and time, and 
other physical examinations. The Glasgow Coma Scale 
(GCS) was used to assess the degree of consciousness 
impairment. To avoid the effect of aphasia, dysarthria 
and airway management, we adopted a 10-point scale 
for the GCS (language items removed). The NCU physi-
cians who recorded the clinical data, including age, sex, 
infarction side, consciousness level, GCS score and the 
time between onset and EEG recording, were blinded to 
the EEG results. The researchers who analyzed the EEG 
results were blinded to the clinical conditions.

EEG Recording
EEG data were recorded at the bedside within 1  month 
of illness onset (not during the period of hypothermia 
treatment) with NicoletOne software (Nicolet, America) 
using a 64-electrode EEG wireless 64A system. For each 
patient, EEG was recorded at least once and lasted for 30 
to 60 min. Electrodes were placed according to the inter-
national 10–20 system. The data were referenced to the 
Cpz electrode. Impedances were maintained at less than 
5 kΩ. The continuous EEG data were recorded online at 
a sampling rate of 512  Hz with a bandpass filter in the 
range of 0.5–70  Hz as well as a 50-Hz notch filter. Fre-
quency bands were divided into delta (0.5–4  Hz), theta 
(4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz). During 
the period of EEG acquisition, all instruments and equip-
ment that might interfere with EEG signals were switched 
off to ensure that the surroundings were quiet and stable 
and to avoid signal fluctuations and artifact interference.

Preprocessing
Researchers (State Key Laboratory of Cognitive Neuro-
science and Learning, Beijing Normal University) quan-
titatively analyzed the EEG data, including a frequency 
spectral analysis (power spectrum analysis), nonlinear 
analysis (entropy analysis), brain network connectiv-
ity analysis (coherence and phase synchronization) and 
graph theory.

The MATLAB platform (2017b) was used to write pro-
grams. First, a 0.5–45-Hz bandpass digital filter was used 
to attenuate frequency artifacts. Noise caused by eye 
movement was removed using FastICA. Then, the super-
fast spherical interpolation method was used to inter-
polate the bad channels. Next, the continuous EEG data 
were cut into epochs with a length of 4  s such that we 
could remove bad signals by visual assessment. Finally, 
all of the signals were converted to average references 
after downsampling to 128 Hz, and every channel signal 

was transformed by the standardized z score procedure 
before calculating the EEG features.

Quantitative EEG Analysis
Power Spectrum Analysis
The power spectrum is the abbreviation for the power 
spectral density function and is defined as the signal 
power per unit frequency band, namely the distribution 
of signal power in the frequency domain [22]. Processed 
time-series data were transformed into the frequency 
domain by a 1024-point fast Fourier transform with 
Welch’s method. Specifically, data were analyzed with 
a 512-point moving window with a 256-point overlap. 
Windowed data were extended to 1024 points by zero-
padding to calculate power spectra, yielding an esti-
mation of the power spectra ranging from 0.5 to 30  Hz 
(frequency resolution: 0.125  Hz). The power spectra of 
these windows were averaged. After obtaining the power 
spectral density estimate, frequency bands were divided 
into delta (δ: 0.5– 4  Hz), theta (θ: 4–8  Hz), alpha (α: 
8–13 Hz), and beta (β: 13–30 Hz) to calculate the power 
spectrum. Finally, each frequency band’s relative power 
was computed by dividing by the total power of the fre-
quency band into 0.5–30 Hz.

Entropy Analysis
Entropy studies the law of change in EEG activity com-
plexity, which is a nonlinear analysis method. ApEn and 
PeEn were calculated in our study. ApEn describes the 
complexity or irregularity of the time sequence. The algo-
rithm of ApEn is based on the phase-space reconstruc-
tion method, where the embedded dimension is m, and 
the time delay is r. Pincus increased the dimension of the 
phase space from m to m + 1 in the definition of ApEn 
[23]. The max distance between two vector quantities is 
used to describe the model. ApEn is obviously related to 
the values of m and r. According to Pincus’s experience, 
we usually take r = 0.1–0.2 * SD(u) (SD represents the 
standard deviation of the sequence {u(i)}). In this paper, 
ApEn has more reasonable statistical characteristics. 
Therefore, we take m = 3 and r = 0.2 * SD. A higher ApEn 
corresponds to a more irregular signal [24, 25]. Similar 
to ApEn, PeEn is another method used to estimate signal 
regularity and is based on the phase-space reconstruc-
tion method [26]. In the PeEn algorithm, the data of the 
vector quantity Xm

i
 is mapped to a sequence of a symbol, 

the probability density function is determined, and the 
value of PeEn is calculated. PeEn has better noise resist-
ance and a faster operation speed than ApEn [27, 28]. The 
calculation procedures for ApEn and PeEn are shown in 
the supplementary materials.
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Brain Network Connectivity Analysis
Coherence
Coherence is the spectral cross-correlation between two 
signals normalized by their power spectra [29]. Coher-
ence was calculated according to the equations in the 
supplementary materials. Coherence is between 0 and 1, 
which represent out of synchronization and the higher 
degree of synchronization, respectively. When the auto-
power spectral density and cross-power spectral density 
were calculated, 50 overlapping 4-s epochs were aver-
aged. Then, these values were used in the equations to 
acquire the coherence function and mean coherence 
under in the delta, theta, alpha and beta frequency bands.

Phase Synchronization
Phase synchronization is used to measure the dynamic 
synchronization of two signals by calculating the phase of 
two signals in the same frequency band [30]. It has two 
advantages: (1) the information extracted by coherence 
and phase synchronization is different, and sometimes 
no correlation exists between spectral power of signals, 
but a correlation exists between phases; and (2) phase 
synchronization is suitable for EEG analysis because it 
requires little signal stationarity [31]. The calculation 
steps are shown in the supplementary materials online. 
If the phase difference is uniformly or randomly distrib-
uted, then γ moves to zero. If the phase difference is syn-
chronous, then γ tends to move to one.

Graph Theory
Graph theory is a branch of discrete mathematics that 
has been applied in numerous studies of both structural 
and functional brain networks. A graph is a collection of 
objects, called vertices or nodes; the pairwise relation-
ships among nodes are called edges or links [32]. Many 
calculation methods exist for graph theory. We face one 
big problem: how to transform the connection matrix to a 
binary connection matrix by selecting the threshold value 
r. However, no theory is available to help us ensure this 
transformation. Additionally, many studies always select 
its value by testing many times, ranging from the small-
est value to the largest value in the matrix. Therefore, in 
our study, a weighted undirected connection matrix was 
used to calculate the graph index, and the codes are pro-
vided in the Brain Connectivity Toolbox (BCT, Version 
2017-15-01, https​://sites​.googl​e.com/site/bctne​t/Home) 
[33]. In this work, we select small-worldness to estimate 
the affected brain networks. Thus, we should consider 
three parameters: the clustering coefficient, average path 
length and small-worldness. The average path length 
represents the shortest path through which nodes are 
related to each other [34]. The clustering coefficient of a 
node is calculated as the number of existing connections 

between the node’s neighbors divided by all their possible 
connections [35]. In 1998, Watts and Strogatz algorith-
mically defined for the first time a class of networks with 
topological properties similar to social networks, dem-
onstrating both the high clustering of a lattice and the 
short path length of a random graph, which they called 
small-world networks. The ratio of the normalized aver-
age clustering coefficient to the normalized characteristic 
path length is called the small-worldness [36]. The spe-
cific calculation equations for the three parameters are 
shown in the supplementary materials online.

Statistical Analysis
Brain network connectivity data were calculated using 
MATLAB software. The permutation test was used 
for statistical analyses and is suitable for small sample 
data with an unknown population distribution and for 
hypothesis-testing problems that are difficult to ana-
lyze by conventional methods. By replacing the sample 
order, the statistical test quantity is recalculated to con-
struct the distribution probability of the mean value, and 
then the P value is calculated and inferred on this basis. 
P < 0.05 was considered statistically significant.

Results
Patient Baseline Data
Thirty LHI patients were enrolled in the study (Fig. 1). For 
each participant, EEG was recorded at least once, and 38 
recordings were taken in total. Among the 30 patients, 22 
patients were in the ECD group and had 25 EEG record-
ings (11 left infarction, 14 right infarction), and 8 patients 
were in the conscious group and had 13 EEG recordings 
(9 left infarction, 4 right infarction) (Tables 1, 2).

Quantitative EEG Analysis
Spectral Power Analysis
Left LHI patients: The conscious group had higher 
beta relative spectral power in the whole brain and 
alpha spectral power in the frontal-occipital lobe on 
the infarction contralateral side than the ECD group; 
among these areas, the increase in the beta frequency 
band relative spectral power in the parietal-occipital 
lobe on the infarction side was significantly different. 
The conscious group had lower theta and delta spectral 
power than the ECD group in the central-parietal lobe 
on the infarction contralateral side (Fig. 2a). Right LHI 
patients: The conscious group had higher beta relative 
spectral power in the whole brain and alpha spectral 
power in the parietal-occipital lobe on the infarction 
contralateral side than the ECD group; among these 
areas, the increase in the beta frequency band relative 

https://sites.google.com/site/bctnet/Home


380

spectral power in the temporal-occipital lobe on the 
infarction side and frontal–temporal lobe on the infarc-
tion contralateral side were significantly different. The 
conscious group had lower theta frequency band spec-
tral power in the whole brain and delta spectral power 
in the parietal-occipital lobe on the infarction con-
tralateral side than the ECD group. The decrease in 
the theta frequency band relative spectral power in the 
temporal lobe on the infarction side was significantly 
different (Fig. 2b).

Entropy Analysis
Left LHI patients: The conscious group had higher 
ApEn and PeEn in the whole brain than the ECD group; 
the increase in entropy in the central-parietal lobe was 
significantly different (Fig.  3a, c). Right LHI patients: 
The conscious group had higher ApEn in nearly the 
whole brain and higher PeEn in the whole brain than 
the ECD group; the increase in PeEn in the temporal 
lobe was significantly different (Fig. 3b, d).

Brain Network Analysis
Coherence
Left LHI patients: The conscious group had higher alpha 
and beta frequency band coherence in the bilateral fron-
tal-parietal, frontal-occipital and parietal-occipital lobes 
than the ECD group (Fig.  4a). Right LHI patients: The 
conscious group had higher alpha coherence in nearly the 
whole brain, higher beta coherence in the bilateral pari-
etal lobes, higher theta coherence in the bilateral pari-
etal-occipital and frontal-parietal lobes, and higher delta 
coherence in the bilateral parietal-occipital lobes than 
the ECD group (Fig. 4b).

Phase Synchronization
Left LHI patients: The conscious group had higher alpha 
and beta frequency band synchronization in the bilateral 
frontal-central, frontal-parietal and parietal-occipital 
lobes than the ECD group (Fig. 4c). Right LHI patients: 
The conscious group had higher alpha synchronization in 
nearly the whole brain and higher beta, theta and delta 

Fig. 1  Flow diagram of the patients screening and exclusion criteria. ECD early consciousness disorder

Table 1  Patients baseline data

ECD early consciousness disorder, GCS* Glasgow Coma Scale (without verbal subscale)

Left Right

ECD group Conscious Group ECD group Conscious Group

Number of patients 10 4 13 3

Age (mean) 64–80 (73.9) 45–63 (55.0) 51–80 (67.6) 46–57 (56.3)

Gender, male/female 5/5 4/0 5/8 3/0

GCS* (mean), scores 5–9 (6.7) 10 (10.0) 4–9 (6.8) 10 (10.0)

Time between onset and EEG recording 
(mean), days

1–9 (4.4) 1–30 (14.0) 1–29 (7.2) 2–12 (6.7)

EEG cases 11 9 14 4
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Fig. 2  Topography based on relative spectral power: a left LHI patients; b right LHI patients; ECD group was compared with conscious group, 
significance represents the channel with statistical difference, the greater the absolute value of significance, the greater the difference. ECD early 
consciousness disorder, LHI large hemispheric infarction
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synchronization in the bilateral parietal lobes than the 
ECD group (Fig. 4d).

Graph Theory
Small-world properties: Regardless of whether the con-
nectivity network was constructed based on coherence or 
phase synchronization, the conscious group had higher 
small-worldness in each frequency band than the ECD 
group, and the differences were statistically significant 
(Fig. 5a, b). On the infarction side, the small-worldness in 
the conscious group was not significantly different from 
that in the ECD group. On the infarction contralateral 
side, the conscious group had higher small-worldness in 
each frequency band than the ECD group, and the differ-
ences in delta and theta frequency bands were statistically 
significant (Fig. 6). Clustering coefficient: The conscious 
group had a higher beta frequency band clustering coef-
ficient than the ECD group (Fig.  5c, d). Average path 

length: In the functional network constructed based on 
two kinds of connectivity, the average path lengths in the 
conscious group in each frequency band were not signifi-
cantly different from those in the ECD group (Fig. 5e, f ).

Discussion
Consciousness can be divided into two components: 
arousal and awareness. The traditional view has been 
that arousal is maintained by the ascending reticular acti-
vating system in the brainstem and thalamus, whereas 
awareness depends on extensive cortico-cortical con-
nectivity [37]. However, anatomy alone cannot explain all 
impaired consciousness processes. EEG has high tempo-
ral resolution and the sensitivity and specificity to evalu-
ate disturbance of consciousness severity and prognosis 
[10]. Previous studies have found that EEG patterns and 
reactivity can predict consciousness recovery [16, 38, 
39], but some subjectivity and limitations remain in these 

Fig. 3  Topography based on ApEn and PeEn: a, b are ApEn topographic maps of LHI patients on the left and right, respectively, c, d are PeEn 
topographic maps of LHI patients on the left and right, respectively; ECD group was compared with conscious group, the color scale represents 
the entropy value. The more red the higher the entropy value, and the more blue the lower the entropy value. Significance is the statistical P value, 
the greater the absolute value of P, the greater the difference. ApEn approximate entropy, ECD early consciousness disorder, LHI large hemispheric 
infarction, PeEn permutation entropy (Color figure online)
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Fig. 4  Brain connectivity map based on coherence and phase synchronization: a, b are coherence based brain connectivity maps of LHI patients 
on the left and right, respectively, c, d are phase synchronization-based brain connectivity maps of LHI patients on the left and right, respectively. 
Early consciousness disorder group was compared with conscious group, the red line means stronger connections and the blue line means weaker 
connections. LHI large hemispheric infarction (Color figure online)



385

analyses, and the mechanisms of consciousness recovery 
cannot be fully explained.

The spectrum power analysis revealed that conscious 
group patients had higher alpha and beta frequency band 
relative spectral power and lower theta and delta spectral 

power across the whole brain. Matousek et al. [40] found 
that the amount of EEG slow wave power is significantly 
correlated with the coma degree. Similar results have 
been found in studies of patients with chronic conscious-
ness disorders; that is, healthy controls had higher alpha 

Fig. 5  Graph theoretical analysis using EEG data: a, b represent the differences in the results of small-worldness between the ECD group and the 
conscious group under the brain functional network constructed based on coherence and phase synchronization, respectively; c, d are the com-
parison of clustering coefficient between two groups, e, f are the comparison of average path length. Error bars are standard deviations. “*” means 
the difference is statistically significant. ECD early consciousness disorder

Fig. 6  Graph theoretical analysis using EEG data: a, b represent the differences in the results of small-worldness on the infarction side between the 
ECD group and the conscious group under the brain functional network constructed based on coherence and phase synchronization, respectively; 
c, d are the comparison of small-worldness on the infarction contralateral side between two groups. Error bars are standard deviations. “*” means 
the difference is statistically significant. ECD early consciousness disorder
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spectral power and lower delta and theta spectral power 
than VS/UWS and MCS patients [16, 41]. Alpha activity 
and beta activity have been related to higher brain activi-
ties such as cognition, attention and consciousness [42]. 
Normal people have alpha rhythms in the occipital region 
when they are awake with their eyes closed. Alpha activ-
ity results from the interaction of the thalamus with spe-
cific areas of the cortex. Pacemaker neurons distributed 
in the thalamic region oscillate in the alpha band to regu-
late and synchronize the excitability of thalamic-cortical 
pathway cells [43]. Meanwhile, the reticulum nucleus 
neurons in the brainstem inhibit thalamic pacemaker 
neurons through gamma-aminobutyric acid (GABA)-
ergic action, hyperpolarizing the pacemaker cells and 
reducing the transmission of relay nucleus neurons to 
cortical receptors, thereby reducing the average fre-
quency of oscillation and thus converting alpha rhythms 
into theta rhythms or delta rhythms. In the awake state, 
delta oscillation is inhibited by ARAS [44], and delta fre-
quency activity is evident only in a pathological state. 
Therefore, increased alpha and beta band oscillations and 
decreased delta and theta band oscillations are associated 
with wakefulness and may be indicators of wakefulness 
prediction.

As a parameter for analyzing the complexity or irregu-
larity of time series, entropy can provide clues and evi-
dence for the degree of brain function activity. Our ApEn 
and PeEn analyses found that ApEn and PeEn across the 
whole brain were higher in conscious group patients. 
Previous studies have reported that ApEn and PeEn are 
positively related to the GCS in patients with acute disor-
ders of consciousness [45, 46]. In studies on the chronic 
stage of consciousness disorders, some researchers also 
found that the ApEn across the whole brain and PeEn 
in the central cortex and temporal lobe of UWS patients 
were significantly lower than those of healthy controls 
[19, 20]. The reception and processing of information 
in patients with consciousness disorders have been sug-
gested to be impaired to varying degrees, thus reducing 
the complexity of brain function activities, and EEG has 
shown a decrease in information content and informa-
tion flow [18]. Consciousness is possible only when the 
network of cortical information can be integrated on a 
large scale, which is a prerequisite for awakening [47, 48]. 
Our research found higher ApEn and PeEn and a wider 
signal distribution range corresponded to a higher the 
level of consciousness. Therefore, ApEn and PeEn may 
also be indicators for predicting awakening.

Our brain network connectivity analysis based on 
coherence and phase synchronization found that com-
pared with the group with ECD, the conscious group 
showed increased synchronization in nearly the whole 
brain, but particularly in the frontal-parietal and 

parietal-occipital lobes, which is consistent with previous 
studies reporting that disorders of consciousness at early 
stages of coma are accompanied by a decrease in the 
levels of EEG coherence of alpha rhythms [49, 50]. For 
chronic stages, studies also have found that compared 
with VS/UWS patients, MCS patients and healthy con-
trols have higher alpha band coherence in the parietal-
occipital region and lower theta band coherence in the 
frontal and frontal-parietal regions [15–17]. We speculate 
that LHI patients with ECD have lost the beta and alpha 
band connectivity between bilateral cerebral hemispheres 
due to severe infarction in one hemisphere. The connec-
tivity of complex cortical–cortical and thalamo-cortical 
networks is an important parameter for assessing the 
level of consciousness [8, 51, 52]. As a parameter of brain 
connectivity, coherence can measure the coupling degree 
of the spectrum in different time series. Higher coher-
ence of EEG signals between scalp regions corresponded 
to stronger functional interactions of the potential neural 
networks [17]. Phase synchronization is another index 
that measures the dynamic synchronization of two sig-
nals, which is calculated by the phase of two signals in 
the same frequency band [30]. Regardless of whether a 
coherence analysis or phase synchronization analysis was 
used, higher whole-brain connectivity corresponded to a 
higher level of consciousness. Subsequent graph theory 
analyses were carried out on the constructed functional 
network. We found that the small-world properties of 
the conscious group were significantly higher than those 
of the ECD group regardless of the network constructed 
by any method. The clustering coefficient and average 
path length were not significantly different between the 
groups. Our finding is comparable to those in previous 
literature indicating that the number of significant con-
nections in the graphs of coma patients was significantly 
lower compared to that of healthy controls [53]. Further, 
most of the latest studies related to graph theory focus 
on chronic consciousness disorder, and the results are 
similar to those in our patients with acute consciousness 
disorder; that is, the brain networks of both the healthy 
controls and the MCS/UWS patients had efficient and 
economical small-world properties, the clustering coef-
ficient of the MCS/UWS patients was reduced, the aver-
age path length was not significantly different between 
the MCS/UWS group and the healthy control group, and 
the large-scale functional brain networks had decreasing 
integration with lower levels of consciousness [54–56]. 
The small-world structure of neural networks is hypoth-
esized to reflect an optimal configuration associated with 
rapid synchronization and information transfer, minimal 
wiring costs, resilience to certain types of damage, as well 
as a balance between local processing and global integra-
tion [57]. We complement this finding by comparing the 
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small-worldness of the stroke-affected and non-affected 
brains separately in the conscious and ECD groups. We 
found no significant difference between the two groups 
on the infarction side, while the small-worldness of the 
conscious group patients was significantly higher than 
that of the ECD patients on the infarction contralateral 
side. These findings suggested that the non-affected brain 
plays a more important role in determining the con-
sciousness level of LHI patients.

Emerging evidence supports that impaired conscious-
ness is characterized by disruptions of brain networks 
that sustain arousal and awareness. Our article provides 
an overview of existing functional connectivity methods 
used to construct the brain network in LHI patients with 
ECD and sets a foundation for future studies investigat-
ing potential clinical implications of such an approach. 
Future research should include more patients with accu-
rate long-term longitudinal follow-ups to validate the 
value of predicting these metrics and provide further 
guidance for clinical medical decision-making.

The limitations of the study are as follows: (1) due to 
the small analyzed sample sizes, the representativeness of 
the results is limited; (2) imaging data were lacking; (3) 
adding multiple EEGs from the same subjects can also 
be a confounding factor; (4) EEG signals are corrupted 
by volume conduction due to the head electrical conduc-
tion properties; and (5) graph theory relies on arbitrar-
ily fixing a threshold to retain the strongest connections 
proportionally equal across subjects, which risks the 
inclusion of false-positive and therefore spurious connec-
tions, especially in the context of brain disorders.

Conclusion
Our study found that in patients with LHI, higher lev-
els of consciousness were associated with more alpha 
and beta oscillations and fewer delta and theta oscilla-
tions. Higher ApEn, PeEn and a wider distribution range 
corresponded to a higher consciousness level. Higher 
total brain connectivity and small-worldness also cor-
responded to a higher level of consciousness. These 
characteristics may be indicators of recovery. However, 
considering the limitation of the small sample size in this 
study, future research should expand the sample size to 
further confirm the present findings.
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