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Abstract 

Background/Objective:  Demonstrating a benefit of acute treatment to patients with intracerebral hemorrhage 
(ICH) requires identifying which patients have a potentially modifiable outcome, where treatment could favorably 
shift a patient’s expected outcome. A decision rule for which patients have a modifiable outcome could improve the 
targeting of treatments. We sought to determine which patients with ICH have a modifiable outcome.

Methods:  Patients with ICH were prospectively identified at two institutions. Data on hematoma volumes, medica-
tion histories, and other variables of interest were collected. ICH outcomes were evaluated using the modified Rankin 
Scale (mRS), assessed at 14 days and 3 months after ICH, with “good outcome” defined as 0–3 (independence or bet-
ter) and “poor outcome” defined as 4–6 (dependence or worse). Supervised machine learning models identified the 
best predictors of good versus poor outcomes at Institution 1. Models were validated using repeated fivefold cross-
validation as well as testing on the entirely independent sample at Institution 2. Model fit was assessed with area 
under the ROC curve (AUC).

Results:  Model performance at Institution 1 was strong for both 14-day (AUC of 0.79 [0.77, 0.81] for decision tree, 
0.85 [0.84, 0.87] for random forest) and 3 month (AUC of 0.75 [0.73, 0.77] for decision tree, 0.82 [0.80, 0.84] for random 
forest) outcomes. Independent predictors of functional outcome selected by the algorithms as important included 
hematoma volume at hospital admission, hematoma expansion, intraventricular hemorrhage, overall ICH Score, and 
Glasgow Coma Scale. Hematoma expansion was the only potentially modifiable independent predictor of outcome 
and was compatible with “good” or “poor” outcome in a subset of patients with low hematoma volumes, good Glas-
gow Coma scale and premorbid modified Rankin Scale scores. Models trained on harmonized data also predicted 
patient outcomes well at Institution 2 using decision tree (AUC 0.69 [0.63, 0.75]) and random forests (AUC 0.78 [0.72, 
0.84]).

Conclusions:  Patient outcomes are predictable to a high level in patients with ICH, and hematoma expansion is 
the sole-modifiable predictor of these outcomes across two outcome types and modeling approaches. According 
to decision tree analyses predicting outcome at 3 months, patients with a high Glasgow Coma Scale score, less than 
44.5 mL hematoma volume at admission, and relatively low premorbid modified Rankin Score in particular have a 
modifiable outcome and appear to be candidates for future interventions to improve outcomes after ICH.
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Intracerebral hemorrhage (ICH) is the most morbid form 
of stroke and has no specific treatment [1]. Patient out-
comes after ICH are predictable with severity of injury 
scores, which generally include clinical severity (e.g., 
Glasgow Coma Scale) and neuroimaging (e.g., hematoma 
volume). The ICH Score, a composite prognostic scale, 
is predictive of functional outcome at hospital discharge 
and follow-up [2, 3]. Other severity of injury scales is 
similar, despite slight differences in accuracy [4, 5]. How-
ever, severity of injury scales for ICH identifies neither 
modifiable predictors of outcome nor patient subgroups 
who might benefit from treatment. Improved techniques 
to identify patients with modifiable outcome are needed 
to select patients most likely to benefit from treatments.

Most interventions improve patient outcomes in 
some subgroups of patients more than others. There-
fore, if a treatment is administered to a group of 
patients in which a substantial subgroup has a non-
modifiable poor outcome, the treatment will be 
deemed ineffective. Previous attempts to improve 
outcomes after ICH included reducing inflamma-
tion (e.g., deferoxamine) [6, 7], surgical drainage (e.g., 
MISTIE III) [8, 9], and reducing hematoma expansion 
(e.g., FAST trials of Factor VII) [10, 11]. The inclu-
sion of patients with ICH who were highly unlikely to 
have a good outcome with any putative treatment (e.g., 
hematoma volume > 60 mL) in previous trials to reduce 
hematoma expansion may have obscured the benefit 
that was realized in those with modifiable outcomes, 
despite rapid initiation of therapy and hemostatic effi-
cacy [12, 13].

Previous studies on severity of injury scales in ICH 
have relied on regression models to identify outcome 
predictors. While regression models (e.g., logistic 
regression) identify the contribution of independent 
predictors toward an outcome in the entire cohort, 
they do not readily identify subgroups in the cohort, 
which must be identified post hoc, which form the 
basis for a subsequent trial [14]. To identify subgroups, 
decision tree-based methods are more intuitive and 
appropriate, as they operate by segmenting the obser-
vations into subgroups that maximize differences 
between groups. This enables group-assignment pre-
dictions to be easily made in different subgroups of 
patients, which is the goal of the current study.

Identifying effective ICH therapies may depend on 
the ability to determine which subgroups of patients 
have a potentially modifiable outcome to focus on 
patients most likely to benefit. Our objective was to 
identify independent predictors of outcomes in ICH 
that are potentially modifiable to select patients for 
targeted treatment.

Materials and Methods
Study Overview
This study included the same patients as a previous 
study [15]. In brief, patients with spontaneous acute ICH 
were prospectively identified and enrolled in a registry 
between 2006 and 2016 at two unrelated institutions. 
ICH cases were diagnosed using CT by a board-certified 
neurologist, and patients were admitted to the ICU. Data 
were subsequently collected from patients, including 
Glasgow Coma Scale (GCS) scores, hematoma volume, 
hematoma expansion, demographics, and pre-ICH modi-
fied Rankin Scale (mRS) scores. The mRS, an ordinal 
scale from 0 (no symptoms) to 6 (death), was obtained 
at 14-day (or hospital discharge, whichever came first) 
and at 3-month follow-up, as previously reported. “Good 
outcome” was defined as mRS 0–3 (independence or bet-
ter) and “poor outcome” as mRS 4–6 (dependence or 
death). This dichotomization has previously been imple-
mented for trials with ICH patients [16, 17] and repre-
sents a common method of analyzing mRS results that 
can be implemented in binary classification algorithms 
[18]. Aspirin use was coded as over-the-counter use or 
as directed by a physician and is a predictor of hema-
toma expansion and the mRS in patients with ICH [19]. 
Other variables were selected based on a combination of 
theoretical associations with ICH patient outcomes and 
the pattern of missingness across variables. Only com-
plete observations were used in the final analyses, which 
meant that variables with large amounts of missingness 
were not included. In total, 19 features were included in 
the analyses for Institution 1.

The analyses for this project can be broken into two 
main stages. In the first stage of analysis, we trained 
models on a single cohort of patients from Northwest-
ern Memorial Hospital (Institution 1). Model construc-
tion was completed using a fivefold cross-validation 
framework replicated ten times with random splitting, 
with nested cross-validation within each of the outer 
folds implemented for parameter tuning. The outer 
fold of the cross-validation was used to estimate out-
of-sample performance and to select parameters, which 
were then used to construct models on the entire train-
ing dataset. In the second stage of analysis, we provided 
further evaluation of model predictive performance by 
testing a representative predictive model in a cohort of 
patients from the Johns Hopkins Hospital and Johns 
Hopkins Bayview Medical Center, part of Johns Hop-
kins Medicine (Institution 2). At Institution 2, only 
discharge disposition was available (i.e., no mRS scores 
for Institution 2), so discharge disposition was used 
instead, as this outcome was present in both datasets. 
Discharge at both institutions corresponded to “good 
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outcome” (discharged to home or rehabilitation) or 
“poor outcome” (discharged for long-term acute care, 
nursing facility, or death).

In order to estimate model performance on unknown 
data, we implemented the above-mentioned fivefold 
cross-validation framework. In this approach, the dataset 
is split into five equally sized parts, hereafter referred to 
as a “fold.” Subsequently, one of the folds is temporarily 
designated the “test” or “validation” fold (i.e., the data on 
which a model is evaluated) and the observations within 
that fold are left out of the model construction process. 
The observations in the remaining fourfold of the data-
set then serve as the training data (i.e., the data on which 
the model is built), and model construction proceeds 
on these data without the inclusion of the observations 
in the test fold. Upon completion of model training, the 
final model is evaluated on the data in the test fold, pro-
ducing predictions that are entirely separated from the 
model construction process. Once the model is evaluated 
on the test fold, a new fold is selected as the test fold and 
the other fourfold—including the fold that was previ-
ously the test fold—are considered the training data for 
a new round of model construction. This process contin-
ues until each of the fivefold has been considered the test 
dataset once. As a result of the cross-validation proce-
dure, predictions are made for each of the observations in 
the dataset based on models that maintain training-test 
separation. In other words, the models are not built and 
evaluated on the same observations, thus reducing over-
fitting and enhancing the potential generalizability of the 
results beyond training data. Within a given loop, param-
eter tuning occurred through a separate cross-validation 
procedure. This form of nested cross-validation ensures 
that the same separation between training and test data 
implemented for generalization predictions applies to 
the process of parameter tuning, thus reducing the bias 
of the models toward the training data [20]. The cross-
validation process was repeated ten times with different 
splits each time to reduce the likelihood that a given split 
improperly influenced the results.

In addition to the repeated cross-validated analyses, 
we went one step further in the second stage of analysis, 
isolating an additional dataset on which to test the mod-
els built on the data from Institution 1. We did this addi-
tional step as a further test of generalizability, as there 
could be characteristics of Institution 1 shared across 
folds that might artificially enhance confidence in the 
generalizability of our results. By testing our models on 
data from a separate institution, we alleviate this con-
cern, as characteristics that are shared among patients at 
Institution 1 may be less likely to be shared with patients 
at Institution 2. In summary, we used fivefold cross-
validation from Institution 1 to construct models and 

subsequently used the dataset from Institution 2 as a 
pure test set drawn from a different sample of patients.

Algorithms
To identify the independent predictors of good or poor 
outcome, we used decision tree-based algorithms to 
automatically classify subjects, based on values of the 
independent variables. Specifically, the algorithm auto-
matically selected the binary splits on variable values that 
led to the largest reduction in the Gini Impurity index—a 
measure of impurity within nodes in a tree, with smaller 
values indicating observations that are more likely to be a 
part of a shared class—at a given step along the tree [21]. 
Node splits were determined using a standard binary 
recursive partitioning algorithm, splitting the dataset 
into two groups at each node in a recursive manner and 
selecting the split on a variable’s values among all pos-
sible variables that led to the largest Gini decrease. The 
decision trees were overgrown and subsequently pruned 
using a cost-complexity pruning parameter determined 
by using nested cross-validation and selecting the value 
of the complexity parameter that led to the overall high-
est average cross-validated area under the receiver 
operating characteristic curve (AUC). AUC is a single 
numerical value to quantify the relationship expressed 
in the ROC curve, which represents the relationship 
between the false-positive and true-positive rates across 
a variety of probability cutoffs. In concrete terms, AUC 
represents the probability that, when looking at two ran-
domly chosen observations known to be from the “poor” 
and “good” outcome groups, the “good” outcome exam-
ple will be more likely to be classified as “good” than the 
“poor” outcome. Final model performance was quantified 
using AUC across all models. Decision tree algorithm 
results can be visualized by a diagram in which each vari-
able split is represented by branches that segment the 
sample into increasingly smaller partitions according to 
specific variable values.

To increase the confidence in our results, we also per-
formed a random forest analysis, which is an ensemble 
method that includes bootstrapping and averaging mul-
tiple decision trees to build a more powerful predictive 
model [22, 23]. Random forest algorithms construct many 
possible trees by sampling observations with replacement 
from the overall sample and building decision trees based 
on these bootstrapped samples. Trees are de-correlated 
from each other by a process of randomly sampling vari-
ables at each node split, meaning that individual trees 
could be based on different sets of predictor variables. 
Results from these trees are averaged together to create a 
final model that uses the information from all constituent 
trees to make a classification decision. The final model 
classifies individual observations according to a majority 
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vote process, meaning that each observation is assigned 
to the category that it was assigned in the majority of the 
constituent trees. As this is a “black box” method, the 
individual steps in the random forest process cannot be 
illustrated in the same format as an individual decision 
tree. However, variables important to the overall model 
performance can be summarized across the constituent 
trees. Predictions from random forest models tend to be 
more generalizable as they are less prone to the overfit-
ting that can occur in individual decision trees.

We further tested decision tree and random forest algo-
rithms in data from 206 patients from Institution 2 to test 
generalizability of the model. As machine learning algo-
rithms mandate identical variables across training and 
testing samples and there is not a standardized set of var-
iables collected on all ICH patients at every institution, 
this meant that some amount of variable harmonization 
was necessary before the algorithm could be tested on 
the independent dataset. Thus, variables between Institu-
tion 1 and Institution 2 were harmonized to ensure the 
same meaning (e.g., the same definition and measure-
ment of hematoma expansion across institutions) [24] so 
that models trained on variables from Institution 1 could 
be applied to predict outcomes from observations in 
Institution 2. This harmonization process involved con-
sidering each of the variables across both datasets that 
were identical in essence, if not identical in measurement 
and changing the measurements of the variable to match 
across datasets. For example, both Institution 1 and Insti-
tution 2 had a measure of hematoma expansion; however, 
Institution 1 measured expansion as a continuous vari-
able in milliliter units, while Institution 2 measured the 
presence of hematoma expansion as a true/false dichoto-
mous variable using a previously validated definition [24]. 
For harmonization, hematoma expansion at Institution 1 
was re-coded to match the definition at Institution 2. A 
similar process was conducted across the other variables, 
with each one changed so that measurements were iden-
tical across both datasets. Of note, Institution 2 did not 
have mRS scores, meaning the outcome variable across 
datasets was different than described previously. Specifi-
cally, the outcome used in both cases was the disposition 
of the patient at hospital discharge. “Good” disposition 
was described at both institutions as being discharged to 
one’s home or to rehab; “Poor” disposition was described 
as including long-term accurate care, nursing facility, or 
death. In total, 15 features were included in the analyses 
for Institution 2. Decision tree and random forest mod-
els were then derived as described above for Institution 1 
and tested in data from Institution 2.

We used standard statistical software to construct deci-
sion trees (R package “rpart” [25]) and random forests (R 
package “randomForest” [26]) implemented in R version 

3.5.3 [27]. We implemented fivefold nested cross-valida-
tion to optimize parameters and minimize overfitting (a 
model that is more accurate in the data from which it is 
derived because it fits noise in addition to signal) using 
the tuning framework from the “caret” package in R [28] 
for both the decision tree and random forest algorithms. 
An overfit model would tend to be predictive in the train-
ing cohort, but not in external data, as these models fit 
random variation in addition to true relationships in the 
data. Pruning of trees was explored to further reduce the 
likelihood of overfitting.

Standard Protocol Approvals, Registrations, and Patient 
Consents
The study was approved by the institutional review board 
(IRB). Written informed consent was obtained from the 
patient or a legally authorized representative. The IRB 
approved a waiver of consent for patients who died dur-
ing initial hospitalization and those who were incapaci-
tated and for whom a legal representative could not be 
located. Separately, identification of patients and collec-
tion of data in the Hopkins cohort were approved by the 
Johns Hopkins IRB.

Data Sharing
Qualified investigators who wish to reproduce the analy-
sis or utilize the code should contact the corresponding 
author.

Results
Demographics of the cohort are shown for the 278 
included ICH patients from Institution 1 (Table  1) 
and the 206 included ICH patients from Institution 2 
(Table 2) stratified by outcome. From Institution 1, the 
decision tree algorithm selected initial hematoma vol-
ume, hematoma expansion, intraventricular hemor-
rhage (IVH), and Glasgow Coma Scale (GCS) scores 
as the most important predictors of 14-day outcome at 
each node, where variable importance is defined as the 
relative reduction in the loss of function of a variable 
at each node across the overall tree [25]. The model to 
predict good or poor patient outcome at 3 months was 
similar, with most important variables chosen being 
Glasgow Coma Scale (GCS) scores, hematoma volume 
at admission, and hematoma expansion. The decision 
tree for prediction of outcomes at 3 months can be 
found in Fig. 1. Hematoma expansion is the only modi-
fiable outcome that can impact predicted outcomes in 
this tree. Of particular note is a subset of patients who 
have a GCS score of 13 or higher, hematoma volume at 
admission less than 44.5  mL, and premorbid modified 
Rankin Scale score of less than 4. For these patients, 
hematoma expansion is a critical predictor of outcome, 
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Table 1  Characteristics of the 278 patients from Institution 1, stratified by “poor” (mRS 0–3) and “good” (mRS 4–6) out-
comes

Variable Details “Poor” outcome
N = 204

“Good” outcome
N = 74

N (%) or median [IQR]

Age (years)a Continuous 66 [55.75–77.25] 60 [49.25–70.00]

Gender Categorical

Male 90 (44.1) 43 (58.1)

Female 114 (55.9) 31 (41.9)

Race Categorical

White 104 (51) 38 (51.4)

Black or African-American 91 (44.6) 30 (40.5)

Asian 3 (1.5) 2 (2.7)

Native Pacific Islander 4 (2) 4 (5.4)

American Indian/Native Alaskan 0 (0) 0 (0)

Not reported 2 (0.9) 0 (0)

ICH Score, total Ordinal

0 39 (19.1) 45 (60.8)

1 61 (29.9) 24 (32.4)

2 53 (26) 5 (6.8)

3 34 (16.7 0 (0)

≥ 4 17 (8.3) 0 (0)

Glasgow Coma Scale Ordinal

13–15 111 (54.4) 68 (91.9)

5–12 73 (35.8) 6 (8.1)

3–4 20 (9.8) 0 (0)

Intraventricular hemorrhage Categorical

Yes 105 (51.5) 9 (12.2)

No 99 (48.5) 65 (87.8)

Large hematoma volume Categorical

At least 30 cc 56 (27.5) 2 (2.7)

Less than 30 cc 148 (72.5) 72 (97.3)

Initial hematoma volume (mL)b Continuous 12 [6.0–30.00] 4 [1.4–11.35]

Located in infratentorial region Categorical

Yes 24 (11.8) 10 (13.5)

No 180 (88.2) 64 (86.5)

Hematoma expansion (mL)c Continuous 0.185 [− 1.23–3.05] − 0.10 [− 0.38–0.28]

Seizure Categorical

Has had a seizure 10 (4.9) 3 (4.1)

Has not had a seizure 194 (95.1) 71 (95.9)

Reversal of anticoagulation Categorical

Presence of reversal 14 (6.9) 5 (6.8)

No reversal 190 (93.1) 69 (93.2)

Desmopressin Categorical

Given 29 (14.2) 9 (12.2)

Not given 175 (85.8) 65 (87.8)

Historical modified Rankin, Ordinal

0 151 (74) 62 (83.8)

1 18 (8.8) 7 (9.4)

2 7 (3.4) 3 (4.1)

3 8 (3.9) 2 (2.7)

4 19 (9.3) 0 (0)
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with hematoma expansion greater than 6.65 mL leading 
to the prediction of poor outcome for 5% of the total 
sample (10 patients). These patients may be of particu-
lar interest for future clinical intervention.  

Random forest models performed better than the 
decision trees across both outcome types in Institu-
tion 1. The cross-validated performance (measured 
using AUC) of decision tree and random forest algo-
rithms on the validation data from Institution 1 are 
shown in Table 3, along with 95% confidence intervals 
(CIs) derived using stratified bootstrap resampling. 
For 14-day outcomes, the AUC for the decision tree 
approach was 0.79, with a 95% CI of [0.77, 0.81], com-
pared to an AUC of 0.85 and a 95% CI of [0.84, 0.87] 
for the random forest. For 3-month outcomes, the AUC 
for the decision tree approach was 0.75, with a 95% CI 
of [0.73, 0.77], compared to an AUC of 0.82 with a 95% 
CI of [0.80, 0.84] for 3-month outcomes. Accuracy rates 
assuming a 50% classification cutoff point are provided 
in Table  4, along with proportional confusion matrix 
information.

Models also weighted similar variables as being 
important for inclusion, as determined from the vari-
able importance values produced by both modeling 
approaches. To predict good or poor outcome at 14 days, 
both decision tree and random forest algorithms selected 
hematoma volume at admission, hematoma expansion, 
intraventricular hemorrhage (IVH), GCS scores, and 
age as the most important predictors. To predict good 
or poor outcome at 3 months, the algorithm selected 
GCS score, hematoma volume at admission, hematoma 
expansion, age, premorbid mRS scores, and IVH as the 
most important variables. There was remarkable consist-
ency across outcomes and modeling approaches in these 
importance values, suggesting generalizability across 
time and predictive approaches. These results can be 
seen in graphical format in Fig. 2.

We then turned to establishing generalizability in an 
independent dataset. Upon completion of variable har-
monization using the process described above, data from 
Institution 1 were treated as the training dataset and 
data from Institution 2 were utilized as a test dataset. 

Table 1  (continued)

Variable Details “Poor” outcome
N = 204

“Good” outcome
N = 74

N (%) or median [IQR]

5 1 (0.5) 0 (0)

Novel oral anticoagulant Categorical

Given 0 (0) 1 (1.4)

Not given 204 (100) 73 (98.6)

Warfarin use Categorical

Usage 23 (11.3) 5 (6.8)

No usage 181 (88.7) 69 (93.2)

International normalized ratio Continuous 1.1 [1–1.2] 1.1 [1–1.2]

Statin Categorical

Usage 33 (16.2) 11 (14.9)

No usage 171 (83.8) 63 (85.1)

Aspirin use prior to ICH Categorical

Usage 70 (34.3) 24 (32.4)

No usage 134 (65.7) 50 (67.6)

Diabetes by history Categorical

Diagnosis 35 (17.2) 15 (20.3)

No diagnosis 169 (82.8) 59 (79.7)

Hypertension by history Categorical

Diagnosis 148 (72.5) 52 (70.3)

No diagnosis 56 (27.5) 22 (29.7)

Percentages are rounded to the nearest whole number. Footnotes are provided by variable names to indicate significant differences in medians between groups at an 
α level of .05 using Mood’s median test using the “RVAideMemoire” package in R [34]

ICH intracerebral hemorrhage
a  χ2 (1, 278) = 4.68, p = .03
b  χ2 (1, 278) = 17.46, p < .001
c  χ2 (1, 278) = 8.12, p = .004
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Table 2  Characteristics of the 206 patients from Institution 2, broken out into “poor” (discharged to acute care or death) 
and “good” (discharged to home or rehab) outcomes

Variable Details “Poor” outcome
N = 105

“Good” outcome
N = 101

N (%) or Median [IQR]

Age (years) Continuous 62 [54–80] 59 [51–69]

Gender Categorical

Male 63 (60) 58 (57.4)

Female 42 (40) 43 (42.6)

Race Categorical

White 60 (57.1) 38 (37.6)

Black or African-American 44 (41.9) 61 (60.4)

Asian 1 (1.0) 1 (1.0)

Hispanic 0 (0) 1 (1.0)

ICH Score, total Ordinal

0 12 (11.4) 38 (37.6)

1 20 (19) 38 (37.6)

2 31 (29.5) 19 (18.8)

3 34 (32.4) 5 (5)

≥ 4 8 (7.7) 1 (1)

Glasgow Coma Scale Ordinal

13–15 49 (46.7) 83 (82.2)

5–12 6 (5.7) 6 (5.9)

3–4 50 (47.6) 12 (11.9)

Intraventricular hemorrhage Categorical

Yes 54 (51.4) 27 (26.7)

No 51 (48.6) 74 (73.3)

Large hematoma volume Categorical

At least 30 mL 42 (40) 15 (14.9)

Less than 30 mL 63 (60) 86 (85.1)

Initial hematoma volume (mL)a Continuous 22 [6–47] 8 [4–19]

Hematoma location Categorical

Infratentorial 21 (20) 18 (17.8)

Supratentorial 84 (80) 83 (82.2)

Hematoma expansion Categorical

Presence 18 (17.1) 8 (7.9)

Absence 87 (82.9) 93 (92.1)

Seizure Categorical

Has had a seizure 15 (14.3) 6 (5.7)

Has not had a seizure 90 (85.7) 95 (90.5)

Warfarin or novel oral anticoagulant Categorical

Given 11 (10.5) 8 (7.9)

Not given 94 (89.5) 93 (92.1)

International normalized ratio Continuous 1.1 [1–1.2] 1.1 [1–1.1]

Statin Categorical

Usage 26 (24.8) 25 (24.8)

No usage 79 (75.2) 76 (75.2)

Aspirin use prior to ICH Categorical

Usage 36 (34.3) 37 (36.6)

No usage 69 (65.7) 64 (63.4)

Diabetes by history Categorical

Diagnosis 30 (28.6) 12 (11.9)
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Table 2  (continued)

Variable Details “Poor” outcome
N = 105

“Good” outcome
N = 101

N (%) or Median [IQR]

No diagnosis 75 (71.4) 89 (88.1)

Hypertension by history Categorical

Diagnosis 86 (81.9) 82 (81.2)

No diagnosis 19 (18.1) 19 (18.8)

Footnotes are provided by variable names to indicate significant differences in medians between groups at an α level of .05 using Mood’s median test using the 
“RVAideMemoire” package in R [34]

ICH intracerebral hemorrhage
a  χ2 (1, 206) = 15.23, p < .001

Outcome Depends on Glascow 
Coma Scale Score (GCS)

If GCS Score < 13, Depends 
on hematoma volume at 

admission

If ≥ 12.5, Poor 
Outcome 

(25% of n; 90% acc)

If < 12.5 mL, 
depends on GCS

If GCS < 4, Poor Outcome
(4% of n; 100% acc)

If GCS > 4, depends on 
Age

If < 63 years, Good 
Outcome

(3.5% of n; 86% acc)

If > 63 years, Poor 
Outcome

(7% of n; 79% acc)

If GCS Score ≥ 13, Depends 
on hematoma volume at 

admission

If volume < 44.5 mL, Depends 
on premorbid modified rankin 

score (mRS)

If premorbid mRS = 4, 
Poor Outcome

(4.5% of n; 78% acc)

If Premorbid mRS < 4, 
depends on hematoma 

expansion

If expansion < 6.65 
mL, depends on age 

If Age < 86, Good 
Outcome

(43% of n; 85% acc)

If Age ≥ 86, Poor 
Outcome

(3.5% of n; 57% acc)

If expansion ≥ 6.65, 
Poor Outcome

(5% of n; 60% acc)

If > 44.5 mL, Poor 
Outcome

(4.5% of n; 89% acc)

Fig. 1  Decision tree predicting good or poor outcome at 3 months, fit on the entire training dataset after repeated fivefold cross-validation to tune 
parameters and estimate model performance. Classification starts at the top, and each observation works its way down the branches until it hits 
a terminal node (i.e., node in which there are no further nodes going down). At this point, the observation is classified as either good outcome or 
poor outcome. Percentages of the total sample size are included in the terminal nodes to represent the number of observations in a given node, 
with the percentage of these observations that are accurately classified following a semicolon. This decision tree is provided to illustrate what one 
of the algorithms selected as the best way to classify patients at discharge and is not recommended for prescriptive use without further testing

Table 3  Area under the receiver operating characteristic curve (AUC) by each model in Institution 1

95% confidence intervals derived via 5000 stratified bootstrap replications are included below each AUC value, calculated using the pROC package in R [35]

Model type 14-day decision tree 14-day random forest 3-month decision tree 3-month random forest

AUC​ 0.79 0.85 0.75 0.82

95% CI [0.768, 0.807] [0.838, 0.867] [0.728, 0.771] [0.800, 0.836]
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In training, the analysis procedure mimicked the analy-
ses described above for the full Institution 1 analyses. 
Namely, repeated fivefold cross-validation was imple-
mented to train both decision tree and random forest 
algorithms. Final models were evaluated on the test data 
from Institution 2. Predictions of discharge outcome in 
the test data resulted in an AUC value of 0.69 (95% CI: 
[0.63, 0.75]) for the decision tree and an AUC value of 
0.78 (95% CI: [0.72, 0.84]) for the random forest model. 
Data on outcomes at 3 months were not available for the 
creation of comparison models. Similar to the models 

derived and validated at Institution 1, the most important 
variables were GCS scores, initial hematoma volume, 
age, and hematoma expansion. Additionally, age was an 
important variable in the random forest analyses.

Institution 2 did not have mRS data. In data from Insti-
tution 1, the mRS at 14 days was correlated with the mRS 
at 3 months (Spearman rho = 0.85, p < 0.001).

Discussion
We identified patients whose outcome could be either 
good or poor after ICH. Decision tree and random forest 

Table 4  Proportional confusion matrix information for all four models after fivefold cross-validation repeated 10 times

Accuracy is provided at the default classification cutoff point of 0.50, rounded to the nearest hundredth. Matrix information is provided in terms of average 
proportions of cell counts across resamples. For example, a true-positive value of .50 would suggest that on average across resamples 50% of the observations were 
classified as positive cases when in fact they were positive cases (i.e., they were classified correctly). Positive classification in this case refers to a classification of “good 
outcome,” while negative refers to “poor outcome.” The summation of true positives and true negatives equals the accuracy, which is presented at the top alongside 
the corresponding 95% confidence interval

Model type 14-day decision tree 14-day random forest 3-month decision tree 3-month random forest

Accuracy 0.745 0.787 0.720 0.730

95% CI [0.728, 0.761] [0.771, 0.802] [0.699, 0.739] [0.710, 0.750]

True-positive proportion .138 .108 .350 .371

True-negative proportion .607 .679 .369 .359

False-positive proportion .127 .054 .143 .153

False-negative proportion .128 .158 .137 .117

Fig. 2  Variable importance values for decision tree and random forest results predicting outcome at 14 days and 3 months
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models consistently identified initial hematoma volume, 
hematoma expansion, GCS score, age, and intraven-
tricular hemorrhage as the most important variables 
for the prediction of ICH outcomes at both 14 days and 
3 months. Hematoma expansion was the only poten-
tially modifiable predictor of patient outcome identified 
for these patients across modeling approaches and time 
periods. A subset of patients was identified, consisting 
of patients who have a GCS score of 13 or higher, hema-
toma volume at admission less than 44.5  mL, and pre-
morbid modified Rankin Scale score of less than 4 (see 
Fig. 1). These patients’ outcomes depended on hematoma 
expansion and thus serve as a potential target for clinical 
intervention. In sum, across modeling approaches, data-
sets, and time periods, these data suggest that a subset of 
patients with ICH have a potentially modifiable outcome 
by reducing hematoma expansion.

Hematoma expansion predicts poor outcome after 
ICH. Most definitions of hematoma expansion have a 
similar predictive value (e.g., 26% of the initial hematoma 
volume, an absolute increase of  ≥ 3  mL) [29]. Clinical 
trials of blood pressure control [30], Factor VII [10, 11], 
and tranexamic acid [31] have sought to improve patient 
outcomes by reducing the likelihood of hematoma 
expansion, but have had mixed results on preventing 
hematoma expansion and improving the odds of good 
outcome. Our findings suggest that in each of the clinical 
trials conducted to date, many randomized patients may 
already have been highly likely to have a poor outcome 
at follow-up because of large initial hematoma volume 
or IVH, regardless of hematoma expansion. These results 
suggest that future research might further narrow eligi-
bility for a clinical trial in order to select patients with 
an outcome that is potentially modifiable from poor out-
come to good outcome. While we are not the first group 
to suggest restricting inclusion criteria for clinical trials 
in patients in ICH [13], we are suggesting an innovative 
method for selecting those criteria using a generalizable 
model from existing datasets.

Decision tree-based algorithms are different from 
regression models. Regression models determine the 
marginal attribution of variance in the data from inde-
pendent variables (e.g., patient age for each additional 
year) on a dependent variable (e.g., good or poor out-
come) and are intuitive for determining the effect of inde-
pendent variables generally in a cohort. In patients with 
ICH, predictors of patient outcome considered in logis-
tic regression models are unlikely to be truly independ-
ent (e.g., larger hematoma volume eventually impairs 
consciousness), even if interaction terms do not signifi-
cantly improve a statistical model. We chose decision 

tree-based algorithms because they are intuitively more 
appropriate for subgrouping subjects, as our goal was to 
identify patients with a potentially modifiable outcome.

The methods described in this paper are intended to 
inform further mechanistic research to improve patient 
outcomes after ICH. Specifically, these data suggest 
which patients are most likely to transition from “poor” to 
“good” outcome, particularly for patients in whom hema-
toma expansion might be reduced. Additionally, these 
data may be helpful for prognostication after accounting 
for hematoma expansion, a potential improvement over 
scales that are measured at admission and do not account 
for hematoma expansion.

There are potential limitations to these data. The sam-
ple size may not be adequate to detect prognostic factors 
with smaller effects on functional outcome. Transition-
ing a patient from “poor” to “good” outcome requires a 
substantial effect size [12], and more sensitive patient 
outcomes might increase the power to detect an effect 
of treatment. The results of the analysis across two inde-
pendent datasets somewhat allay concerns about model 
generalizability, as the model performed similarly even 
though it was arguably handicapped by the harmoniza-
tion process reducing the number and specificity of the 
variables. The mRS is also insensitive to certain domains 
of function that are important from a patient’s perspec-
tive (e.g., cognitive function) and, as a result, to predic-
tors of disability in those domains [32]. We used repeated 
fivefold cross-validation and found very strong perfor-
mance of decision tree and random forests models, as 
well as reasonable performance of a less-specific model 
on a separate dataset. Additional validation in external 
cohorts would be helpful; however, some of these are 
costly and might have different independent variables 
that would require reconciliation before analysis. Our 
results should be generalizable, however, given the efforts 
made to examine performance on data unimplicated in 
the model construction process. The cohort used in this 
analysis included a small proportion of patients who were 
known to take anticoagulant medication (warfarin or a 
novel oral anticoagulant) with ICH; however, the effect 
of anticoagulant medication is likely mediated through 
hematoma expansion, which is modifiable with specific 
treatment (e.g., prothrombin complex concentrate) [33].

In sum, we found that a subset of patients with ICH has 
a potentially modifiable outcome. Hematoma expansion 
is the prominent modifiable determinant of patient out-
come. Future research to develop or evaluate therapies 
for ICH might focus on a smaller subset of patients with 
potentially modifiable outcome.
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