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Abstract 

Background:  Rapid diagnosis and proper management of intracerebral hemorrhage (ICH) play a crucial role in the 
outcome. Prediction of the outcome with a high degree of accuracy based on admission data including imaging 
information can potentially influence clinical decision-making practice.

Methods:  We conducted a retrospective multicenter study of consecutive ICH patients admitted between 2012–
2017. Medical history, admission data, and initial head computed tomography (CT) scan were collected. CT scans 
were semiautomatically segmented for hematoma volume, hematoma density histograms, and sphericity index (SI). 
Discharge unfavorable outcomes were defined as death or severe disability (modified Rankin Scores 4–6). We com-
pared (1) hematoma volume alone; (2) multiparameter imaging data including hematoma volume, location, density 
heterogeneity, SI, and midline shift; and (3) multiparameter imaging data with clinical information available on admis-
sion for ICH outcome prediction. Multivariate analysis and predictive modeling were used to determine the signifi-
cance of hematoma characteristics on the outcome.

Results:  We included 430 subjects in this analysis. Models using automated hematoma segmentation showed incremen-
tal predictive accuracies for in-hospital mortality using hematoma volume only: area under the curve (AUC): 0.85 [0.76–
0.93], multiparameter imaging data (hematoma volume, location, CT density, SI, and midline shift): AUC: 0.91 [0.86–0.97], 
and multiparameter imaging data plus clinical information on admission (Glasgow Coma Scale (GCS)  score and age): AUC: 
0.94 [0.89–0.99]. Similarly, severe disability predictive accuracy varied from AUC: 0.84 [0.76–0.93] for volume-only model to 
AUC: 0.88 [0.80–0.95] for imaging data models and AUC: 0.92 [0.86–0.98] for imaging plus clinical predictors.

Conclusions:  Multiparameter models combining imaging and admission clinical data show high accuracy for pre-
dicting discharge unfavorable outcome after ICH.
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Introduction
Intracerebral hemorrhage (ICH) represents the sec-
ond most common stroke subtype and remains a sig-
nificant cause of morbidity and mortality [1–3]. Rapid 

diagnosis and attentive management of ICH patients 
are crucial, since early deterioration is common in the 
first few hours after ICH onset [4]. Computed tomog-
raphy (CT) scan is the most common imaging modal-
ity to detect acute ICH. The initial hematoma volume 
combined with other clinical and radiological factors is 
considered strong predictors of clinical outcomes and 
mortality after ICH [5–9]. However, hematoma volume 
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measurement requires manual interpretation, which 
carries an inherent subjectivity [10, 11]. Hematoma 3D 
volumetry may be more accurate and more reproduc-
ible compared to the classic ABC/2 method in assessing 
hematoma volume [12–15]. Furthermore, the required 
3D hematoma segmentation would allow automated 
densitometric and geometric analysis, without the need 
for operator input. A resulting comprehensive hema-
toma analysis may complement traditional head CT 
analysis, since CT density patterns and geometric char-
acteristics of the hematoma may contribute to the pre-
diction of ICH outcome [16–20].

The primary objective of this study was to evaluate the 
performance of predictive models for ICH outcome using 
a prototype of hematoma segmentation software that 
can provide 3D volumetry as well as hematoma density 
and shape quantification. These models were developed 
with the hypothesis that user-independent quantitative 
hematoma characteristics from automated 3D segmenta-
tion of ICH (i.e., volume, shape irregularity, and density 
profiles) combined with other imaging or clinical vari-
ables at admission will allow accurate prediction of both 
mortality and poor outcome at discharge. Our second-
ary objective was to introduce quantitative methods for 
hematoma CT density and shape analysis. These methods 
range from a simple metric to quantify hematoma shape 
irregularity using sphericity index (SI) to a data-driven 
approach for understanding the variability of density pro-
files among hematomas using functional principal com-
ponent (FPC) analysis. Both objectives should support 
our long-term target of designing automated hematoma 
assessment tool for the bedside applications.

Materials and Methods
The Institutional Review Boards at Hennepin Healthcare 
System and Fairview Health Services in Minneapolis, 
Minnesota, approved the study prior to initiation. Con-
secutive spontaneous ICH admissions between Janu-
ary 2012 and December 2017 from the two healthcare 
systems were included. The data collection protocol for 
the study has been described previously [21, 22]. ICH 
subjects were identified using International Classifica-
tion of Diseases (ICD) coding system with the primary or 
secondary diagnosis codes of 431, 432, and 432.9 for the 
9th Revision (ICD-9) and I61.0–I61.9 and I62.9  diagno-
sis codes for the ICD-10 (when applicable). Cases were 
cross-matched with a prospectively collected stroke 
database to account for missing cases and coding mis-
classification. We excluded secondary hemorrhage due 
to other  etiologies  such as hemorrhagic transformation, 
venous infarction, trauma,  tumor (primary  or cerebral 
metastasis), ruptured  vascular malformation, subarach-
noid, subdural, or epidural hemorrhage.

Demographic data, medical history, time of symp-
tom onset, vital signs, laboratory tests, initial CT scan, 
in-hospital treatment, and length of stay were recorded 
in a standardized data collection form. Baseline neuro-
logical and functional deficits were documented using 
the  National Institutes of Health Stroke Scale, Glasgow 
coma scale (GCS), ICH-score [23], and modified Rankin 
Scale  (mRS), when available. Outcomes at discharge 
were defined as death or composite unfavorable outcome 
(severe disability or death, mRS 4–6).

Post‑processing of Hematoma in Initial CT Scan
Initial CT scans were post-processed using a research 
version of Vitrea software (v7, Vital Images, Minnetonka, 
MN, USA). After skull removal, semiautomatic hematoma 
segmentation was applied. For each case, the user defined 
a bounding box where the hematoma segmentation was 
applied using 1 click extend action on a single axial or 
coronal view. Then, the algorithm segmented the hema-
toma based on 3D histogram analysis performed on CT 
densities and various morphologic operations. Hematoma 
volume as well as hematoma density (both mean and SD 
values) was, then, automatically computed. Hematoma 
density 3D histograms data were obtained and exported 
for further analysis (Fig. 1a).

To assess the hematoma shape irregularity (Fig. 1b), we 
used the following sphericity definition as a shape irregu-
larity index:

where “V” represents the volume and “A” represents the 
surface area of the hematoma. The proposed SI quan-
tifies the irregularity of the hematoma shape taking 
the sphere (SI = 1.0) [24, 25]. Practically, SI for brain 
hematoma ranges from mostly regular ellipsoids (SI: 
0.90–0.80) to a highly irregular shape (SI: 0.2–0.4) in a 
continuous scale.

To assess intra- and inter-rater variabilities, two trained 
readers repeated the hematoma segmentation of 50 
hematomas twice using the hematoma probe prototype. 
For ground truth measurements, all the hematoma vol-
umes measurements were repeated using a semiauto-
mated planimetry measurement using the Medical Image 
Processing, Analysis, and Visualization (MIPAV, National 
Institute of Health) software [12, 22].

The midline shift (MLS) was determined as a binary 
variable (yes/no) and an alternative 4-class ordered MLS 
(0–2 mm [no MLS], 2–5 mm, 5–10 mm, and ≥ 10 mm). 
The MLS was measured as the perpendicular distance 
between septum pellucidum and a midline connecting 
free edges of the anterior and posterior falx [26].

Using hematoma CT density curves, we extracted 
mean CT (HU), standard deviation CT (HU), and 3 

Sphericity Index (SI) = π1/3(6V )2/3/A
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continuous variables (FPC1, FPC2, and FPC3) describ-
ing the variation in these curves using a functional data 
analysis described later.

Statistical Methods
The statistical analysis was performed using the R-statis-
tical programming environment (version 3.2.0, R Core 
Team, Vienna, Austria). Characteristics of each outcome 

Fig. 1  a Workflow for hematoma segmentation and quantitative analysis. b Four segmented hematomas with 3D models with their corresponding 
SI values
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(in-hospital mortality and severe disability, mRS 4–6) 
were computed using median, interquartile range (IQR), 
Mann–Whitney tests for continuous variables, and Fisher 
exact tests for binary variables. The agreement between 
automated volume measurement and reference volume 
and the intra-rater agreement were assessed using intra-
class correlation (ICC).

The quantitative (continuous) and qualitative (binary) 
predictors of patient outcome have been jointly analyzed 
using a mixed-type data approach [27] where generalized 
association values (0–100%) were computed between 
quantitative and qualitative predictors and summarized 
in a heatmap plot (see Figure 1s in Supplemental Mate-
rials). Confounder plots were generated to visualize 
the association of any predictors with the patient out-
come, with the hematoma volume taken as a reference 
major predictor (see Figures  2s and 3s in Supplemental 
Materials).

The univariate analysis of the predictors was per-
formed for both unfavorable outcome at discharge 
(mRS: 4–6) and in-hospital mortality using a receiver 
operating characteristic (ROC) area under the ROC 
curve (AUC) metric for continuous predictors and odds 
ratio (OR) for binary predictors. Optimal cutoff points 
were determined using the Youden index method. AUC 
confidence intervals were computed with DeLong’s 
method, and significant differences between AUCs were 
tested using DeLong’s method for correlated AUCs 
2-sided tests. In the multivariate analysis, the linearity 
assumptions and the presence of interactions for the 
main predictors in logistic regression models were 
assessed using nonlinear regression plots, ANOVA, and 
Wald tests [28], see Figures 5s–6s and Tables 1s and 2s 
in Supplemental Materials. Multivariable logistic mod-
els and one model using a random forest classifier were 
evaluated for their performance to predict in-hospital 
mortality or unfavorable outcome using custom pro-
grams written in R-language [29]. Training of the clas-
sifiers was performed on a random sample of 80% of 
the subjects with tenfold cross-validation while testing 
the predictive performances used the remaining 20% 
independent testing set. Performances were assessed 
as ROC AUC, sensitivity, specificity, and accuracy. Ini-
tial variable selection in model building was based on 
relative univariate AUC variable performances, vari-
able interaction tests results, and the degree of cor-
relation between model variables using a mixed data 
analysis as shown in Supplemental Materials. Model 
selection was based on the AUC criterion. Calibration 
assessment was performed to evaluate the quality of 
predicted probabilities of the different models using a 
bootstrapping method detailed in Supplemental Materi-
als (Figures 7s–16s).

Functional Data Analysis of Hematoma CT Density Curves
A functional data analysis was performed on the hema-
toma density curves to visualize their main modes of 
variation in our cohort and to extract data-driven density 
features for patient outcome classification [30, 31]. Origi-
nal CT histograms were converted to smooth curves 
defined between 0 and 100 HU [32]. Three FPCs explain-
ing 87.7% of the variation between density curves were 
selected following Petersen and Müller’s FPC method for 
frequency distributions [33]. The resulting FPC scores 
(FPC1, FPC2, and FPC3) are non-correlated new vari-
ables related to the variation in the density curves to be 
added to our set of patient outcome predictors (Fig. 2)—
see further details on statistical analysis in Supplemental 
Materials.

Results
We included 430 subjects in the present analysis. The 
usability performance of the current automated segmen-
tation was assessed on a sample of 30 randomly selected 
cases using the number of user clicks to obtain the final 
segmentation (median: 1, IQR: [1–3]). The median seg-
mentation time including computation and user visual 
assessment was 13.7s (IQR: 16.9s). The ICC between auto-
mated and MIPAV volumes was 0.91 (95% CI 0.81–0.96) 
using a random sample of 50 cases. The intra-rater and 
inter-rater agreements of automated segmented hema-
toma volume were 0.98 (95% CI 0.97–0.99) and 0.96 (95% 
CI 0.94–0.98), respectively, on the same case sample.

The baseline characteristics are shown in Table  1. 
Table  2 shows the ROC AUC, sensitivity, specificity, 
and the cutoff values for the variables used in the pre-
dictive models. The imaging findings that are shown 
in Table 3 were significantly associated with death and 
poor functional outcomes (mRS 4–6). Table 4 summa-
rizes the predicting models for mortality and compos-
ite unfavorable outcome (mRS 4–6) at discharge. Our 
best predictive logistic regression model for mortal-
ity included age, admission GCS, hematoma volume, 
MLS, the interaction of hematoma volume * MLS, and 
hemorrhage in the pons. Our best predictive logistic 
regression model for discharge composite unfavora-
ble outcome included age, admission glucose, admis-
sion GCS, hematoma volume, SI, MLS, interaction of 
hematoma volume * SI, interaction of hematoma vol-
ume * GCS, and hemorrhage in the pons as predictors. 
Beside classification accuracy, our calibration assess-
ment confirmed that all models predicting death and 
the two most accurate models predicting composite 
unfavorable outcome provide an acceptable prediction 
of outcome probabilities with mean absolute errors 
between 0.007 and 0.022 (see Figure 7s to Figure 16s—
Supplemental Materials).
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Discussion
Among the admission radiologic imaging variables, 
ICH volume has long been known as a strong predictor 
of mortality [34]. Our univariate analysis confirmed the 
value of ICH volume for the prediction of in-hospital 
death (AUC: 0.82 [0.83–0.89]) and composite unfavorable 

outcome (AUC: 0.83 [0.79–0.86]). The optimal cutoff 
point for the hematoma volumes was > 41.6 ml (Table 2). 
Other published studies have reported hematoma vol-
ume cutoff values of > 32 ml (supratentorial) and > 21 ml 
(infratentorial) for predicting 30-day mortality [35], 40 ml 
cutoff volume predicting a poor outcome in patients with 

Fig. 2  Functional principal component (FPC) scores for hematoma density profiles. a FPC1: First mode of variation in the hematoma density curves 
starting from highly heterogeneous higher densities curves (10th percentile—light gray curve) moving toward heterogeneous curve profiles 
(25th percentile, mean, 75th percentile) ending with more homogeneous low densities hematoma (90th percentile—black curve). b FPC2: second 
independent type of variation starting from highly heterogeneous pattern of mixed low (predominant) and mid-densities (10th percentile—light 
gray) to a moderately high-density profile (90th percentile—black). c FPC3: Third independent mode of variation in hematoma density profile 
shows hematoma density transitioning from homogeneous curves (10th percentile—light gray) centered around 55HU to bimodal high-density 
dominant curves (around 65–70 HU and lower densities (40–45 HU)—90th percentile—black)
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lobar hemorrhage [36], and > 60  ml cutoff point for the 
highest mortality rate [37]. The difference in cutoff values 
may be due to different outcome scales, different follow-
up times, or different studied cohorts [35–37].

Our multivariate analysis revealed a significant inter-
action between hematoma volume and MLS (p = 0.038) 
for mortality prediction adjusted for SI, hematoma in 
the cerebellum and the pons (see Figure 5s and Table 1s 
in Supplemental Materials). It should be noted that a 
strong nonlinear effect seen in the OR change for 4-class 

ordered MLS > 10  mm (see Table  3) and the interaction 
MLS*volume in our model may explain the lack of sig-
nificant benefit of using 4-category MLS over the binary 
MLS.

Further, we also observed a significant interaction 
between hematoma volume and GCS (p = 0.004) for 
severe disability prediction adjusted for hemorrhage 
in the pons and age (see Figure 6s and Table 2s in Sup-
plemental Materials). Regarding SI, irregular-shaped 
hematomas were associated with larger hematoma, 

Table 1  Baseline continuous characteristics of ICH per in-hospital mortality and disability outcome

CT computed tomography, DBP diastolic blood pressure, DNR do not resuscitate, FPC functional principal component, GCS Glasgow Coma Scale, ICH intracerebral 
hemorrhage, INR international normalized ratio, IVH intraventricular hemorrhage, mRS modified Rankin Scale, MLS midline shift, SBP systolic blood pressure, SI 
sphericity index

Variables In-hospital death Composite unfavorable outcome

Discharged alive 
(n = 298)

Died in hospital 
(n = 132)

p value mRS 0–3 (n = 155) mRS 4–6 (n = 275) p value

Demographics

 Age (year) 67 [57–79] 73 [58.5–83] 0.037 64 [56–75] 71 [59–81] < 0.001

 Weight (lb) 169 [141–202] 169 [140–194.5] 0.873 172 [143.25–207] 165 [141–192.8] 0.140

 Sex (M/F) 169/129 (56.71%) 73/59 (55.30%) 0.830 96/59 (61.94%) 146/129 (53.09%) 0.085

Baseline clinical characteristics

 GCS 14 [11–15] 3 [3–7.5] < 0.001 15 [14, 15] 8 [3–13] < 0.001

 DBP (mmHg) 94 [80–109] 96.5 [78–111] 0.759 93 [78.25–107] 96 [80–111] 0.189

 SBP (mmHg) 168.5 [143–192] 161 [142–197] 0.831 164 [140–190] 172 [146.25–197] 0.040

 Creatinine (mg/dl) 0.89 [0.72–1.1] 0.94 [0.75–1.195] 0.039 0.88 [0.70–1.10] 0.9 [0.72–1.15] 0.417

 Glucose (mg/dl) 124 [105–151] 158.5 [134–204] < 0.001 118 [103–137.75] 147 [116.25–181] < 0.001

 INR 1.07 [1–1.2] 1.1 [1–1.45] 0.017 1.08 [1–1.19] 1.1 [1–1.3] 0.037

 Warfarin intake 246/44 247/28 0.077 136/18 194/54 0.012

 DNR (1/0) 8/290 (2.68%) 16/116 (12.12%) < 0.001 2/153 (1.31%) 22/253 (8.0%) 0.003

Baseline imaging characteristics

 Onset to CT (h) 1.5 [1–3] 1.5 [1–2.5] 0.347 2 [1–3.5] 1.5 [1–2.5] 0.008

 Volume (ml) 9.41 [3.01–26.46] 61.74 [26.83–91.78] < 0.001 6.08 [2.08–12.29] 34.4 [13.93–70.58] < 0.001

 SI 0.63 [0.49–0.73] 0.45 [0.36–0.54] < 0.001 0.67 [0.55–0.74] 0.51 [0.41–0.64] < 0.001

 Mean CT (HU) 56.45 [52.8–60.1] 57.15 [53.2–60.8] 0.227 56.1 [52.83–59.8] 56.9 [53.1–61.03] 0.070

 SD CT (HU) 8.1 [6.9–9.2] 8.95 [7.55–10.35] < 0.001 8.1 [6.4–7.3] 8.1 [6.9–9.1] 0.022

 FPC1 0.0084 [− 0.118 to 0.175] − 0.1016 [–0.225–0.0592] < 0.001 0.0267 [− 0.076 to 0.193] − 0.0718 [− 0.187 to 
0.114]

< 0.001

 FPC2 0.0021 [− 0.110 to 0.102] 0.0207 [− 0.081 to 0.015] 0.376 − 0.045 [− 0.145 to 0.082] 0.025 [− 0.073 to 0.11] 0.001

 FPC3 − 0.015 [–0.092–0.059] 0.027 [− 0.034 to 0.074] < 0.001 − 0.031 [0.10–0.059] 0.016 [0.067–0.072] 0.005

 Lobar 127/171 (42.62%) 63/69 (47.73%) 0.340 63/92 (40.65%) 127/148 (46.18%) 0.310

 Basal ganglia 86/212 (28.86%) 39/93 (29.55%) 0.910 44/111 (80.00%) 81/194 (29.45%) 0.830

 Midbrain 5/293 (1.68%) 12/120 (9.09%) < 0.001 3/152 (1.94%) 14/261 (5.09%) 0.130

 Thalamus 57/241 (19.13%) 19/113 (14.39%) 0.270 31/124 (20.00%) 45/230 (16.36%) 0.360

 Cerebellum 26/27 (28.72%) 13/119 (9.85%) 0.720 14/141 (9.03%) 25/250 (9.09%) 1.000

 Pons 10/288 (3.36%) 18/114 (13.64%) < 0.001 4/151 (2.58%) 24/251 (8.73%) 0.014

 IVH 107/191 (35.91%) 98/34 (74.24%) < 0.001 45/110 (29.03%) 160/115 (58.18%) < 0.001

 MLS 64/234 (21.48%) 80/52 (60.61%) < 0.001 21/134 (13.55%) 123/152 (44.73%) < 0.001

 Hydrocephalus 20/278 (6.71%) 45/87 (34.09%) < 0.001 7/148 (4.52%) 58/217 (21.09%) < 0.001

 Herniation 15/283 (5.03%) 35/97 (26.52%) < 0.001 3/15 2 (1.94%) 47/228 (17.09%) < 0.001
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intraventricular hemorrhage (IVH), death, and severe 
disability at the time of discharge. Both SI cutoff values 
for mortality and severe disability were < 0.54. SI was a 
significant predictor of both death (p < 0.001) and com-
posite unfavorable outcome (p = 0.002) even after adjust-
ing for hematoma volume and MLS. The previous studies 
defining the irregularity of the hematoma shape by vis-
ual inspection have shown a relationship between the 
irregular shape and poor clinical outcome at 30 days and 
3 months post-ICH [19, 38]. The underlying mechanism 
might be the higher risk of hematoma expansion (HE) 
in irregular-shaped hematomas, which is a predictor of 
poor clinical outcomes in patients with ICH [19].

Our univariate study showed that heterogeneous 
hematomas with higher-density profiles were only mod-
erately associated with higher mortality (FPC1, AUC: 
0.64) and severe disability (FPC1, AUC: 0.62). FPC1 was 
also moderately associated with hematoma volume (see 

Figures  1s–4s in Supplemental Materials). This correla-
tion partly explains the increased mortality associated 
with FPC1 higher-density heterogeneous profiles. How-
ever, FPC1 remained a significant predictor of mortal-
ity using Wald test (p = 0.0272) even after adjustment 
for hematoma volume but only marginally significant 
(p = 0.052) in a model to predict mortality after adjust-
ment for hematoma volume and location. A heterogene-
ous density hematoma might reflect active hemorrhage, 
an extended hemorrhagic time course, and multifocality 
which might be a predictor of HE and worse outcomes 
[39]. FPC2 predictor was not significantly associated with 
the patient outcome. It is worth mentioning that Now-
inski et  al. [40] presented CT density profiles of IVH-
ICH acquired at different times during the acute and 
subacute phases (1–7 days) that are strikingly similar to 
FPC2 curves shown in Fig.  2, suggesting a possible (yet 
unconfirmed) common interpretation in terms of hema-
toma maturation. Considering the FPC3 predictor, het-
erogeneous bimodal low- and high-density curves were 
also associated with mortality compared to unimodal 
medium-density curves. These results are consistent 
with the previous studies mentioning hematoma den-
sity heterogeneity as indicative of poor clinical outcome 
and mortality [16, 20, 39]. In an exploratory sub-study 
analysis using the 316 cases of our dataset with follow-up 
CT scan, FPC3 was also found to be the best significant 
CT imaging predictor (p = 0.0138) of the HE (defined 
as > 33% or > 6  ml increase)—see Supplemental Materi-
als. FPC3 was significantly associated with HE even after 
combining it with the other significant clinical predictors 
at baseline: INR (p = 0.0015), creatinine (p = 0.0042), and 
GCS score (p = 0.0372) with a modest overall accuracy 

Table 2  In-hospital death and composite unfavorable outcome cutoff points

CI conidence interval, FPC functional principal component, GCS Glasgow Coma Scale, mRS modiied Rankin Scale, SI sphericity index

Variable In-hospital death Composite unfavorable outcome (mRS: 4–6)

Cutoff point AUC [95% CI] Sensitivity Specificity Cutoff point AUC [95% CI] Sensitivity (%) Specificity (%)

GCS < 11 0.90 [0.87–0.93] 93.18% 73.49% ≤ 12 0.88 [0.84–0.91] 73.45 90.97

Age (years) > 72 0.56 [0.51–0.61] 50.76% 63.09% > 74 0.60 [0.55–0.64] 45.45 74.84

Admission glu-
cose (mg/dl)

> 133 0.72 [0.67–0.76] 77.27% 60.40% > 133 0.69 [0.65–0.74] 63.64 70.97

Initial hema-
toma volume 
(ml)

> 41.8 0.86 [0.83–0.89] 68.18% 87.58% > 23.6 0.83 [0.79–0.86] 64.0 90.32

SI ≤ 0.54 0.78 [0.73–0.81] 75.75% 67.61% ≤ 0.54 0.71 [0.67– 0.75] 58.18 75.48

FPC1 < 0.078 [40th 
percentile]

0.62 [0.58–0.67] 49.45% 75.48% < 0.078 [40th 
percentile]

0.64 [0.59–0.68] 56.82 67.45

FPC2 NA NA NA NA > 0.032 [40th 
percentile]

0.59 [0.55–0.64] 67.64 54.19

FPC3 > − 0.052 [35th 
percentile]

0.61 [0.56–0.65] 80.3% 42.3% > 0.080 [26th 
percentile]

0.58 [0.53–0.63] 80.0 36.77

Table 3  Imaging predictors of in-hospital outcomes

CI confidence interval, IVH intraventricular hemorrhage, mRS modified Rankin 
Scale, MLS midline shift, binary and 4-class, OR odds ratio

Predictors In–hospital death 
OR [95% CI]

Composite unfa‑
vorable outcome OR 
[95% CI]

MLS (binary) 5.5 [3.53–8.57] 9.63 [5.41–17.34]

MLS-2 (2–5 mm) 3.12 [1.48–6.57] 1.58 [0.76–3.32]

MLS-3 (5–10 mm) 2.92 [1.52–5.59] 1.95 [1.95–9.56]

MLS-4 (> 10 mm) 15.76 [7.95–31.22] 50.14 [6.85–366.92]

IVH 4.97 [3.16–7. 82] 7.12 [4.22–11.99]

Hydrocephalus 7.1 [3.97–12.63] 10.81 [4.67–25.02]

Herniation 6.7 [3.52–12.82] 18.1 [5.42–60.45]

Hemorrhage in pons 4.49 [2.013–10.02] 5.91 [1.95–17.93]
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of AUC: 0.70 [0.65 to 0.75]) for the logistic regression. 
Moreover, FPC3 values were significantly higher in 
HE group (n = 52) compared to no HE group (n = 378), 
Mann–Whitney test (p = 0.0009). See Figures  16s–17s 
in Supplemental Materials. These findings are consistent 
with the previous studies showing the role of heteroge-
nous hematoma density in the prediction of HE [16–18, 
20].

Nonetheless, further detailed investigation on hema-
toma density profiles is needed to fully understand the 
way they affect the outcome. Our study also showed 
that IVH was significantly associated with mortality and 
severe disability that is in line with the previous stud-
ies [41]. However, IVH did not improve the prediction 
of the outcome (data are not shown) and was therefore 
excluded from the final models.

The present study shows high predictive accuracy of 
the best models for in-hospital mortality using both 

imaging and clinical variables (Model E1: AUC: 0.95 
[0.90–0.99]) and models with radiologic imaging only 
variables (Model C1: AUC: 0.91 [0.86–0.97]). Similarly, 
we observed a high prdictive accuraracy of our best 
models for composite unfavorable outcome using both 
imaging and clinical variables (Model E2: AUC: 0.92 
[0.86–0.98]) and imaging only variables (Model C2: AUC: 
0.88 [0.80–0.95]). These results are in agreement with 
previous predictive models summarized by Gregório 
et al. [42] meta-analysis which reported a pooled C statis-
tic (AUC) of 0.880 for mortality prediction and 0.872 for 
functional outcome prediction. Logistic regression mod-
els performed as well as more complex nonlinear mod-
els such as random forests (see Model C1 in Table 4) in 
agreement with Gregório et al. [42] results.

Since the logistic regression models also allow fast 
computation and are easily interpretable, they are the 
best candidates for future automated classifiers. Our 

Table 4  Prediction models for in-hospital mortality and severe disability (mRS 4–6) at discharge

FPC functional principal component, GCS Glasgow Coma Scale, MLS midline shift, mRS modiied Rankin Scale, SI sphericity index. AUCs significant different from 
volume-only Model E (DeLong method for correlated AUCs). Model E1: z-score: 2.88, p = 0.0039. Model D1: z-score: 2.69, p = 0.007. Model C1: z-score: 2.69, p = 0.007. 
Model E2: z-score: 1.87, p = 0.062. Model D2: z-score: 1.98, p = 0.047

Models for in-hospital mortality

Predictors: Imaging only for in-hospital mortality

Performance Accuracy Sensitivity Specificity AUC​

Model A1: volume only

 Multiple logistic regression 81% [71–89%] 69% 86% 0.85 [0.76–0.93]

Model B1: volume + SI + interaction (volume * SI)

 Multiple logistic regression 81% [71–89%] 73% 85% 0.86 [0.77–0.94]

Model C1: volume + MLS + interaction (volume * MLS) + SI + pons + cerebellum

 Multiple logistic regression 82% [74–90] 81% 85% 0.91 [0.86–0.97]

 Random forest classifier 82% [73–90] 69% 90% 0.91 [0.84–0.97]

Predictors: clinical and imaging for in–hospital mortality

Model D1: GCS + volume + Pons + Age

 Multiple logistic regression 88% [79–94] 81% 92% 0.94 [0.89–0.99]

Model E1: GCS + volume + MLS + interaction (volume * MLS) + pons + age

 Multiple logistic regression 87% [78–93] 81% 90% 0.95 [0.90–0.99]

Models for severe disability

Predictors: Imaging only for severe disability

Model A2: volume only

 Multiple logistic regression 74% [64–83] 87% 52% 0.84 [0.76–0.93]

Model B2: volume + SI

 Multiple logistic regression 78% [68–86] 87% 58% 0.85 [0.77–0.93]

Model C2: volume + SI + interaction (volume * SI) + pons

 Multiple logistic regression 79% [69–87] 87% 68% 0.88 [0.80–0.95]

Predictors: clinical and imaging for severe disability

Model D2: volume + GCS + interaction (volume * GCS) + age + pons

 Multiple logistic regression 85% [76–92] 82% 87% 0.92 [0.86–0.98]

Model E2: volume + MLS + interaction (volume * MLS) + SI + GCS + interaction (GCS * SI) + pons + high glucose + age

 Multiple logistic regression 85% [76–91] 84% 87% 0.92 [0.86–0.98]
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separation of predictive models between an imaging only 
predictor group (A1-2, B1-2, and C1-2) and a composite 
imaging-clinical predictor group (D1-2 and E1-2) antici-
pates future practical challenges associated with the sec-
ond group as automatic retrieval of clinical variables in 
emergency settings is more complex than accessing only 
the radiologic imaging data since typical CT images con-
tain only basic demographic information (i.e., age and 
gender). Despite better average performances, best com-
posite models were not significantly more accurate than 
the best imaging only models. Moreover, the redundancy 
of predictors in clinical applications may be beneficial 
when clinical or imaging data are missing or borderline. 
Nonetheless, knowing the mild restrictive inclusion and 
exclusion criteria used in this study, performances of 
both types of models support the idea of feasibility for 
future automated predictive systems.

Limitations of the study include the inability to rule 
out inherent methodological issues given the retro-
spective nature of the study. Additionally, only hospital 
discharge outcomes were considered for the study, and 
associations with long-term functional outcomes remain 
to be validated. Other than an exploratory review of HE 
predictors including FPC3, this study did not assess HE 
due to a significant number of patients (n = 114) with 
missing follow-up CT scans due to different reasons 
such as death, care directive measures initiated before 
the follow-up scan, or the patient who had undergone 
hematoma evacuation within the first 24 h of admission. 
Even though one can use different statistical techniques 
to adjust for such variations, the task is not a straight-
forward and may lead to unreliable results. Nonetheless, 
the objective of the present study was to predict the out-
come solely based on the admission data. In our model, 
we didn’t compare the 3D hematoma volume measure-
ment method with the ABC/2 method since the plani-
metry and 3D techniques have been already compared 
with the ABC/2 method to highlight the shortcomings 
of the ABC/2 method [12]. The validation of our hema-
toma segmentation is based on hematoma volume com-
parison. However, a more accurate voxel-based method 
such as Dice’s similarity coefficient or Jaccard index is 
needed for validating the performance of the final ver-
sion of software.

Regarding the proposed quantitative features, the 
SI mostly represents large-scale shape regularity and 
thus cannot represent lower-scale heterogeneity (e.g., 
lobar hematomas). Future studies may consider recent 
advances applied to tumor shapes using statistical shape 
analysis [43], 3D spherical harmonics [44], or topologi-
cal data analysis [45]. Lastly, statistical tests applied on 
predictive models (either only imaging or composite 
models) could not establish that models using the new 

quantitative features are more accurate than their coun-
terpart without these features. Therefore, further valida-
tion with large independent datasets will be required.

Conclusion
Automated 3D hematoma segmentation on CT images 
can offer a comprehensive set of user-independent volu-
metric, shape-related, and CT densitometric quantita-
tive predictors of the ICH patient outcome. Predictive 
models combining these imaging predictors with other 
admission clinical variables demonstrate a high-accuracy 
prediction of mortality and disability, opening the way to 
future integrated decision support tools for the clinicians 
at the time of admission. Future work should determine 
the best options for such tools including the degree of 
integration of clinical information from medical history, 
patient monitoring system, touch screen-based user-ini-
tiated segmentation, visualization of outcome probability 
conditioned to treatment options, and database query of 
similar past cases.
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