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Abstract

Background Existing studies of quantitative electroen-

cephalography (qEEG) as a prognostic tool after cardiac

arrest (CA) use methods that ignore the longitudinal pattern

of qEEG data, resulting in significant information loss and

precluding analysis of clinically important temporal trends.

We tested the utility of group-based trajectory modeling

(GBTM) for qEEG classification, focusing on the specific

example of suppression ratio (SR).

Methods We included comatose CA patients hospitalized

from April 2010 to October 2014, excluding CA from

trauma or neurological catastrophe. We used Persyst�v12

to generate SR trends and used semi-quantitative methods

to choose appropriate sampling and averaging strategies.

We used GBTM to partition SR data into different trajec-

tories and regression associate trajectories with outcome.

We derived a multivariate logistic model using clinical

variables without qEEG to predict survival, then added

trajectories and/or non-longitudinal SR estimates, and

assessed changes in model performance.

Results Overall, 289 CA patients had C36 h of EEG

yielding 10,404 h of data (mean age 57 years, 81 % arrested

out-of-hospital, 33 % shockable rhythms, 31 % overall

survival, 17 % discharged to home or acute rehabilitation).

We identified 4 distinct SR trajectories associated with

survival (62, 26, 12, and 0 %, P < 0.0001 across groups)

and CPC (35, 10, 4, and 0 %, P < 0.0001 across groups).

Adding trajectories significantly improved model perfor-

mance compared to adding non-longitudinal data.

Conclusions Longitudinal analysis of continuous qEEG

data using GBTM provides more predictive information

than analysis of qEEG at single time-points after CA.

Keywords Cardiac arrest � Anoxic brain injury �
Quantitative electroencephalography � Suppression ratio �
Prognosis

Introduction

The majority of patients hospitalized after sudden cardiac

arrest (CA) are comatose [1, 2]. Seizures or other ‘‘ma-

lignant’’ electroencephalographic (EEG) patterns develop

commonly in these patients and are associated with worse

neurological outcomes [3–8]. EEG interpretation can be

qualitative (e.g., ‘‘diffuse slowing with periods of
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attenuation’’) or quantitative (e.g., spectral power or sup-

pression ratio (SR)). Theoretical advantages to quantitative

EEG analysis (qEEG) are reduced subjectivity and inter-

observer variability, and the ability to detect subtle changes

that may be imperceptible to the human eye [9]. Several

qEEG metrics are associated with clinical outcomes after

CA, including amplitude-integrated EEG [10, 11], SR [12–

14], and bispectral index [13, 14]. Multiple qEEG metrics

may be combined into composite prognostic tools [15].

Previous studies of qEEG after CA have not accounted

for the correlated, longitudinal nature of EEG data or

dynamic evolution over time. Many report average qEEG

measures within a given epoch, generally at baseline and

fixed intervals thereafter. This results in significant infor-

mation loss. This compression of continuous qEEG data is a

specific example of a general problem for modern biomed-

ical research: physiological variables are continuously

recorded for extended durations with high time resolution,

but not analyzed as such. Unfortunately, optimal analytical

methods to approach intensively sampled longitudinal data

in critically ill populations are not well established.

We sought to investigate longitudinal techniques for

analysis of high-resolution time-series qEEG data and

identify rational parameters for temporal and spatial aver-

aging that minimize information loss. Group-based

trajectory modeling (GBTM) is a specialized application of

finite mixture modeling that determines trends in longitu-

dinal data by identifying clusters of individuals with

similar data evolution (trajectory) over time [16]. This

approach leverages the power of repeated sampling.

We tested the utility of GBTM for qEEG analysis after

CA, using the specific example of SR for methodological

development. We hypothesized that GBTM could define

distinct trajectories of SR that were associated with func-

tional outcome at hospital discharge. Secondarily, we

hypothesized that SR trajectory group membership would

be an independent predictor of outcome and significantly

improve prediction above and beyond non-longitudinal

summary estimates of SR.

Methods

In this study, we aimed to (1) test whether global brain SR

can be calculated from SR in individual EEG leads; (2)

identify the optimal epoch length for comparing temporal

trends in SR; (3) define prognostic SR trajectories that

predict patient outcome; (4) test the minimum length of

observation necessary to determine an SR trajectory; and

(5) determine whether incremental information is gained

when SR trajectories are added to a multivariable prog-

nostic model using clinical variables to predict outcome.

Patients and Setting

The University of Pittsburgh Institutional Review Board

approved this study. We performed an observational cohort

study of consecutive patients hospitalized at a single aca-

demic center from April 2010 to October 2014 with C6 h

of EEG monitoring. We maintain a registry of all patients

treated by our Post-Cardiac Arrest Service including

demographic and disease-specific baseline characteristics,

treatments, and outcomes. Our local standard of care is to

monitor all comatose survivors of CA with continuous

EEG [17], and during the study period we cooled all

comatose post-CA patients to 33 �C for 24 h, regardless of

initial rhythm or arrest location. We excluded patients from

this analysis for arrest from trauma, exsanguination, or

catastrophic neurological event (arrest secondary to sub-

arachnoid hemorrhage, stroke, or status epilepticus), and

those who died or were transitioned to comfort measures

only within 6 h of presentation.

EEG Acquisition and Processing

Our hospital has in-house EEG technologist coverage

around-the-clock. EEG recordings generally started upon

ICU arrival, an average of 6–8 h after return of sponta-

neous circulation (ROSC). We applied 22 gold-plated cup

electrodes to the scalp in the standard 10–20 International

System of Electrode Placement and recorded data using

XLTech Natus� Neuroworks digital video/EEG systems

(Natus Medical, Pleasanton, CA). Clinical care, including

antiepileptic and sedation management, was performed by

the treating clinician according to standardized protocols

(Supplemental Appendix 1). We continued EEG monitor-

ing until awakening, death, or approximately 48 h of

recording without any actionable findings. It is our insti-

tutional protocol to stimulate patients sequentially using

photic, auditory, and tactile stimuli at the initiation of EEG

monitoring. We included data derived during this stimu-

lation period in the present analysis.

We generated qEEG metrics using Persyst� v12 (Persyst

Development Co., Prescott, AZ) using standard processing

engines. For SR, the software divides each lead’s data into

10-s epochs and calculates the total duration that epoch is

‘‘suppressed’’ (defined as a C0.5 s <3lV amplitude, the

default threshold values in Persyst v12). The software

calculates a 60-s running average to yield each channel’s

SR. We used Persyst’s standard algorithm for artifact

reduction (blind source separation) and exported qEEG

trends in 1-s epochs. We then combined these trends with

patients’ baseline and outcomes data in a relational data-

base using SQLServer�2014 (Microsoft, Redmond, WA).
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Signal Sampling and Averaging

First, we determined whether important information was

lost by averaging SR over the entire skull. Initial qEEG

processing resulted second-by-second SR values for each

channel in each patient. There is no theoretical limitation to

the number of points that can be modeled using GBTM, but

inclusion of non-informative data results in computation-

ally intensive models that perform no better than more

parsimonious models, and may perform worse if included

data have a poor signal-to-noise ratio. By contrast, exces-

sive down sampling leads to loss of information and

statistical power.

Our clinical observation is that SR is highly spatially

correlated across individual EEG channels and cerebral

hemispheres. Thus, averaging hemispheric or whole-brain

SR would result in little information loss and could

improve signal-to-noise ratio by averaging out artifact from

signal EEG leads. To test this, we selected a random

sample of ten patients and analyzed 75,000 SR data points.

We calculated the correlation coefficient between left and

right hemispheres to determine whether data from a single

hemisphere was representative of whole-brain SR. Next,

we calculated all possible pairwise correlation coefficients

between EEG channels to determine the range of correla-

tions between leads. Finally, we used a generalized linear

model with nested random effects to estimate the variance

components for lead, observation, and random error (SPSS

v22.0, IBM Corp, Armonk, NY). These were used to cal-

culate the within-observation intraclass correlation

coefficient (ICC) (i.e., the proportion of total variance

accounted for by lead-to-lead variance).

Second, we hypothesized that clinically relevant chan-

ges in SR would occur over hours rather than seconds or

minutes. Moreover, in patients with discontinuous back-

grounds, large fluctuations in SR may reflect the

intermittent EEG background activity rather than mean-

ingful temporal evolution. To estimate the optimal duration

for SR averaging, after developing our GBTM (see below),

we repeated GBTM procedures varying epoch length (10

and 30 s; 1, 2, 5, 10, and 30 min; 1, 2, 4, and 6 h) and

inspected the resultant trajectories for stability. We also

compared the incremental change in Bayesian information

criteria (BIC) after adjustment for the number of samples

per trajectory and computational intensity between these

models to identify an inflection point that balanced parsi-

mony and information loss.

Third, we determined the minimum duration of obser-

vation necessary to accurately assign SR trajectories.

GBTM requires that all trajectories be the same duration,

so data from subjects with varying durations of monitoring

could not be combined into a single model without cen-

soring data at the shortest duration of observation. In our

cohort, approximately one-third of subjects were monitored

at least 48 h. We performed GBTM (see below) in this

subgroup using 48 h of observation, then repeated GBTM

procedures iteratively censoring the data at 42, 36, 30, 24,

18, and 12 h. Using the 48-h trajectories as a ‘‘gold stan-

dard,’’ we calculated percent misclassification for the

censored data and plotted this and potential sample size

against duration of observation.

Based on the results of these analyses (see Results), in

our final GBTM models we used 36-h observations of

median hemispheric SR evaluated in consecutive 1-h

epochs.

Predictors, Covariates, and Outcomes

Our fourth step was to examine trajectory group mem-

bership from GBTM as a predictor of neurological

outcome at hospital discharge in regression modeling. As

non-longitudinal alternative representations of SR, we used

median SR at baseline (0–1 h) and day one (24–25 h)

treated as a continuous predictors. Baseline SR measure-

ments included data obtained during patient stimulation at

EEG initiation.

We abstracted demographic and basic patient informa-

tion from our registry, including patient age, gender,

location of arrest (out-of-hospital versus in-hospital), pre-

senting rhythm (ventricular tachycardia or fibrillation (VT/

VF) versus pulseless electrical activity (PEA) or asystole),

Charlson comorbidity index (CCI), and Pittsburgh CA

Category (PCAC). The PCAC is a validated clinical pre-

diction tool that stratifies CA survivors by risk of in-

hospital death or neurological deterioration based on neu-

rological examination and cardiopulmonary dysfunction in

the first 6 h after ROSC [18]. The tool stratifies survivors

of CA into four categories that are strongly predictive of

survival and functional outcome. PCAC I patients are by

definition awake, and therefore excluded. Other standard

CA covariates are collapse to cardiopulmonary resuscita-

tion (CPR) and CPR to ROSC intervals, witnessed

collapse, bystander-administered CPR resuscitation, and

use of hypothermia. We have previously demonstrated

arrest intervals [19], witnessed collapse, and bystander

CPR [20], to be unreliable reported in our care system, and

so we did not include them in our models. Temperature

management during the study period was standardized

across all eligible subjects (Supplemental Fig. 3), exclud-

ing this as a covariate. Finally, we collected sedative and

antiepileptic medication data, which we further stratified

by observation period (0–17 and 18–36 h).

Our primary outcome of interest was survival to hospital

discharge, and our secondary outcome was functionally

favorable survival, defined as discharge to home or acute

rehabilitation.
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Statistical Methods

We used descriptive statistics to summarize baseline pop-

ulation characteristics and outcomes. We used GBTM with

a censored normal distribution, and used Bayesian and

Akaike information criteria (BIC and AIC) for GBTM

model selection. To test the incremental value of including

SR trajectory group membership, we constructed a series of

adjusted logistic regression models. First, we developed a

saturated ‘‘Clinical Model’’ including all potential baseline

predictors of outcome except for EEG data. We included

baseline predictors in this model regardless of their unad-

justed association with outcome since our goal was to

explain the maximum amount of variability in outcome

possible without EEG data, rather than determining inde-

pendent predictors of outcome. We then challenged this

model to assess performance improvement by sequential

addition of non-longitudinal SR (baseline and day 1

medians) and trajectory group membership. Given the low

incidence of favorable outcomes in certain trajectory

groups, we used Firth’s penalized likelihood approach to

minimize bias in coefficient estimates.

We used several complementary methods to compare

performances of the Clinical Model and models incorpo-

rating SR metrics. To compare models, we calculated C-

statistics for each model and compared these values and

AICs between models. We also calculated the net reclassi-

fication improvement (NRI) between models using in-

hospital mortality cutoffs of 15, 30, and 45 %, and 5, 50, and

95 % [21]. We used SAS v9.3 (SAS Institute, Cary NC).

Results

Cohort Composition

During the study period, 1012 CA patients were treated,

and 451 (45 %) of these met both inclusion and exclusion

criteria (Fig. 1). In total, 37,447 h of EEG data were

obtained and analyzed (mean 83 h/patient), and 289

patients had C36 h of EEG data. Mean age was 58 years,

351 (78 %) arrested out-of-hospital, and 132 (34 %) had a

shockable rhythm (Table 1). Survival to discharge was 30

and 16 % had functionally favorable survival.

Signal Sampling and Averaging

Calculating SR by EEG channel using a longitudinal

bipolar montage resulted in approximately 2.16 9 108 data

points (average 478,000 points/patient). Left and right

hemisphere SRs were near-perfectly correlated (Pearson’s

R = 0.98). In all possible pairwise comparisons of SR

across bipolar channels, median correlation coefficient was

0.87 (IQR 0.83–0.92, all Ps for pairwise correlations

<0.0001). The ICC for SR was 0.85, indicating a strong

correlation between simultaneously measured SR in across

leads. Since signal quality in individual leads is may be

degraded by noise or artifact, falsely reducing SR, we

chose to analyze average SR averaged across a single

cerebral hemisphere.

Overall, 186 subjects had C48 h of EEG data. Using this

48-h cohort and iteratively censoring data input into

GBTM, we were able to calculate the rate of trajectory

group misclassification using these censored data compared

to the full model. Inspecting the plot of percent misclas-

sification and sample size versus trajectory length

(Supplemental Appendix Fig. 1a), we selected 36-h tra-

jectories for subsequent analyses and final modeling,

yielding a cohort of 289 patients.

When we repeated GBTM modeling using varying

epoch lengths, we found good stability of trajectories

across models (Supplemental Appendix Fig. 2). Models

using more than 25,000 data points (10-min epochs or

shorter) failed to converge. Comparing adjusted BICs and

computational intensity across these models supported the

use of either 40- or 60-min epochs (Supplemental Appen-

dix Fig. 1b). Consequently, we chose to use 60-min epochs

for subsequent analyses and final modeling.

Trajectory Modeling

Using these sampling strategies and GBTM, a 4-Group

trajectory model best fit the data (Fig. 2). Both survival and

favorable neurological outcomes decreased by approxi-

mately 50 % across increasing trajectory groups, then fell

to near 0 for trajectory Group 4 (Table 2).

Comparison of Prognostic Models

The best performing prognostic model included clinical

predictors, baseline SR and trajectory group membership

Fig. 1 Subject accrual and exclusions

418 Neurocrit Care (2016) 25:415–423

123



(Table 3). Adding baseline SR and trajectory group

membership individually or in combination to the base

clinical model improved discriminatory power (Supple-

mental Table 1). Adding baseline SR and trajectory group

membership individually and in combination also resulted

in significantly improved NRI (P < 0.0001 for all three

comparisons).

Discussion

We present results from a large cohort study of EEG after

cardiac arrest, and the first to use longitudinal methods to

analyze these data. We set forth a methodological frame-

work to analyze these intensively sampled, time-series

data. Using GBTM to describe the evolution of SR over

time, we identified four strongly prognostic trajectories that

describe these data. Incorporating these trajectories into

prognostic modeling significantly improves the discrimi-

natory power of these models to predict outcome compared

to models that use only clinical and non-longitudinal EEG

data.

Our results are consistent with, and expand upon, work

recently published by Oh et al., who report the association

of time-to-normalization of single-channel amplitude-in-

tegrated EEG (aEEG) after CA with outcome [22].

Consistent with Oh’s results, we find that qEEG in the first

36 h after CA identifies a subpopulation of patients with

uniformly poor outcomes. Oh et al. describe their reliance

on a single EEG channel as a potential limitation, and

Table 1 Baseline population characteristics and outcomes, overall and stratified by trajectory group membership

Subjects included in trajectory analysis

Characteristic Overall cohort

(n = 451)

Entire GBTM

cohort (n = 289)

Trajectory Group

1 (n = 88)

Trajectory Group

2 (n = 85)

Trajectory Group

3 (n = 52)

Trajectory Group

4 (n = 64)

Age (years) 57.7 (16.4) 57.1 (15.6) 52.8 (15.9) 58.7 (14.8) 57.5 (16.0) 60.4 (15.2)

Female gender 164 (36.4 %) 97 (33.6 %) 30 (34.1 %) 25 (29.4 %) 20 (38.5 %) 22 (34.4 %)

Out-of-hospital arrest 352 (78.1 %) 235 (81.3 %) 70 (79.5 %) 67 (78.8 %) 44 (84.6 %) 54 (84.4 %)

Pittsburgh CA Category

II 100 (24.0 %) 72 (26.5 %) 35 (42.2 %) 26 (32.9 %) 6 (12.2 %) 5 (8.2 %)

III 55 (13.2 %) 37 (13.6 %) 17 (20.5 %) 11 (13.9 %) 5 (10.2 %) 4 (6.6 %)

IV 256 (61.4 %) 163 (59.9 %) 31 (37.3 %) 42 (53.2 %) 38 (77.6 %) 52 (85.2 %)

Charlson comorbidity

index

1.0 (1.6) 1.0 (1.6) 1.0 (1.7) 0.8 (1.4) 0.8 (1.3) 1.3 (1.8)

Initial arrest rhythm

VF/VT 132 (33.8 %) 95 (36.1 %) 39 (50.6 %) 31 (39.2 %) 15 (31.9 %) 10 (16.7 %)

PEA 144 (36.8 %) 86 (32.7 %) 21 (27.3 %) 21 (26.6 %) 22 (46.8 %) 22 (36.7 %)

Asystole 115 (29.4 %) 82 (31.2 %) 17 (22.1 %) 27 (34.2 %) 10 (21.3 %) 28 (46.7 %)

Hospital length of stay

Survivors 18 (12–27) 18.5 (13–27.5) 18 (13–27) 22 (13–32) 14 (9–23) 18 (18–18)

Non-survivors 4 (3–6) 4 (4–6) 5.5 (4–7) 5 (4–9) 4 (3–5) 4 (3–6)

Survival 134 (30.1 %) 92 (31.8 %) 56 (63.6 %) 27 (31.8 %) 8 (15.4 %) 1 (1.6 %)

Favorable neurological

outcome

73 (16.5 %) 49 (17.0 %) 35 (39.8 %) 11 (12.9 %) 3 (5.8 %) 0 (0.0 %)

Mode of deatha

Withdrawal for

neurological prognosis

211 (67.2) 158 (81.0) 22 (68.8) 49 (84.5) 40 (90.9) 47 (77.1)

Brain death 32 (10.2) 13 (6.7) 0 (0) 2 (3.5) 1 (2.33) 10 (16.4)

Medically unstable/re-

arrest

56 (17.8) 19 (9.7) 9 (28.1) 7 (12.1) 1 (2.3) 2 (3.3)

Surrogate’s representation

of patient’s wishes

15 (4.8) 5 (2.6) 1 (3.1) 0 (0) 2 (4.6) 2 (3.3)

Data are presented as mean (standard deviation), raw number with corresponding percentage and median [interquartile range] for length of stay

GBTM cohort comprises subjects within the overall cohort with C36 h of electroencephalographic monitoring

GBTM group-based trajectory modeling, CA cardiac arrest, VT/VF ventricular tachycardia or fibrillation, PEA pulseless electrical activity
a Reported as number and corresponding percentages of non-survivors
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others have called for validation of simplified EEG mon-

tages before widespread use [23]. To our knowledge, our

work is the first to support this strategy. The degree of

spatial correlation we demonstrate between individual EEG

leads in this population demonstrates that simplified mon-

tages are unlikely to result in information loss about SR,

although other qEEG measures may differ. This lack of

spatial heterogeneity between hemispheres may be a

reflection of the relatively diffuse brain injury, in contrast

to the more focal lesions found after cerebrovascular

accident or brain trauma. Similarly, the lack of other

regional variation in spectral power, for example between

frontal and occipital regions, may reflect a relatively static

(over the 36-h observation period we selected) and diffuse

post-anoxic cortical network failure in contrast to that

observed in focal brain trauma or in response to sedation

[24].

Currently, guidelines recommend delaying neurological

prognostication for at least 72 h after CA because, prior to

this time, no clinical sign, test, or combination of findings

short of progression to brain death preclude a favorable

outcome [25–32]. Our work strengthens the assertion that

qEEG, in combination with clinical findings, might shorten

the time to accurate neurological prognostication. While

patients following trajectory Group 4 had no favorable

outcomes, the 95 % confidence interval for our point

estimate was 0–6 %. Withdrawal of life-sustaining therapy

is uniformly fatal in this population, so new methods must

be thoroughly evaluated to prevent avoidable mortality

resulting from inaccurate prognostication and subsequent

withdrawal. EEG and qEEG are two of multiple modalities

available to inform accurate prognostication, and SR is just

one quantitative metric that can be derived from the

complex and information-rich EEG signal. Further work is

also needed to elucidate which of many qEEG metrics are

the most informative, alone or in combination, for prog-

nostication. Before consideration of prognostication earlier

than 72 h after CA, our results must be replicated by others

to establish external validity and narrow confidence inter-

vals around the final point estimate of outcome. To avoid

self-fulfilling prophecies, this validation should be

prospective, and carried out in a cohort of patients who are

consistently monitored for at least 36 h without exposure to

withdrawal of life-sustaining therapy based on perceived

neurological prognosis.

Our findings also suggest the significance of baseline

EEG suppression after CA may be limited. Most of our

subjects fell into trajectories with baseline SR above 50 %.

Although baseline SR was associated with outcome,

improvement in SR over the first 36 h portended signifi-

cantly better outcomes than persistent suppression. This is

Fig. 2 a Raw suppression ratio data by subject, coded by final

trajectory group membership, b final trajectory model with corre-

sponding 95 % confidence bands for suppression ratio in the first 36 h

after cardiac arrest

Table 2 Association of trajectory group membership with outcomes

Trajectory group membership Survival to discharge Discharged with favorable outcome

Percentage (95 % CI) Unadjusted OR (95 % CI) Percentage (95 % CI) Unadjusted OR (95 % CI)

Overall (n = 289) 32 (27–38) – 17 (13–22) –

Group 1 (n = 88) 64 (53–74) 250 (13.2 to >999) 40 (29–51) 83.3 (4.88 to >999)

Group 2 (n = 85) 32 (22–43) 66.7 (3.76 to >999) 13 (7–22) 20.4 (1.16–333)

Group 3 (n = 52) 15 (7–28) 21.7 (1.17–500) 6 (1–16) 9.35 (0.46–200)

Group 4 (n = 64) 2 (0–8) Ref 0 (0–6) Ref

OR odds ratio, CI confidence interval

420 Neurocrit Care (2016) 25:415–423
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consistent with non-quantitative analyses by from Cloost-

ermans et al. [5], which demonstrate favorable outcomes in

some patients with early burst suppression that resolves over

18–24 h. The reason for this phenomenon remains unclear.

EEG activity may be suppressed by early, reversible neu-

rological injury from ischemia and reperfusion, sedation,

hypothermia, or a combination of these factors. We note, for

example, that the dynamic periods in temperature trajecto-

ries corresponding to rewarming (Supplemental Fig. 3)

coincide with the epochs of maximum change in SR tra-

jectories. SR can also be affected by metabolic confounders

such as evolving renal function, malignant EEG patterns

such as seizures, sedation, and antiepileptic therapy (Sup-

plemental Table 2), and cerebral hypoperfusion. GBTM is

not well suited in its current stage of development to explore

these potentially important covariates in robust adjusted

analyses. Future longitudinal analyses may address the

effects of concurrent potential confounders.

The ability to rapidly and accurately identify patients at

high risk of future neurological deterioration or death has clear

importance for clinical research, particularly interventional

trials. Our findings suggest that qEEG evolution over time can

improve risk stratification in this population, as previously

proposed by Friberg et al. [23]. Such analysis holds the pro-

mise of allowing targeted therapies to be initiated for selected

patients in response to real-timeEEGchanges or titratedbased

on dynamic EEG responsive to therapy. For example, energy

supply–demand mismatch resulting from cerebral hypoper-

fusion leads ultimately to energetic failure, loss of membrane

potential, and suppression of electrical activity (i.e., increased

SR) [33–35]. If prolonged or severe, this can result in neuronal

apoptosis and/or necrosis and ultimately irrecoverable injury.

Thus, increased SR might provide an actionable warning of

early energy imbalance that could be corrected before irre-

versible damage occurs. This type of EEG-guided titration of

care is somewhat akin to titrating vasoactive medications in

response to continuous measures of arterial pressure and end-

organ perfusion, rather than infrequent, discrete blood pres-

sure measurements. Such a concept merits future

investigation.

Our study has several limitations. Our primary outcome

of interest was neurological outcome at hospital discharge,

which can be confounded by withdrawal of life-sustaining

therapy based on anticipated prognosis. Care limitations

create the risk of self-fulfilling prophecies, whereby qEEG

characteristics such as high SR might prompt clinicians to

limit life-sustaining therapy, inadvertently increasing

mortality in those subjects who follow a trajectory of

prolonged EEG suppression. We note that median length of

stay did not differ across trajectory groups, suggesting that

life-sustaining therapy was not systematically withdrawn

earlier in patients following specific trajectories of SR, nor

did the proportion of subjects exposed to withdrawal for

neurological prognosis differ across trajectories. Second,

since GBTM requires equal length observations across

subjects, we excluded subjects with <36 h of data avail-

able from our final analyses. This may limit the

generalizability of our findings to the broader post-CA

patient population. However, baseline characteristics did

not differ between the entire cohort and those with >36 h

of data, suggesting against biased sampling. The single-

center design of our study limits generalizability. We

established hospital-wide care protocols including routine

use of targeted temperature management, continuous EEG,

aggressive seizure control, and best-practice critical care

[17]. This decreased variability in care improves the

internal validity of our study, but our results must be

replicated in other care systems.

In conclusion, we have described a methodological

framework to analyze intensively sampled, time-series

qEEG data and demonstrated the value added by using

GBTM to model SR after CA. We identified strongly

prognostic SR trajectories, which if validated could sub-

stantially shorten the time to accurate neurological

prognostication, be used to enroll high-risk subjects in

clinical research or identify dynamic treatment respon-

siveness. More broadly, these methods leverage the power

of high-resolution data and are likely to be increasingly

utilized in biomedical research.

Table 3 Final adjusted model predicting in-hospital mortality with

optimal performance characteristics

Characteristic Odds ratio (95 % CI)

Age 1.01 (0.99–1.03)

Female gender 0.76 (0.37–1.60)

Initial rhythm

VT/VF Ref

PEA 1.96 (0.79–4.91)

Asystole 1.72 (0.67– 4.45)

Unknown 1.67 (0.50–5.59)

Out-of-hospital cardiac arrest 0.85 (0.35–2.09)

Pittsburgh CA Category

II 0.20 (0.09–0.44)

III 0.21 (0.08–0.55)

IV Ref

Charlson comorbidity index 1.03 (0.83–1.29)

Baseline SR 1.03 (1.01–1.04)

Trajectory group membership

1 0.05 (0.003–0.97)

2 0.06 (0.004–0.87)

3 0.07 (0.004–1.21)

4 Ref

VT/VF ventricular tachycardia or fibrillation, PEA pulseless electrical

activity, CA cardiac arrest
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