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Abstract
This study aimed to develop and validate a nomogram based on immune checkpoint genes (ICGs) for predicting prognosis 
and immune checkpoint blockade (ICB) efficacy in lung adenocarcinoma (LUAD) patients. A total of 385 LUAD patients 
from the TCGA database and 269 LUAD patients in the combined dataset (GSE41272 + GSE50081) were divided into 
training and validation cohorts, respectively. Three different machine learning algorithms including random forest (RF), 
least absolute shrinkage and selection operator (LASSO) logistic regression analysis, and support vector machine (SVM) 
were employed to select the predictive markers from 82 ICGs to construct the prognostic nomogram. The X-tile software 
was used to stratify patients into high- and low-risk subgroups based on the nomogram-derived risk scores. Differences in 
functional enrichment and immune infiltration between the two subgroups were assessed using gene set variation analysis 
(GSVA) and various algorithms. Additionally, three lung cancer cohorts receiving ICB therapy were utilized to evaluate 
the ability of the model to predict ICB efficacy in the real world. Five ICGs were identified as predictive markers across all 
three machine learning algorithms, leading to the construction of a nomogram with strong potential for prognosis predic-
tion in both the training and validation cohorts (all AUC values close to 0.800). The patients were divided into high- (risk 
score ≥ 185.0) and low-risk subgroups (risk score < 185.0). Compared to the high-risk subgroup, the low-risk subgroup 
exhibited enrichment in immune activation pathways and increased infiltration of activated immune cells, such as CD8 + T 
cells and M1 macrophages (P < 0.05). Furthermore, the low-risk subgroup had a greater likelihood of benefiting from ICB 
therapy and longer progression-free survival (PFS) than did the high-risk subgroup (P < 0.05) in the two cohorts receiving 
ICB therapy. A nomogram based on ICGs was constructed and validated to aid in predicting prognosis and ICB treatment 
efficacy in LUAD patients.
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Introduction

Non-small cell lung cancer (NSCLC) is a highly prevalent 
and deadly cancer worldwide, with approximately 2.2 mil-
lion new cases and 1.8 million deaths reported annually 
[1]. The 5-year overall survival (OS) for NSCLC patients 
remains below 30% despite the continuous introduction of 
advanced diagnostic and therapeutic methods [2, 3]. The 
emerging immune checkpoint blockade (ICB) therapy has 
revolutionized the treatment landscape of NSCLC, particu-
larly for patients in advanced stages or who are resistant 
to standard therapies [4–6]. However, a significant propor-
tion of NSCLC patients still do not respond to ICB therapy 
effectively. Statistics have shown that approximately 40% of 
patients with high levels of PD-L1 show a positive response 
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to treatment. Despite efforts to identify novel biomarkers 
such as PD-1/PD-L1, tumor mutational burden (TMB), and 
microsatellite instability (MSI) to predict the efficacy of ICB 
therapy [7–9], establishing new methods for predicting ICB 
treatment response in these patients is still needed.

Extensive research has been conducted on immune check-
point genes (ICGs) to identify the most effective target genes 
involved in immune activation and evasion processes. While 
anti-PD-1/PD-L1 and CTLA-4 have been well-established 
as mechanisms for ICB therapies, emerging targets such 
as TIGIT, LAG3, and TIM-3 have garnered an increasing 
amount of attention and are currently being developed for 
clinical use [10–13]. This highlighted the importance of 
investigating the significance of ICGs in predicting progno-
sis and the efficacy of ICB therapy for cancer patients. High-
throughput sequencing technique has been widely accepted 
as the optimal tool for the comprehensive interrogation of 
gene expression changes in cancer patients [14]. With the 
vast amount of data generated by high-throughput sequenc-
ing, machine learning algorithms have been introduced to 
analyze these datasets and have demonstrated a superior 
ability to identify biologically significant alteration profiles 
in high-dimensional datasets [15, 16]. Few previous studies 
have made some attempts to investigate the significance of 
ICGs in LUAD patients, but there is still room for improve-
ment in this area. As such, Ling et al. first explored the prog-
nostic role of ICGs in LUAD patients, but only half of the 
documented ICGs were investigated in their study [17]. In 
addition, the study from Jia et al. focused on the ability of 
ICGs to predict lymph node metastases in LUAD patients 
instead of assessing prognosis or ICB treatment efficacy 
[18]. Recent studies exploring the prognostic significance 
of ICGs failed to introduce multiple machine learning meth-
ods in the gene selection process, resulting in relatively low 
predictive power and limited ability to guide ICB treatment 
decisions [19].

Given the importance of ICGs in ICB therapy, our current 
study aimed to comprehensively investigate the significance 
of ICG expression profiles in predicting the prognosis and 
efficacy of ICB therapy for LUAD patients using machine 
learning methods.

Materials and methods

Data source

LUAD patients from The Cancer Genome Atlas (TCGA) 
(https://​portal.​gdc.​cancer.​gov/) (sequencing technique: Illu-
minaHiSeq_RNASeqV2), where data on patient survival, 
clinical features, and gene expression profiles were acquired, 
composed the training cohort. In contrast, validation was 
performed using the cohort that combines GSE41271 

(sequencing technique: Illumina HumanWG-6 v3.0 expres-
sion beadchip) and GSE50081 (sequencing technique: 
Affymetrix Human Genome U133 Plus 2.0 Array) from the 
Gene Expression Omnibus database (https://​www.​ncbi.​nlm.​
nih.​gov/​geo/). Patients who met the following criteria were 
excluded: (I) had a non-LUAD diagnostic pathology, (II) 
had a normal status or tissue, (III) patients who died within 
30 days of the follow-up, (IV) had synchronous malignan-
cies, or (V) had incomplete follow-up information regarding 
the survival time or status. Subsequently, the collected RNA 
sequencing data were normalized and corrected in batches 
with the “SVA package” in both the training and validation 
cohorts [20]. Information on the lung cancer patients who 
received ICB therapy was obtained from three independent 
cohorts, namely, the GSE126044 (sequencing technique: 
Illumina HiSeq 2500), GSE135222 (sequencing technique: 
Illumina HiSeq 2500) (https://​www.​ncbi.​nlm.​nih.​gov/​geo/), 
and Nanfang Hospital cohort (https://​figsh​are.​com/​artic​
les/​datas​et/​Nanfa​ng_​hospi​tal_​NSCLC_​immun​other​apy_​
cohort). An ICG list containing 95 genes was obtained from 
previous literature exploring the mechanisms of ICGs in 
cancers [13, 21–23] (Table S1).

Selection of prognostic ICGs using machine learning 
algorithms

The selection process for ICGs in the training cohort 
involved three independent machine learning algorithms, 
including least absolute shrinkage and selection operator 
(LASSO) logistic regression [24], random forest (RF) [25], 
and the support vector machine (SVM) [26]. The “glmnet” 
R package was utilized to conduct the LASSO regression, 
which was useful for eliminating the nonsignificant vari-
ables by shrinking the size of the parameters. In this study, a 
tenfold cross-validation was performed to select the optimal 
lambda that met the minimum criteria. For RF selection, 
the “randomForest” package was utilized with 200 Monte 
Carlo iterations. ICGs with a relative importance greater 
than 0 were considered significant. Although the SVM was 
originally built for classification, it has recently been used 
for feature selection through the wrapper method with lin-
ear kernels. In this study, SVM was performed using the 
“e1071” R package where the prediction accuracy did not 
increase with the number of variables incorporated into the 
prediction model when the optimal number of variables was 
reached.

Construction and validation of the prognostic 
nomogram

The Venn diagram was used to identify the ICGs in the inter-
section part of the three machine learning algorithms. These 
selected ICGs were then incorporated into the development 
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of the prognostic nomogram. The ability of the model to pre-
dict 1-year, 3-year, and 5-year OS for patients was evaluated 
using the area under the receiver operating characteristic 
curve (AUC). Calibration curves were also plotted to visual-
ize the predictive accuracy of the model, where the closer 
the predictive curve was to the observed curve, the better 
the predictive accuracy of the model was [27]. The valida-
tion cohort was utilized to externally validate the results 
and the area under the curve (AUC) and calibration curves 
were also generated for the validation cohort. X-tile software 
(version 3.6.1; Yale University, New Haven, CT, USA) was 
used to determine the optimal cutoff value for the risk scores 
derived from the nomogram, which divided the patients into 
high- and low-risk subgroups [28]. Kaplan–Meier curves of 
different risk subgroups were plotted accordingly for both 
the training and validation cohorts. Moreover, the survival 
curves of each risk subgroup within different clinical subsets 
were also plotted. Principal component analysis (PCA) was 
conducted to visualize the clustering pattern of each risk 
subgroup.

Differences in functional enrichment between two 
risk subgroups

Gene set variation analysis (GSVA) was the principle 
method used to interrogate the biological and molecular dif-
ferences between two risk subgroups [29]. We downloaded 
the h.all.v2023.1.Hs.symbols.gmt, c5.go.v2023.1.Hs.sym-
bols.gmt, and c2.cp.kegg.v2023.1.Hs.

symbols.gmt from the Molecular Signatures Database 
(MSigDB) (https://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​
index.​jsp) for the broad hallmark genes, Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis in the GSVA, respectively [30], where a 
normal P < 0.05 and a false discovery rate (FDR) < 0.1 were 
set as the thresholds for the recognition of the significantly 
enriched gene sets. Additionally, gene set variation analy-
sis (GSEA) was also performed to validate the results from 
GSVA, for which the “enrichplot” and “clusterProfier” R 
package were needed [31].

Comparison of the immune infiltration landscape 
between two risk subgroups

We performed the most comprehensive comparison of the 
immune infiltration landscape between the two risk sub-
groups using various algorithms, including CIBERSORT, 
ESTIMATE, EPIC, MCPCOUNTER, QUANTISEQ, 
ssGSEA, TIMER, and X_CELL, which provided us with a 
comprehensive understanding of the distinct microimmune 
landscape between the two subgroups [32–39].

Predicting the response to ICB therapy

The Tumor Immune Dysfunction and Exclusion (TIDE) 
score for each patient in the training cohort was calculated 
using the website (http://​tide.​dfci.​harva​rd.​edu/), which was 
helpful for identifying the patients who were more likely to 
benefit from ICB therapy [40]. Patients with higher TIDE 
scores tended to suffer from immune evasion and there-
fore be less responsive to ICB therapy. Subsequently, the 
TIDE scores between different risk subgroups were com-
pared using the Wilcoxon rank sum test, and the correlation 
between TIDE scores and the risk scores derived from the 
nomogram was also investigated. Furthermore, the nomo-
gram-derived risk scores were compared between responders 
and non-responders to ICB in the GSE126044 cohort. In 
addition, we plotted Kaplan–Meier curves to illustrate the 
differences in progression-free survival (PFS) among the 
different risk subgroups after receiving ICB therapy in the 
GSE135222 cohort and Nanfang Hospital cohort.

Statistical analysis

Categorical variables were presented as percentages or 
frequencies and were compared using the Pearson χ2 test 
or Fisher’s exact test, while continuous variables were 
described as medians with interquartile ranges (IQRs) and 
were compared with t-tests or Wilcoxon rank sum tests. 
The correlation between two continuous variables was esti-
mated using the Spearman test. OS was defined as the time 
from the date of diagnosis to the date of all-cause death 
or censoring. Similarly, PFS represented the time interval 
between diagnosis and disease progression, recurrence, or 
death. Moreover, the survival outcomes were estimated and 
compared using the Kaplan–Meier method and log-rank 
test, respectively. All analyses were performed using R soft-
ware (version.4.3.0; http://​www.r-​proje​ct.​org). A two-tailed 
P < 0.05 was considered statistically significant.

Results

Identification of ICGs used for model construction

The workflow of the study is presented in detail in Fig. 1. 
After screening, a total of 385 LUAD patients in the TCGA 
database and 269 LUAD patients in the combined dataset 
(GSE41272 + GSE50081) were assigned to the training and 
validation cohorts, respectively. The clinical characteristics 
of these patients are summarized in Table 1.

Among the 95 documented immune checkpoint genes 
(ICGs), 82 were sequenced in the TCGA-LUAD cohort. 
The specific names of the 82 ICGs are listed in Table.S2. 
The prognostic significance of the 82 ICGs was assessed 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://tide.dfci.harvard.edu/
http://www.r-project.org
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using three different machine learning algorithms. Through 
LASSO logistic regression analysis, nine prognostic ICGs 
were identified when the optimal lambda value was reached 
(Fig. 2 a, b). The 82 ICGs were also subjected to the random 
forest algorithm, which showed that the error rate stabilized 
between 0.42 and 0.46 as the number of trees increased. 
Based on the importance ranking, 34 ICGs that positively 
contributed to the algorithm were selected (Fig. 2c). Fur-
thermore, SVM was used to identify 12 prognostic ICGs, 
as the prediction accuracy did not improve when the num-
ber of included variables reached 12 (Fig. 2d). Ultimately, 
five ICGs were found in the overlapping region of the three 
machine learning algorithms, as shown in the Venn diagram 
(Fig. 2e).

Construction and validation of the ICGs‑based 
nomogram

The five ICGs incorporated in the nomogram were VTCN1 
(B7-H4), KIR3DL3, KIR2DL1, HLA-DRB5, and CD209 
(DC-SIGN) (Fig. 3a). By drawing a line straight up from 
each independent risk factor to the point axis, we assigned 
each risk factor with one specific score, and the total score 
for each patient was obtained by adding each score together. 
Additionally, the risk score could be calculated through the 
following equation: risk score = ∑i expi × coefi (derived 
from the nomogram). The receiver operating characteristic 
(ROC) curves for 1-year, 3-year, and 5-year overall survival 
(OS) prediction demonstrated the excellent predictive power 
of the model in both the training and validation cohorts, with 
all AUC values closing to 0.800 (Fig. 3 b, c). Exceedingly, 
the calibration curves of the nomogram showed optimal con-
sistency between the predicted and observed survival prob-
abilities in both the training and validation cohorts (Fig. 3 
d–i).

Using X-tile software, we stratified the patients in the 
training cohort into low-risk (total score < 185.0) and high-
risk (total score ≥ 185.0) subgroups based on the scores 
derived from the nomogram when the maximal chi-square 
value was reached, which represented the greatest differ-
ences in prognosis prediction among the subgroups (Fig. S1) 
[28].

Survival analysis of different risk subgroups

Kaplan–Meier curves were plotted to assess the differences 
in survival between the low-risk and high-risk subgroups 
in both the training and validation cohorts, and significant 
differences were observed (all P < 0.001) (Fig. 4 a, b). Fur-
thermore, we plotted Kaplan–Meier curves based on risk 
subgroups within different subsets according to various 
clinical characteristics such as gender, age, clinical stage, 
and race, which demonstrated the promising ability of risk 

Fig. 1   The flow chart comprehensively depicted the procedure of 
the current study. ICGs, immune checkpoint genes; LASSO, least 
absolute shrinkage and selection operator; RF, random forest; SVM, 
support vector machine; PCA, principal component analysis; GSVA, 
gene set variation analysis; GSEA, gene set enrichment analysis

Table 1   Clinical characteristics of LUAD in training cohort and vali-
dation cohort

Variables TCGA-LUAD (N = 385) GSE41271 + GSE50081 
(N = 269)

Age
   < 65 193 (50.1%) 150 (55.8%)
   ≥ 65 185 (48.1%) 103 (38.3%)

  NA 7 (1.8%) 16 (5.9%)
Race

  White 301 (78.2%) 178 (66.2%)
  Nonwhite 84 (21.8%) 91 (33.8%)

Gender
  Male 175 (45.5%) 146 (54.3%)
  Female 210 (54.5%) 123 (45.7%)

Stage
  I 243 (63.1%) 158 (58.7%)
  II + III + IV 136 (35.3%) 107 (39.8%)
  NA 6 (1.6%) 4 (1.5%)
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subgroups to differentiate the prognosis of LUAD patients 
regardless of the clinical characteristics (all P < 0.05) 
(Fig.S2a-g). However, for nonwhite patients, the difference 
in survival between risk subgroups was not statistically 
significant (P = 0.27) (Fig.S2h), which could be attributed 
to the extremely small population of nonwhite patients (84 

total nonwhite patients were included, and the number of 
the high-risk group was 16).

Moreover, the PCA depicted the distinguishable dis-
tribution patterns of the five ICGs incorporated in the 
nomogram between the high- and low-risk subgroups in 

Fig. 2   The selection process of the prognostic ICGs. a, b the 
LASSO-based method to screen the ICGs and different colors means 
different genes; c the selection process via RF and the genes with 
blue bar would be selected for the model (variable importance > 0); d 
the SVM-based selection method; e Venn diagram marked the inter-

section of prognostic ICGs obtained by three different algorithms. 
ICGs, immune checkpoint genes; LASSO, least absolute shrink-
age and selection operator; RF, random forest; SVM, support vector 
machine
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the training (Fig. 4c) and validation cohorts (Fig. 4d). PC1 
clearly separated from PC2 in both cohorts.

Differences in the biological pathway enrichment 
between risk subgroups

GSVA was performed to identify functional pathway dif-
ferences between the low-risk and high-risk subgroups. 
In the high-risk subgroup, several pathways were found 
to be enriched including glutamine catabolic process, 

megakaryocyte differentiation regulation in biological pro-
cess (BP), nucleosome, catenin complex in cellular compo-
nent (CC), and glycerophospholipid activity and polypep-
tide transferase activity in molecular function (MF) (Fig. 5 
a–c). In addition, hallmark gene sets such as pancreas beta 
cells and KRAS signaling were observed to be enriched in 
the high-risk subgroup, while interferon-gamma response 
and PI3K-AKT-mTOR signaling were enriched in the low-
risk subgroup (Fig. 5d). Additionally, glycan biosynthesis 
and linoleic acid metabolism in the KEGG pathway were 

Fig. 3   a Prognostic nomogram combining the selected 5 ICGs to 
predict the 1 year, 3 years, and 5 year OS for patients in the train-
ing cohort; The areas under the curves of the nomogram to predict 
1 year, 3 years, and 5 years OS for patients in the training cohort (b) 

and validation cohort (c); Calibration curves of 1 year (d), 3 years (e), 
and 5 years OS (f) for patients in the training cohort and the calibra-
tion curves of 1 year (g), 3 years (h), and 5 years OS (i) in the valida-
tion cohort
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enriched in the high-risk subgroup (Fig. 5e). Notably, the 
correlation between GSVA scores (KEGG pathways) and 
risk scores was assessed and displayed by a lollipop plot, 
which revealed a negative correlation between the risk 
score and a significant proportion of immune-related path-
ways (Fig. 5f). Moreover, we performed GSEA to verify the 
results of GSVA, which showed good consistency between 
these two methods (Fig.S3). This further confirmed the sig-
nificant differences in functional enrichment between the 
low-risk and high-risk subgroups.

Comparison of immune infiltration profiles 
between risk subgroups

A comprehensive comparison of immune infiltration profiles 
between the two risk subgroups was performed using vari-
ous algorithms including CIBERSORT, ESTIMATE, EPIC, 
MCPCOUNTER, QUANTISEQ, ssGSEA, TIMER, and X_
CELL. Based on CIBERSORT, 22 infiltrating immune cells 
were counted. It was observed that M1 macrophages were 
significantly elevated in the low-risk subgroup (P < 0.001), 

while immune-resistant cells such as T-cell regulatory cells 
(Tregs) were more abundant in the high-risk subgroup 
(P < 0.01). Additionally, CD8 + T cells and activated NK 
cells were more strongly infiltrated in the low-risk sub-
group than in the high-risk subgroup (P < 0.05) (Fig. 6a). 
Furthermore, the ESTIMATE algorithm was used to calcu-
late the abundance of infiltrating immune cells in the two 
risk subgroups, which revealed that the low-risk subgroup 
had higher immune scores (P < 0.01) and ESTIMATE scores 
(P < 0.05) than did the high-risk subgroup (Fig. 6b). In brief, 
there were more immune-activated patients in the low-risk 
subgroup than in the high-risk subgroup, which could be 
further confirmed through other algorithms (Fig. 6 c–h).

Clinical utility of the model in predicting the efficacy 
of ICB therapy

The TIDE algorithm was utilized to estimate the TIDE 
score for each patient, and the scores were compared 
between the two risk subgroups. The TIDE scores in the 
high-risk subgroup were significantly greater than those 

Fig. 4   Kaplan–Meier overall survival curves for patients with different risks stratified by nomogram in the training cohort (a) and validation 
cohort (b); PCA depicted the distinguishable distribution between the high- and low-risk subgroups in the training (c) and validation cohorts (d)
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Fig. 5   Gene set variation analysis (GSVA) was conducted to show 
the differences between the high- and low-risk groups in terms of 
Gene ontology (GO) biological process (a), GO cellular component 
(b), GO molecular function gene sets (c), hallmark gene sets (d), 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets 
(e); lollipop plot demonstrated the correlation between GSVA scores 
(KEGG) and nomogram-derived risk scores (f)
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in the low-risk subgroup (P = 4.1 × 10−5) (Fig. 7a), which 
indicated that the patients in the high-risk subgroup were 
more likely to suffer from immune evasion and, therefore, 
were less likely to respond to ICB therapy. A positive cor-
relation between TIDE scores and nomogram-derived risk 
scores was observed despite the correlation was not that 
strong (r = 0.37, P = 9.7 × 10−14) (Fig. 7b). In terms of the 
predictive performance of the nomogram for immunotherapy 
response, patients who did not respond to ICB therapy had 
higher risk scores than those who respond to ICB therapy in 
the GSE126044 cohort (Fig. 7c). Similarly, a greater propor-
tion in the low-risk subgroup than in the high-risk subgroup 
responded to ICB therapy (40% vs 16.7%) (Fig. 7d). Further 
validation was carried out using the GSE135222 cohort and 
Nanfang Hospital cohort, in which patients received sim-
ilar ICB treatment, and the clinical characteristics of the 
included patients are presented in Table.S3. As a result, 

patients in the low-risk subgroup had longer PFS than those 
in the high-risk subgroup (Fig. 7 e–g), which further indi-
cated that the low-risk subgroup was more likely to benefit 
from ICB therapy than the high-risk subgroup.

Discussion

The PACIFIC trial has revolutionized the treatment land-
scape for advanced NSCLC patients by demonstrating the 
importance of adding immune checkpoint blockade (ICB) 
therapy to standard treatments [41]. Subsequently, studies 
have investigated the efficacy of ICB therapy in early-stage 
NSCLC patients, suggesting that ICB therapy is potentially 
applicable in any stage of NSCLC [42, 43]. However, a 
significant proportion of patients still do not respond effec-
tively to ICB treatment, despite advancements in predicting 

Fig. 6   The landscape of immune cell infiltration between the high- 
and low-risk subgroup in the training cohort using various methods 
including CIBERSORT (a), ESTIMATE (b), EPIC (c), MCPCOUN-

TER (d), QUANTISEQ (e), ssGSEA (f), TIMER (g), and X_CELL 
(h). *P < 0.05, **P < 0.01, ***P < 0.001
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responsiveness using biomarkers. Therefore, further research 
aimed at identifying promising predictive biomarkers or pre-
dictive models remains crucial for NSCLC patients, espe-
cially those with LUAD, which accounts for more than half 
of all NSCLC patients.

The expression of ICGs has long been recognized for its 
role in modulating the tumor microenvironment and impact-
ing the efficacy of ICB therapy. Herein, we conducted a 
comprehensive analysis of the ability of ICGs to predict 
ICB response in patients with LUAD by introducing three 
different machine learning algorithms to identify the most 

significant ICGs for predicting prognosis and ICB efficacy. 
A nonparametric nonlinear technique was used in the RF 
model, which combines the effects of the expression of ICGs 
to reach the goal of classification [25]. Similarly, the LASSO 
regression and SVM were employed to reduce the number 
of ICGs incorporated into the model, aiming to minimize 
classification errors and maximize prediction accuracy [24, 
26]. As a result, our predictive nomogram possessed sig-
nificantly improved predictive ability compared to that of 
previous studies [19]. The AUC values in our study ranged 
from 0.776 to 0.801, whereas in the previous study, the AUC 

Fig. 7   The implementation of the nomogram-derived risk subgroups 
to predict the efficacy of ICB therapy for lung cancer patients. a Box 
plot exhibited the difference in TIDE score between the two risk 
subgroups in the training cohort; b correlation between TIDE score 
and nomogram-derived score in the training cohort; c comparison 
of nomogram-derived score between different outcome subgroups 
in GSE126044 cohort; d comparison of the responding proportion 

to ICB therapy in different nomogram-derived risk subgroups in 
GSE126044 cohort; Kaplan–Meier progression-free survival curves 
to display the differences in the efficacy of ICB therapy in nomo-
gram-derived risk subgroups in GSE135222 cohort (e), Nanfang hos-
pital cohort (f) and GSE135222 + Nanfang hospital cohort (g). ICB, 
immune checkpoint blockade
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values ranged from 0.669 to 0.736. This further underscores 
the importance of incorporating various machine learning 
methods in the variable selection process, as it enhances the 
accuracy and robustness of the predictive model.

In this study, a total of five ICGs were identified through 
machine learning algorithms. Among them, VTCN1 (B7-
H4) showed a positive correlation with risk score and a 
negative correlation with the survival outcome of LUAD 
patients (Fig. 3a), which was consistent with previous stud-
ies that have described VTCN1 as an immune-suppressive 
factor and reported a negative association between VTCN1 
expression and immune cell infiltration [44, 45]. The kill-
cell immunoglobulin-like receptor (KIR) family, chiefly 
expressed by nature killer (NK) cells, plays a role in con-
trolling inflammatory and anti-inflammatory regulation. The 
KIR3DL3, expressed by CD56dim NK cells, mediates the dif-
ferentiation of CD8 + T cells and suppresses their immune 
activation ability [46, 47]. However, KIR2DL1, an activating 
KIR, acts as a proinflammatory factor, and high expression 
of KIR2DL1 has been associated with longer survival time 
[48]. Furthermore, the expression of HLA-DRB5 has been 
reported to be associated with better prognosis in LUAD 
patients [49], which was further validated in our study where 
HLA-DRB5 was negatively correlated with OS (Fig. 3a). 
Moreover, CD209 (DC-SIGN) has long been recognized as 
a target of dendritic cells (DCs), and anti-CD209 antibodies 
can activate microenvironment immunity in vivo, leading to 
a persistent and strong CD8 + T-cell response [50].

As a result, we constructed a nomogram based on the 
five selected ICGs that possessed good ability to predict 
the prognosis of LUAD patients. According to the model, 
patients were divided into high- and low-risk subgroups. 
We observed significant differences in the microimmune 
environment between the two subgroups, with the low-risk 
subgroup showing a more pronounced immune activation 
environment, which was supported by the enrichment of 
the DNA damage repair hallmark in the low-risk subgroup 
(Fig. 5d), as DNA damage repair plays a crucial role in trig-
gering innate immunity [51, 52]. Additionally, we calculated 
the infiltration of immune cells in the two risk subgroups 
using various methods, and the results confirmed that the 
low-risk subgroup had a greater abundance of immune acti-
vation cells, such as CD8 + T cells, NK cells, and M1 mac-
rophages, further underpinning the immune activation status 
of the low-risk subgroup. Furthermore, our model was able 
to differentiate lung cancer patients who could benefit from 
ICB treatment from those who could not, which highlights 
the clinical utility of our model in identifying patients who 
are likely to respond to ICB therapy, thereby increasing its 
applicability in the real world.

In this study, we utilized sophisticated machine learning 
algorithms to assess the ability of ICGs to predict prognosis 
and ICB efficacy in LUAD patients, resulting in a robust 

nomogram. Additionally, the most comprehensive algo-
rithms including CIBERSORT, ESTIMATE, EPIC, MCP-
COUNTER, QUANTISEQ, ssGSEA, TIMER, and X_CELL 
were used to calculate and compare the immune infiltration 
between the high- and low-risk subgroups derived from the 
model. However, several limitations in our study also need 
to be noted. First, as this was a retrospective study spanning 
a long period, selection bias in terms of diagnostic methods, 
sequencing technique, and follow-up was difficult to avoid. 
Second, the validation datasets used to assess the predic-
tive performance of the model for immunotherapy response 
included both LUAD and lung squamous cell carcinoma 
(LUSC) patients, which might slightly impair the predic-
tive accuracy of the model. Third, the information on the 
common genetic mutational status of LUAD, such as that of 
EGFR, was not addressed in the database, and the prognos-
tic significance of these genetic mutations could be further 
explored in the future. Last, due to the bioinformatics nature 
of this study, the results have not yet been confirmed and 
validated in real-world studies. Therefore, well-designed 
clinical trials to thoroughly explore and verify the prognos-
tic significance and ability of this model to screen LUAD 
patients for ICB therapy are needed in the future. For exam-
ple, the model could be assessed using only LUAD patients 
receiving ICB therapy, while a new model based on LUSC 
gene data could be developed for LUSC patients. In addi-
tion, RNA sequencing could be performed in the real-world 
cohort to validate the predictive ability of the model.

Conclusion

Three different machine learning algorithms were used in 
this study to select the most predictive ICGs for LUAD 
patients, and a nomogram was constructed and validated 
accordingly, which exhibited good accuracy in predicting 
the prognosis of LUAD patients (with an AUC value close 
to 0.8). Furthermore, we divided the patients into two risk 
subgroups according to the scores derived from the model. 
The comparison between these two subgroups revealed that 
the low-risk subgroup had a greater potential to benefit from 
ICB therapy than did the high-risk subgroup.
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