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Abstract
Acute lung injury (ALI) is characterized by acute respiratory failure with tachypnea and widespread alveolar infiltrates, 
badly affecting patients’ health. Desflurane (Des) is effective against lung injury. However, its mechanism in ALI remains 
unknown. BEAS-2B cells were incubated with lipopolysaccharide (LPS) to construct an ALI cell model. Cell apoptosis 
was evaluated using flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was employed to examine the levels 
of inflammatory cytokines. Interactions among let-7b-5p, homeobox A9 (HOXA9), and suppressor of cytokine signaling 2 
(SOCS2) were verified using Dual luciferase activity, chromatin immunoprecipitation (ChIP), and RNA pull-down analysis. 
All experimental data of this study were derived from three repeated experiments. Des treatment improved LPS-induced cell 
viability, reduced inflammatory cytokine (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6)) 
levels, decreased cell apoptosis, down-regulated the pro-apoptotic proteins (Bcl-2-associated X protein (Bax) and cleaved 
caspase 3) expression, and up-regulated the anti-apoptotic protein B-cell-lymphoma-2 (Bcl-2) expression in LPS-induced 
BEAS-2B cells. Des treatment down-regulated let-7b-5p expression in LPS-induced BEAS-2B cells. Moreover, let-7b-5p 
inhibition improved LPS-induced cell injury. let-7b-5p overexpression weakened the protective effects of Des. Mechanically, 
let-7b-5p could negatively modulate HOXA9 expression. Furthermore, HOXA9 inhibited the NF-κB signaling by enhancing 
SOCS2 transcription. HOXA9 overexpression weakened the promotion of let-7b-5p mimics in LPS-induced cell injury. Des 
alleviated LPS-induced ALI via regulating let-7b-5p/ HOXA9/NF-κB axis.
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Abbreviations
ALI  Acute lung injury
Des  Desflurane
MiRNAs  MicroRNAs
BALF  Bronchoalveolar lavage fluid
LPS  Lipopolysaccharide
HOX  Homeobox
HOXA9  Homeobox A9
SOCS2  Suppressor of cytokine signaling 2
ELISA  Enzyme-linked immunosorbent assay
ChIP  Chromatin immunoprecipitation
SD  Standard deviation

Introduction

Acute lung injury (ALI) is a heterogeneous disease induced 
by direct or indirect factors, such as trauma, infection, and 
blood transfusion, resulting in diffuse interstitial and alveolar 
edema, which is a form of respiratory failure [1, 2]. Charac-
teristically, ALI progression is often accompanied by severe 
inflammatory response. Treatment for ALI usually includes 
general therapy (oxygen therapy), surgery, and medications 
(anti-inflammatory drugs) [3]. Specifically, ventilation strat-
egies, prone positioning, extracorporeal support, neuromus-
cular blockade, and corticosteroid administration are the 
current management recommendations for acute respiratory 
distress syndrome treatment [4]. Although treatment can 
alleviate ALI to a certain extent, the prognosis of patients is 
poor, and the mortality rate is still high [5]. Therefore, there 
is an urgent need to study the pathogenesis of ALI and find 
molecular targets to improve ALI.

Desflurane (Des) is a new volatile anesthetic that, com-
pared with other inhaled anesthetics, can promote rapid 
recovery after surgery and allow patients to return to early 
normal activities [6]. Intriguingly, several studies have 
reported that Des poses protective effects on lung injury 
caused by ventilator and sepsis [7, 8]. Therefore, it can be 
speculated that Des may have a therapeutic effect on ALI, 
while some studies have identified that Des inhalation can 
induce or even worsen lung injury [9]. The different effects 
of Des on lung injury may be associated with the different 
preparation of animal models, such as whether lipopoly-
saccharide (LPS) is employed to induce rats. Des may be 
protective against inflammatory lung injury but may pro-
mote lung injury in rats when administered alone. So, it is 
meaningful to clarify the precise function and mechanism 
of Des in ALI for further precisely utilizing it in clinical 
treatment. Published reports have identified that microR-
NAs (miRNAs) can be the targeted genes of anesthetics in 
cancers [10]. For instance, Des has been found to impact cell 

proliferation and migration by down-regulating miR-210 and 
miR-138, in an ovarian cancer cell model [11]. Inhalational 
anesthetics such as Des or sevoflurane have been shown to 
regulate the miR-138, -210, and -335 expression, which in 
turn can restrain the glioma cell malignancy progression, in 
the cellular model exploration [12]. Moreover, Des has been 
found to exert inhibitory effects on the metastatic process 
of colorectal cancer cells by negatively modulating miR-
34a, in an in vitro model [13]. Furthermore, miRNAs can 
exert modulatory effects on the ALI process, for instance, 
miR-23a-3p, miR-182-5p, and miR-125b-5p have repressive 
effects on ALI progression of cell and animal models [14, 
15]. Based on the above findings, we speculated that Des 
may regulate ALI by controlling the expression of miRNA. 
Furthermore, the expression level of let-7b-5p in the bron-
choalveolar lavage fluid (BALF) of rats with smoke inhala-
tion injuries has been significantly higher than that of nor-
mal rats [16]. More importantly, our preliminary experiment 
found that Des could down-regulate let-7b-5p expression in 
lipopolysaccharide (LPS)-induced BEAS-2B cells. Thus, it 
was speculated that Des may regulate let-7b-5p expression 
to participate in ALI progression.

MiRNAs play a vital function in controlling disease pro-
gression by targeting downstream genes [17]. Homeobox 
(HOX) is known to exert regulatory effects on embryonic 
development, vascular repair, angiogenesis, and tumor pro-
gression after birth [18]. According to a previous study, 
it has been observed that up-regulated homeobox A9 
(HOXA9) expression in mesenchymal stem cells could ame-
liorate endotoxemia-induced ALI [19], suggesting a poten-
tial involvement of HOXA9 in LPS-induced ALI. Moreover, 
TargetScan predicted that let-7b-5p harbored the binding 
site on HOXA9, while the interaction has not been validated 
yet. The suppressor of cytokine signaling 2 (SOCS2) has 
been evidenced to be closely associated with inflammatory 
processes in miscellaneous diseases, such as the nonalco-
holic steatohepatitis and osteoarthritis [20, 21]. Notably, 
KIAA0317, a ubiquitin E3 ligase, has promoted the ubiqui-
tination degradation of SOCS2 to exacerbate inflammation 
injury in mice with LPS stimulation [22], indicating SOCS2 
may play a regulatory role in ALI. HOX genes are a class of 
highly conserved evolutionary transcription factors that can 
bind to DNA sequences to regulate gene expression [23]. 
JASPAR also predicted that HOXA9 had a potential binding 
site on the SOCS2 promoter. Their interaction and regula-
tory mechanisms in ALI are worth further investigation.

Based on the above, we hypothesize that Des negatively 
regulates let-7b-5p expression. let-7b-5p targets HOXA9 and 
inhibits the NF-κB signaling through transcriptional activation 
of SOCS2, thereby attenuating LPS-induced ALI. Our study 
may identify potential targets of Des in the treatment of ALI.
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Methods

Cell culture and treatment

Human lung epithelial cells (BEAS-2B) were acquired from 
ATCC (USA). Cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM, Thermo Fisher Scientific, USA) 
supplementing with 10% fetal bovine serum (Thermo Fisher 
Scientific) and 1% penicillin/streptomycin (Beyotime, China), 
in a saturated humidity incubator at 37 ℃ and 5%  CO2.

For the Des and LPS administration, cells were pretreated 
with Des concentrations of 0.5%, 2.5%, and 5.0%, respec-
tively, for 45 min in sealed plastic chambers as described in 
previous studies [24]. To control and monitor Des concentra-
tions, the chamber contained an inlet connector coupled to 
an anesthesia machine and an outlet connector linked to a 
gas monitor (Drägerwerk AG & Co., Germany). Thereafter, 
BEAS-2B cells were then stimulated with LPS (2 µg/ml, 
24 h) according to the established protocol to establish an 
acute cell injury model [25].

Cell transfection

Let-7b-5p mimics and inhibitors and negative control 
(mimics NC and inhibitor NC, 30 nM) were purchased 
from GenePharma (China). Moreover, to overexpress the 
HOXA9, the full-length HOXA9 cDNA was subcloned 
into the pcDNA3.1 vector (Invitrogen, USA) to obtain the 
pcDNA3.1-HOXA9 vector (40 nM, overexpression HOXA9, 
marked as oe-HOXA9). Cells were transfected with the 
above plasmids for 48 h using Lipofectamine™ 3000 (Inv-
itrogen, USA), following the instructions.

3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazo‑
lium bromide (MTT) assay

Cells were cultured overnight in 96-well plates. The cells 
were then treated with MTT solution (10 μl, 5 mg/ml, 
Beyotime, China) for 4 h. Formazan solution (100 µl) was 
then added and incubated for 4 h. The absorbance was 
read at 570 nm using a microplate reader (Thermo Fisher 
Scientific). The detailed experimental protocol of the MTT 
assay was displayed in the Supplementary Materials.

Enzyme‑linked immunosorbent assay (ELISA)

Cells were collected and centrifuged to obtain the superna-
tant. The levels of cytokines including IL-1β, TNF-α, and 
IL-6 in the culture medium were determined employing the 
ELISA kits (Nanjing Jiancheng Bioengineering Institute, 
China), in keeping with the attached instructions. The pre-
cise protocol was described in the Supplementary Materials.

Flow cytometry

Collected cells were cultured with 10 µL Annexin V-FITC 
and 5 µL PI stain in the darkness. After incubation for 
10 min, apoptotic cells were immediately analyzed uti-
lizing flow cytometry (BD Science, China). The relevant 
procedure was described in the Supplementary Materials.

Western blot

The total protein of BEAS-2B cells was extracted employing 
the RIPA buffer (Beyotime). Then proteins were separated 
by SDS-PAGE and electro-transferred onto the PVDF mem-
brane. The membranes administrated the incubation of pri-
mary antibodies including Bcl-2 (ab182858, 1:2000, Abcam, 
UK), cleaved caspase 3 (ab32042, 1:500), Bax (ab32503, 
1:5000), HOXA9 (ab140631, 1:5000), SOCS2 (ab109245, 
1:5000), p-p65 (ab76302, 1:1000), p65 (ab32536, 1:10,000), 
IκB-α (ab32518, 1:10,000) and p-IκB-α (ab133462, 
1:10,000), and GAPDH (ab8245, 1:5000) for 12 h at 4 °C, 

Table 1  The primer sequences used in the study

Gene 5′-3′

miR-138 F, TGT TGT GAA TCA GGC CGT TG
R, CTG TAG TGT GGT GTG GCC C

miR-214 F, GCT GGA CAG AGT TGT CAT GTGTC 
R, TGT GAC TGC CTG TCT GTG CC

miR-34a F, TGG CAG TGT CTT AGC TGG TT
R, AAC GTG CAG CAC TTC TAG GG

miR-135b-5p F, GCC GTA TGG CTT TTC ATT CCT 
RT, GTC GTA TCC AGT GCA GGG TCC GAG 

GTA TTC GCA CTG GAT ACG ACT CAC AT
let-7b-5p F, GCC GAG TGA GGT AGT AGG TTGT 

RT, GTC GTA TCC AGT GCA GGG TCC GAG 
GTA TTC GCA CTG GAA ACC AC

TRIM71 F, GCG GAA CAG GTG GAG ATG AA
R, TTG TTG AGG TTT TGC CGC AG

FAM118A F, AAG ATG TCA CCT CGC ACA GG
R, CCA TCA GGC TGA GGA TCG AC

DUSP1 F, GGA TAC GAA GCG TTT TCG GC
R, CCA GGT ACA GAA AGG GCA GG

MTDH F, TCT TCC AAC TGG GAA ATC CA
R, AGG CTG GCT ATT TTT GAC GA

HOXA9 F, CCA CGC TTG ACA CTC ACA CT
R, AGT TGG CTG CTG GGT TAT TG

SOCS2 F, GCA AGG ATA AGC GGA CAG GT
R, GTT GGT AAA GGC AGT CCC CA

U6 F, CTC GCT TCG GCA GCACA 
R, AAC GCT TCA CGA ATT TGC GT

GAPDH F, CCA GGT GGT CTC CTC TGA 
R, GCT GTA GCC AAA TCG TTG T
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after blocking by 5% BSA. The membrane further received 
the incubation of secondary antibodies conjugated with 
HRP. An ECL kit (Thermo Fisher Scientific) was used to 
react with proteins on membranes. The densitometry analy-
sis was estimated by ImageJ (National Institutes of Health, 
USA). The detailed experimental procedure was described 
in the Supplementary Materials.

Quantitative real‑time polymerase chain reaction 
(qRT‑PCR)

The total RNA of BEAS-2B cells was extracted using the 
TRIzol reagent (Beyotime). The cDNA synthesis steps were 
carried out with the assistance of the Script Reverse Tran-
scription Reagent Kit (TaKaRa, China). The SYBR Premix 
Ex Taq II Kit (TaKaRa) was utilized for the qPCR process. 
Detailed information regarding the primer sequences can be 
found in Table 1. The  2−ΔΔCt formula was employed to cal-
culate the relative change levels of the aimed genes of inter-
est. GAPDH and U6 acted as internal normalizing genes.

Dual luciferase activity

Dual luciferase activity analysis was carried out to validate 
the interaction between let-7b-5p and HOXA9. Moreover, 
based on the prediction of the Starbase database (http:// starb 
ase. sysu. edu. cn/), there were potential binding sites between 
let-7b-5p and HOXA9. The sequences containing the poten-
tial binding sites (UAC CUC A) of let-7b-5p on HOXA9 
3′UTR were amplified and subcloned to the psiCHECK-2 
vector (Promega, USA) to conduct wild-type (WT) vectors 
(HOXA9-WT). Then its mutated sites (AUG GAG ) of seed 
sequences were designed and the mutation vectors (HOXA9-
MUT) were established. BEAS-2B cells were co-transfected 
with the above vectors, let-7b-5p mimics or mimics NC. A 
dual luciferase reporter kit (Promega, USA) was employed 
to evaluate the luciferase activity, after 48 h incubation.

Chromatin immunoprecipitation (ChIP)

ChIP analysis was conducted to verify the interaction 
between HOXA9 and SOCS2. BEAS-2B cells were sub-
jected to the cross-linking reaction with 1% paraform-
aldehyde. Chromatin was sonicated to acquire around 
200–1000 bp fragments. The fragments were incubated with 
the primary antibody HOXA9 (ab140631, Abcam) or IgG 
(ab172730, Abcam) at 4 °C for 12 h. The immunoprecipi-
tated DNA was analyzed using agarose gel electrophoresis.

RNA pull‑down

For verifying the interaction between let-7b-5p and HOXA9, 
RNA pull-down analysis was utilized. BEAS-2B cells were 

transfected with a biotin-labeled probe against let-7b-5p. 
Then, cells were immersed in lysis buffer after washing. 
The lysate was incubated with streptavidin-coated mag-
netic beads at 4 °C, overnight. The HOXA9 enrichment was 
examined by qRT-PCR.

Statistical analysis

The data were expressed as mean ± standard deviation (SD) 
and analyzed using SPSS 23.0 software (SPSS, Inc., USA). 
The comparison of two groups was conducted using Student’s 
t-test, and one-way ANOVA followed by Tukey’s test was 
utilized for comparing multiple groups. A significance level 
of p < 0.05 was considered indicative of a significant differ-
ence. All data were derived from three repeated experiments.

Results

Des alleviated LPS‑induced injury of BEAS‑2B cells

Des is an inhaled anesthetic commonly used clinically to 
reduce aberrant inflammation and cell injury [8]. To evaluate 
the effect of Des on LPS-induced lung injury, BEAS-2B cells 
were pretreated with different concentrations of Des (0.5%, 
2.5%, 5.0%) and then stimulated with LPS (2 µg/ml). Firstly, 
we observed that LPS decreased cell viabilities of BEAS-2B 
cells using MTT assays, whereas Des pretreatment improved 
cell viabilities, and 2.5% Des had the best effect (Fig. 1A). 
Meanwhile, after LPS induction, inflammatory cytokine (IL-
1β, TNF-α, and IL-6) levels were elevated, while Des signifi-
cantly down-regulated the cytokine levels in BEAS-2B cells, 
and the greatest inhibitory effects were observed in the 2.5% 
Des group (Fig. 1B). Furthermore, LPS promoted cell apopto-
sis, which was also suppressed by Des pretreatment, especially 
with 2.5% Des (Fig. 1C). As anticipated, pro-apoptotic proteins 
including Bax and cleaved caspase 3 were increased, while 
the anti-apoptotic protein Bcl-2 was decreased in BEAS-2B 
cells with LPS stimulation, which trend was reversed by Des 
(Fig. 1D). Previous studies have suggested that Des may play 
a role in disease progression by regulating miRNA expres-
sion [26]. In this study, we studied the levels of several lung 
injury-related miRNAs in BEAS-2B cells, including miR-138, 
miR-214, miR-34a, miR-135b-5p, and let-7b-5p [27–31]. LPS 
caused a decrease in the level of miR-138 and an increase in 
the levels of miR-214, miR-34a, let-7b-5p, and miR-135b-5p. 
With the increase of Des concentration, the levels of miR-214, 
miR-34a, and let-7b-5p gradually decreased, among which the 
decrease of let-7b-5p was the most obvious (Fig. 1E). Taken 
together, Des could improve cell injury caused by LPS stim-
ulation, which may be associated to let-7b-5p expression in 
BEAS-2B cells. Based on these results, a concentration of 
2.5% Des was selected for further testing.

http://starbase.sysu.edu.cn/
http://starbase.sysu.edu.cn/
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let‑7b‑5p inhibition improved LPS‑stimulated injury 
of BEAS‑2B cells

Subsequently, we examined the modulatory role of let-7b-5p 
in LPS-induced cell injury. BEAS-2B cells were transfected 
with let-7b-5p inhibitor or inhibitor NC, after LPS induce-
ment. LPS could memorably up-regulate let-7b-5p expres-
sion, while this phenomenon was abolished by let-7b-5p 
inhibitor transfection (Fig. 2A). Moreover, let-7b-5p silenc-
ing ameliorated the LPS-mediated decrease in cell viabil-
ity by MTT assays (Fig. 2B). The silenced let-7b-5p also 
reversed the LPS-induced inflammatory cytokines’ increase 
(Fig. 2C). And let-7b-5p silencing decreased cell apopto-
sis which was induced by LPS (Fig. 2D). The transfection 

of let-7b-5p inhibitor down-regulated the Bax and cleaved 
caspase 3 expression and the up-regulated Bcl-2, under 
LPS treatment (Fig. 2E). Collectively, the let-7b-5p silenc-
ing played a protective role in the LPS-induced injury of 
BEAS-2B cells.

let‑7b‑5p overexpression impaired the Des‑medi‑
ated protective effect on LPS‑induced cell injury

To clarify whether Des affected LPS-induced cell injury 
by regulating let-7b-5p expression, BEAS-2B cells were 
transfected with let-7b-5p mimics or NC, following the 
Des pretreatment and LPS induction. Des markedly down-
regulated let-7b-5p expression in LPS-induced BEAS-2B 

Fig. 1  Des-alleviated LPS-induced injury of BEAS-2B cells. BEAS-
2B cells were pretreated with different concentrations of Des (0.5%, 
2.5%, 5.0%) and then received LPS stimulation. A Cell viability was 
evaluated using MTT. B Inflammatory cytokine levels were measured 
employing ELISA. C Cell apoptosis was examined by flow cytom-

etry. D Bax, Bcl-2, and cleaved caspase 3 levels were determined 
using western blot. E miR-138, miR-214, miR-34a, miR-135b-5p, and 
let-7b-5p levels were analyzed by qRT-PCR. *p < 0.05, **p < 0.01, 
***p < 0.001. All data were derived from three repeated experiments
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cells, which was reversed by let-7b-5p mimic transfection 
(Fig. 3A). In addition, let-7b-5p overexpression suppressed 
the Des-mediated improvement of cell viability under LPS 
via MTT assays (Fig. 3B). Under LPS induction, overexpres-
sion of let-7b-5p restrained the reduction of inflammatory 
factor secretion in Des-treated cells (Fig. 3C). Furthermore, 
the let-7b-5p overexpression reversed the Des-decreased 

cell apoptosis of BEAS-2B cells, under LPS stimulation 
(Fig. 3D). Also, Des up-regulated Bcl-2 protein expres-
sion and repressed Bax and cleaved caspase 3 expression 
in LPS-induced BEAS-2B cells, whereas these alterations 
were overturned by let-7b-5p overexpression (Fig. 3E). In 
summary, Des ameliorated LPS-stimulated cell injury by 
reducing let-7b-5p expression.

Fig. 2  let-7b-5p inhibition improved LPS-stimulated injury of BEAS-
2B cells. BEAS-2B cells were subjected to let-7b-5p inhibitor or 
inhibitor NC transfection and followed by LPS induction. A let-7b-5p 
level was analyzed by qRT-PCR. B Cell viability was evaluated using 
MTT. C Inflammatory cytokine levels were measured using ELISA. 

D Cell apoptosis was examined by flow cytometry. E Bax, Bcl-2, 
and cleaved caspase 3 levels were determined using western blot. 
*p < 0.05, **p < 0.01, ***p < 0.001. All data were derived from three 
repeated experiments
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let‑7b‑5p negatively regulated HOXA9 expression

Subsequently, we investigated the downstream mol-
ecules of let-7b-5p in LPS-aggravated cell injury. Bio-
informatics databases (Targetscan, miRBD, Starbase, 
Tarbase, miRWalk) were capitalized on to predict let-
7b-5p’s downstream molecules, and molecules including 
TRIM71, FAM118A, DUSP1, MTDH, and HOXA9 were 

obtained from overlap (Fig. 4A). HOXA9 and TRIM77 
expressions were up-regulated, while DUSP1 was down-
regulated, after the let-7b-5p silencing (Fig.  4B). As 
presented in Fig. 4C, let-7b-5p harbored binding sites 
on HOXA9. Therefore, we focused on whether Des 
could affect HOXA9 expression. First, LPS dramatically 
down-regulated HOXA9 expression, while this alteration 
was attenuated by Des (Fig. 4D, E). Moreover, the dual 

Fig. 3  let-7b-5p overexpression impaired the Des-mediated protec-
tive effect on cell injury under LPS. BEAS-2B cells were transfected 
with let-7b-5p mimics or mimics NC and followed Des pretreatment 
and LPS induction. A let-7b-5p level was analyzed by qRT-PCR. B 
Cell viability was evaluated using MTT. C Inflammatory cytokine 

levels were measured using ELISA. D Cell apoptosis was examined 
by flow cytometry. E Bax, Bcl-2, and cleaved caspase 3 levels were 
determined using western blot. *p < 0.05, **p < 0.01, ***p < 0.001. 
All data were derived from three repeated experiments
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luciferase activity experiment validated that let-7b-5p 
mimics observably decreased the luciferase activity of 
the HOXA9-WT group, while it hardly influenced that 
in the HOXA9-MUT group (Fig. 4F). Meanwhile, RNA 
pull-down exhibited that Bio-let-7b-5p sense dramatically 

enriched HOXA9 rather than Bio-let-7b-5p anti-sense 
(Fig. 4G). After the overexpression of let-7b-5p, Des-up-
regulated HOXA9 expression was down-regulated, while 
the HOXA9 overexpression overturned the trend, in LPS-
induced BEAS-2B cells (Fig. 4H, I). Taken together, the 

Fig. 4  let-7b-5p negatively regulated HOXA9 expression. A Five 
overlapping genes (TRIM71, FAM118A, DUSP1, MTDH, and 
HOXA9) from five bioinformatics websites (Targetscan, miRBD, 
Starbase, Tarbase, miRWalk). B The levels of TRIM71, FAM118A, 
DUSP1, MTDH, and HOXA9 in BEAS-2B cell–transfected let-7b-5p 
inhibitor or inhibitor NC were determined using qRT-PCR. C The 
binding site between let-7b-5p and HOXA9. D, E HOXA9 expression 
in LPS-induced BEAS-2B cells with different concentrations of Des 

(0.5%, 2.5%, 5.0%) treatment was evaluated by qRT-PCR and west-
ern blot. F, G The validation of interaction between let-7b-5p and 
HOXA9 was conducted with a dual luciferase activity experiment 
and RNA pull-down. BEAS-2B cells were transfected with let-7b-5p 
inhibitor with/without oe-HOXA9 and followed by Des pretreatment 
and LPS stimulation. H, I HOXA9 expression was examined by qRT-
PCR and western blot. *p < 0.05, **p < 0.01, ***p < 0.001. All data 
were derived from three repeated experiments
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let-7b-5p target negatively regulated HOXA9 expression, 
and this interaction was modulated by Des.

HOXA9 regulated the NF‑κB pathway through tran‑
scriptional up‑regulating SOCS2 expression

As previously described, SOCS2 degradation could aggra-
vate pulmonary inflammation [22]. In the present study, 
we found that SOCS2 expression was down-regulated in 
LPS-induced BEAS-2B cells, while that was restored by 
Des treatment (Fig. 5A, B). In addition, as a transcription 
factor, HOXA9 is capable of regulating its downstream 
genes’ transcription [32]. As revealed in Fig. 5C, there 
were potential binding sites between HOXA9 and the pro-
moter region of SOCS2. ChIP assay further validated that 
interaction (Fig. 5D). Then, HOXA9 expression was mark-
edly up-regulated in the oe-HOXA9 transfected BEAS-
2B cells (Fig. 5E, F). Furthermore, let-7b-5p mimics sup-
pressed the Des-induced SOCS2 expression, whereas the 
inhibitory effect of let-7b-5p overexpression on SOCS2 
was counteracted by the co-transfection of oe-HOXA9 and 
let-7b-5p mimics (Fig. 5G, H). Moreover, LPS induction 
significantly enhanced p-p65 and p-IκB-α expressions, 
which was offset by Des. However, let-7b-5p mimics 
eliminated Des-induced suppressing influences on p-p65 
and p-IκB-α expression, which were further compromised 
by HOXA9 overexpression (Fig. 5H). In total, HOXA9 
could inhibit the NF-κB signaling by transcriptional up-
regulating SOCS2 expression.

let‑7b‑5p promoted LPS‑induced cell injury 
through silencing HOXA9 expression

Finally, we examined whether let-7b-5p played a regula-
tory role in LPS-induced lung injury through modulating 
HOXA9. After pretreatment with Des and LPS inducement, 
cells transfected with let-7b-5p mimic were further trans-
fected with oe-NC or oe-HOXA9 vectors. After Des pre-
treatment, the overexpression of HOXA9 improved the cell 
viabilities of LPS-induced BEAS-2B cells, which abolished 
the let-7b-5p overexpression–induced viabilities’ decrease, 
using MTT assays (Fig. 6A). Furthermore, HOXA9 over-
expression reduced the LPS-up-regulated inflammatory 
cytokine levels, which also reversed the effects of let-7b-5p 
overexpression (Fig. 6B). Moreover, HOXA9 decreased 
cell apoptosis, repressed Bax and cleaved caspase 3 expres-
sion, and promoted Bcl-2 in LPS-induced BEAS-2B cells 
with Des pretreatment, which weakened the effects of let-
7b-5p overexpression (Fig. 6C, D). Thus, we concluded that 

let-7b-5p mimics exacerbated LPS-induced BEAS-2B cell 
injury by reducing HOXA9 expression.

Discussion

ALI is a form of severe acute respiratory distress syndrome, 
which leads to high morbidity and mortality. Current clinical 
treatment strategies targeting it have limited effectiveness in 
remission and cure [1]. Therefore, it is essential to explore 
effective medications for the treatment of ALI. In this study, 
we demonstrated that Des has an ameliorative effect on LPS-
induced ALI. Furthermore, we found for the first time that 
Des could alleviate LPS-induced ALI via modulating the 
let-7b-5p/HOXA9/SOCS2/NF-κB axis.

Inhalational agents have been contended as an effective 
strategy for ameliorating lung injury [33]. In particular, 
inhalational agents are widely utilized in the current thera-
pies for ALI, such as inhaled corticosteroids, prostaglan-
dins, and nitric oxide [34–36]. Inhalational anesthesia has 
shown significant therapeutic effects in cellular models of 
a variety of diseases, including severe bronchospasm and 
cardiomyocyte hypoxia/reperfusion injury [24, 37]. Koutso-
giannaki et al. have found that isoflurane attenuated LTB4-
mediated responses by binding to BLT1 receptors, thereby 
reducing sepsis-induced mice lung injury [38]. Fu et al. 
have also reported that sevoflurane improved LPS-induced 
ALI in cell or mice models [39]. Specifically, inhalational 
anesthetics (such as sevoflurane and Des) have been identi-
fied to exert crucial effects in controlling the progression of 
asthma, chronic obstructive pulmonary disease (COPD), and 
bronchiectasis [40–42]. Additionally, Des is also revealed 
to exert a beneficial role in the ALI recovery progression. 
As mentioned earlier, Des pretreatment has attenuated the 
sepsis-induced lung injury in rats by suppressing the STAT3 
pathway [8]. And Des has down-regulated ICAM-1 expres-
sion to alleviate LPS-induced ALI, in a lung microvascular 
endothelial cell model [43]. In this study, BEAS-2B cells 
were stimulated with LPS to create a cellular model of ALI. 
Des pretreatment at different concentrations had a protec-
tive effect on cell injury caused by LPS. Furthermore, we 
observed that Des down-regulated let-7b-5p expression in 
LPS-induced BEAS-2B cells, indicating that let-7b-5p may 
be involved in the protective effect of Des.

MiRNAs are a type of non-coding RNA that plays 
important modulatory roles under pathological and physi-
ological conditions [44]. Some miRNAs, such as miRNA-
762, miR-132-3p, and miR-96-5p, have been found to be 
involved in LPS-induced ALI [45–47]. Previous studies 
have shown that drugs can modulate disease progression by 
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Fig. 5  HOXA9 regulated the NF-κB pathway through transcriptional 
up-regulating SOCS2 expression. A, B SOCS2 expression in LPS-
induced BEAS-2B cells with different concentrations of Des (0.5%, 
2.5%, 5.0%) pretreatment was evaluated by qRT-PCR and western 
blot. C The binding site between HOXA9 and the region of SOCS2 
promoter. D The interaction between HOXA9 and SOCS2 promoter 
was verified by ChIP assay. E, F HOXA9 expression in BEAS-2B 

cells transfected with oe-NC or oe-HOXA9 was determined by qRT-
PCR and western blot. BEAS-2B cells were transfected with let-
7b-5p inhibitor with/without oe-HOXA9 and followed by LPS stim-
ulation and Des treatment. G SOCS2 expression was detected using 
qRT-PCR. H SOCS2, p-p65, p65, IκB-α, and p-IκB-α levels were 
determined by western blot. *p < 0.05, **p < 0.01, ***p < 0.001. All 
data were derived from three repeated experiments
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altering miRNA expression [10]. We screened that LPS up-
regulated let-7b-5p expression in BEAS-2B cells, whereas 
Des significantly down-regulated its expression. This is 
consistent with previous findings that let-7b-5p expres-
sion levels are increased in COPD lung tissues and LPS-
induced BEAS-2B cells [48]. Furthermore, we found that 
LPS induction could promote let-7b-5p expression, while 

down-regulation of let-7b-5p ameliorated LPS-induced cell 
injury. More importantly, we clarified that overexpression 
of let-7b-5p reversed the protective effect of Des in LPS-
induced BEAS-2B cells. Experimental evidence shows that 
let-7b-5p may be a new target for Des treatment, and inter-
fering with let-7b-5p may have a controlling effect on the 
therapeutic effect of Des.

Fig. 6  let-7b-5p promoted LPS-induced cell injury through silencing 
HOXA9 expression. BEAS-2B cells were transfected with let-7b-5p 
inhibitor with/without oe-HOXA9 and followed by Des pretreatment 
and LPS stimulation. A Cell viability was evaluated using MTT. B 
Inflammatory cytokine (IL-1β, TNF-α, and IL-6)  levels were meas-

ured using ELISA. C Cell apoptosis was examined by flow cytom-
etry. D Bax, Bcl-2, and cleaved caspase 3 levels were determined 
using western blot. *p < 0.05, **p < 0.01, ***p < 0.001. All data were 
derived from three repeated experiments
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Subsequently, we investigated the downstream mol-
ecules of let-7b-5p and their effects on lung disease pro-
gression. MiRNAs can modulate their downstream target 
gene expression to exert regulatory effects on disease 
progression [49]. In an LPS-induced ALI mice model, it 
has been found that the enhanced HOXA9 could alleviate 
ALI progression [19]. Our data indicated that HOXA9 
expression was observably down-regulated in LPS-
induced BEAS-2B cells, and Des pretreatment raised 
HOXA9 expression. That suggested that HOXA9 over-
expression may pose the underlying protective effects on 
ALI. In addition, we discovered that let-7b-5p negatively 
regulated HOXA9 expression and that the silencing of 
HOXA9 aggravated LPS-induced cell injury. Moreo-
ver, HOXA9 has been widely reported to be associated 
with inflammatory diseases [20]. Further, Lear et  al. 
have revealed that ubiquitination degradation of SOCS2 
expression exacerbated lung inflammatory response [22]. 
Consistent with this, we found that SOCS2 expression 
was down-regulated in LPS-stimulated cells, but this 
repression was reversed by Des treatment. Meanwhile, 
HOXA9 could up-regulate SOCS2 expression through its 
transcription activation. Moreover, the NF-κB signaling 
is known to positively regulate inflammation but is nega-
tively regulated by SOCS2 [20, 50]. This study demon-
strated that HOXA9 could inhibit the NF-κB signaling by 
transcriptionally up-regulating SOCS2 expression, which 
further strengthened the mechanism by which HOXA9 
regulated inflammation. In addition, there are still sev-
eral limitations of our study. Previous studies have shown 
that Des can aggravate or improve lung injury [8, 9], 
but its exact role is controversial. It is a great draw for 
us to explore further in this perspective. Moreover, due 
to the current conditions and funding constraints, there 
was a lack of animal-level studies. Further, it remains 
elusive how Des regulates the let-7b-5p expression and 
whether let-7b-5p affects Des’s other functions. In the 
future, we will conduct the intratracheal/intranasal/aero-
solized administration of drugs or intravenous injection 
of LPS pathways to establish the ALI animal model and 
further verify the findings in this study, if conditions 
permit [51, 52]. Meanwhile, ALI is always presented 
as the alveolar epithelial cell and capillary endothelial 
cell injury triggered by injury or infection in the lung, 
resulting in hypoxic respiratory insufficiency caused by 
non-cardiogenic pulmonary edema [53]. Therefore, we 
can explore the effects and mechanism of Des on that 
injury using the pulmonary microvascular endothelial 
cells in the further study. If permitted, the exploration of 
potentially different expressed lncRNA, circRNA, and 
proteins in Des-treated lung epithelial cells using micro-
array, proteomics, and high-throughput sequencing tech-
nique pathway can be helpful to clarify the mechanism 

of how Des regulates let-7b-5p. Furthermore, how does 
Des modulate the let-7b-5p expression, whether let-7b-5p 
can affect other functions of Des, or whether let-7b-5p 
can improve Des’s therapeutic efficacy in the Agomir-
let-7b-5p injected animal model? The above-involved 
questions greatly attract our in-depth exploration. Fur-
thermore, there is currently no specific medicine for ALI 
treatment, and the conventional medicines and treatments 
for ALI mainly include mechanical ventilation, vasodi-
lators (nitric oxide, prostaglandin), surfactants, antioxi-
dants, glucocorticoids, and anti-inflammation drugs. In 
addition, previous studies have indicated that Des inha-
lation can ameliorate mechanical ventilation–induced 
lung injury in rats [7]. This study provides experimental 
evidence for the potential clinical treatment of Des in 
ALI. Whether inhaled anesthetics should become part of 
the standard treatment of ARDS requires further clinical 
trials.

In conclusion, the present study first clarified that Des 
alleviated LPS-induced BEAS-2B cell injury by targeting 
the let-7b-5p/HOXA9/SOCS2 axis to inhibit the NF-κB 
signaling (Graphical abstract). Our findings revealed the 
function and mechanism of the let-7b-5p/HOXA9/SOCS2 
axis in the Des treatment for ALI and provided the poten-
tial molecular target for the ALI. Precisely, let-7b-5p may 
be utilized as an underlying target for early diagnosis and 
supportive treatment of ALI.
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