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Abstract
Behcet’s disease (BD) is a chronic inflammatory vasculitis and clinically heterogeneous disorder caused by immunocyte 
aberrations. Comprehensive research on gene expression patterns in BD illuminating its aetiology is lacking. E-MTAB-2713 
downloaded from ArrayExpress was analysed to screen differentially expressed genes (DEGs) using limma. Random forest 
(RF) and neural network (NN) classification models composed of gene signatures were established using the E-MTAB-2713 
training set and subsequently verified using GSE17114. Single sample gene set enrichment analysis was used to assess 
immunocyte infiltration. After identifying DEGs in E-MTAB-2713, pathogen-triggered, lymphocyte-mediated and angiogen-
esis- and glycosylation-related inflammatory pathways were discovered to be predominant in BD episodes. Gene signatures 
from the RF and NN diagnostic models, together with genes enriched in angiogenesis and glycosylation pathways, well 
discriminated the clinical subtypes of BD manifesting as mucocutaneous, ocular and large vein thrombosis involvement in 
GSE17114. Moreover, a distinctive immunocyte profile revealed T, NK and dendritic cell activation in BD compared to the 
findings in healthy controls. Our findings suggested that EPHX1, PKP2, EIF4B and HORMAD1 expression in CD14+ mono-
cytes and CSTF3 and TCEANC2 expression in CD16+ neutrophils could serve as combined gene signatures for BD phenotype 
differentiation. Pathway genes comprising ATP2B4, MYOF and NRP1 for angiogenesis and GXYLT1, ENG, CD69, GAA​, 
SIGLEC7, SIGLEC9 and SIGLEC16 for glycosylation also might be applicable diagnostic markers for subtype identification.
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Introduction

Behcet’s disease (BD) is a multi-systemic vasculitis char-
acterised by oral aphthous ulcers, genital ulcers and ocular 
lesions, and it also affects the arteries, veins, joints, gastroin-
testinal tract and nerves, leading to decreased quality of life 
or even death [1]. The prevalence and clinical manifestations 
of BD vary by both region and gender, with an approximate 
incidence rate of 14/100,000 in China. Grievous microvas-
cular vessel together with neural system involvement is more 
common in male patients.

The potential pathogenesis is traceable in recent studies. 
Tissue damage in BD is heavily reliant on T cell imbal-
ance including Th1/Th17 cell expansion and depressed Treg 
regulation, leading to cytokine activation and lymphocyte 
recruitment (predominantly NK cells and monocytes) as 
well as neutrophil hyperfunction [2, 3]. Previous tuberculo-
sis infection as an independent risk factor for illness results 
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in an infectious aetiology in BD [4]. Recurrent exposure to 
heat shock proteins synthesised by mycobacteria or other 
microorganisms could be responsible for stronger lym-
phoproliferative responses and cross-reactivity, and this may 
also result in increased expression of vascular endothelial 
factor, which induces endothelial destruction, angiogenesis, 
thrombophlebitis and vasculitis [5].

Genetic predisposition is a key force in the onset of BD. 
In particular, HLA-B51 is the strongest susceptibility locus 
with a carrier frequency of 55–63% [6]. HLA alleles con-
taining HLA-B51, HLA-A26 and HLA-C0704 were proven to 
be related to BD uveitis in a genome-wide association study 
(GWAS) [7]. Concerning non-HLA regions, the ERAP1 
rs17482078 polymorphism can affect peptide binding, 
making it a preferential risk factor for HLA-B51–positive 
patients [8]. The low-frequency missense mutations IL-23R 
p.Gly149Arg in a Japanese cohort and IL-23R p.Arg381Gln 
in Turkey were identified as protective factors for BD [9]. 
The IL-10 rs1800872 allele is linked to decreased IL-10 
production in BD-prone individuals [10]. Activated by 
IL23/IL12, STAT4 plays a vital role in the differentiation 
of T cells from the naïve phenotype to Th1/Th17 pheno-
types. The STAT4 rs897200 risk allele (homozygote AA) is 
associated with higher STAT4 expression, which enhances 
IL-17 transcription and expression, resulting in increased 
clinical severity in patients with BD [11]. A Turkey GWAS 
reinforced the role of FUT2 variants (rs281377, rs602662, 
rs492602, rs681343, rs601338, rs632111) in BD susceptibil-
ity. FUT2 encodes an α-(1,2) fucosyltransferase that modu-
lates H-antigen secretion in intestinal mucosa [12], implying 
the involvement of a latent glycosylation pathway in BD 
episodes.

Nevertheless, few studies concentrated on gene signa-
tures for BD diagnostics and deeper insights into correla-
tions between these markers and immunological pathways 
should be obtained. In the present study, we aim to elucidate 
the value of genes as differential biomarkers for identifying 
the clinical phenotypes of BD and assess the participation of 
these genes in biological pathways, especially angiogenesis 
and glycosylation pathways, as well as address distinctive 
lymphocyte infiltration signatures utilising integrated bio-
informatic methods.

Materials and methods

Dataset acquisition and normalisation

Three gene datasets were retrieved from ArrayExpress 
(https://​www.​ebi.​ac.​uk/​array​expre​ss/) and Gene Expression 
Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​geo/) data-
bases using the key word ‘Behcet’s Syndrome’ or ‘Behcet’s 

Disease’, and the accession numbers were E-MTAB-2713, 
GSE17114, and GSE61933.

For dataset E-MTAB-2713, the oligo R package was 
employed to pre-process the raw data from the website meas-
ured at A-AFFY-168 - Affymetrix GeneChip Human Gene 
1.1 ST Array [HuGene-1_1-st-v1] [13], which comprises the 
following in silico transcriptomic profiles: (i) 6 patients with 
BD, 68 healthy controls (HCs), 58 patients with systemic 
lupus erythematosus (SLE), 78 patients with inflammatory 
bowel disease (IBD) and 53 patients with ANCA-associated 
vasculitis (AAV) as disease controls (DCs) using CD4+ T 
cells; (ii) 13 patients with BD, 78 HCs, 59 patients with 
SLE, 87 patients with IBD and 72 patients with AAV using 
CD14+ monocytes; and (iii) 13 patients with BD, 85 HCs, 
43 patients with SLE, 86 patients with IBD and 60 patients 
with AAV using CD16+ neutrophils. Subsequently, a robust 
multi-array average algorithm was invoked for background 
correction, normalisation and summarisation [14]. The R 
package ‘ArrayQualityMetrics’ was used for the quality con-
trol process [15], and ‘oligo’ was applied again for filtering 
probes with P < 0.05 in at least three samples using the 
paCalls function (P refers to the probability that the expres-
sion amounts of probes is the same as that of background. A 
smaller value indicates a more significant difference between 
the probe and background exists, i.e., a greater possibility 
of probe expression). All the BD patients, HCs and DCs 
(SLE/IBD/AAV) from dataset E-MTAB-2713 were enrolled 
to perform differential expression gene analysis, function 
annotations and build weighted correlation network as well 
as diagnostic machine learning models.

For GSE17114 using the [HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 Array (GPL570), mRNA 
was isolated from the peripheral blood mononuclear cells 
of 14 HCs and 15 patients with BD, and patients with BD 
were divided into isolated mucocutaneous manifestations 
(MB), ocular involvement (OB) and large vein thrombosis 
(VB) subtypes according to the major clinical manifestations 
described by Oğuz et al. and presented in previous articles 
[16, 17]. For GSE61399 based on the GPL570 platform, 
gene expression profiles were extracted using CD14+ mono-
cytes from nine HCs and eight patients with BD.

Differentially expressed gene (DEG) and enrichment 
analysis

In the E-MTAB-2713 dataset, we conducted DEG analysis 
using the R ‘limma’ package with a threshold of adjusted P 
< 0.05 and |log fold change (FC)| > 0.5 [18]. Meanwhile, 
we also performed Gene Ontology (GO) enrichment and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analysis to excavate biological functions and signal-
ling pathways in which DEGs are significantly involved 
with cut-off criteria of P < 0.05 and FDR < 0.05, the 
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visualisation of which was realised using ‘clusterProfiler’ 
and ‘enrichplot’ [19]. Thereafter, DEGs involved in angio-
genesis and glycosylation pathways were exported from 
GO/KEGG databases and published citations [20, 21] and 
then validated for BD phenotype classification using the 
GSE17114 dataset.

Identification of hub genes and construction 
of a protein–protein interaction (PPI) network

To identify clinical traits-specific module genes (MGs) 
and establish a co-expression sub-network in CD14+ 
monocytes and CD16+ neutrophils in the E-MTAB-2713 
dataset, we employed the R package ‘WGCNA’ with the 
optimal softPower to gain a better value of scale-free R2, 
mean connectivity and a befitting minimum number of 
gene modules in dynamic tree cut sections [22], from 
which we picked the most relevant gene modules for 
patients with BD according to the gene significance and 
module membership calculated in the weighted correlation 
network analysis (WGCNA) process. Simultaneously, we 
implemented a PPI network consisting of the MGs using 
the STRING database and a threshold score of 0.150 [23]. 
Resorting to the MCODE plug-in in Cytoscape software 
with cut-offs of degree = 2, node score = 0.2, k-core = 2 
and max. depth = 100 [24], we visualised sub-networks 
and performed GO and KEGG analyses to recognise 
immunological pathways in subnet genes.

Random forest (RF) and neural network (NN) 
classification model establishment

DEGs from the E-MTAB-2713 dataset were input into an 
RF classifier to construct a RF model using the ‘random-
Forest’ package in R [25], 500 as the number of decision 
trees originally. After calculating the error rate of the deci-
sion trees, we adjusted the optimal tree number by virtue of 
the minimum error rate and excellent stability. We obtained 
the dimensional importance value for gene variables via the 
MeanDecreaseGini method and genes with importance value 
≥ 1 were identified as paramount genes (PGs) of BD and 
then included for further model construction and validation.

E-MTAB-2713 was selected as the training set for artifi-
cial NN model establishment. Min-max normalisation based 
on the median expression of PGs from the RF classifier was 
performed in advance. Afterwards, we created an NN model 
using ‘neuralnet’ and the normalised data as the input layer 
[26], and the number of neuron nodes in hidden layers was 
manually selected in accordance to the principle that two 
thirds of neuron numbers in input layers plus 1.5-fold of that 
in the output layers [27].

Diagnostic prediction and validation 
of classification model

Two independent GEO datasets (GSE17114 and GSE61933) 
were recruited for verifying the aforementioned NN model. 
The R ‘pROC’ algorithm was employed to compute area 
under the curve (AUC) classification performance and effi-
ciency [28]. Additionally, PGs were applied for discerning 
BD phenotypes in GSE17114.

Immunocyte infiltration evaluation using single 
sample gene set enrichment analysis (ssGSEA) 
algorithm

We invoked ssGSEA to assess the infiltration of 28 immune 
cell types in BD samples from the E-MTAB-2713 database 
[29, 30]. Using the ‘GSVA’, ‘limma’ and ‘GSEABase’ pack-
ages, we sought distinctive immune cell profiles for both 
patients with BD and HCs, and diverse immunological infil-
tration patterns among patients with BD, DCs and HCs were 
presented via ‘vioplot’ in R studio.

Results

Screening for DEGs and GO/KEGG Annotation 
illuminate the involvement of angiogenesis 
and glycosylation pathways in the pathogenesis 
of BD

The flow chart illustrated in Figure S1 delineates the pro-
cedure for exploring distinct biological pathways, immune 
cell infiltration and diagnostic gene markers. In CD4+ T 
cells, 0, 51, 146 and 151 genes were differentially expressed 
in BD compared to the AAV, HC, IBD and SLE groups, 
respectively. We also investigated the pathogenesis of BD by 
applying functional and pathway analyses. ‘Positive regula-
tion of cytokine production’, ‘response to virus’ in biologi-
cal process (BP) and ‘carbohydrate binding’ and ‘sialic acid 
binding’ in molecular function revealed an immunopatho-
genic background and glycosylation involvement for DEGs 
(Fig. 1A). Regarding CD14+ monocytes, 31, 5, 22 and 66 
DEGs were identified in BD relative to the AAV, HC, IBD 
and SLE groups, respectively. Similarly, ‘defence response 
to virus’ in BP was linked to an infection-associated patho-
genesis of BD (Fig. 1B). Regarding CD16+ neutrophils, 89 
genes differentiated patients with BD from HCs, whereas 
34, 75 and 247 DEGs differentiated BD from AAV, IBD 
and SLE, respectively (Table S1). Angiogenesis regulation 
was identically discovered on the basis of ‘negative regu-
lation of cell migration’ and ‘negative regulation of blood 
vessel endothelial cell migration’ enrichment (Fig. 1C). 
Altogether, DEGs prominently participating in glycosylation 
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and angiogenesis pathways were discovered in BD using the 
‘ggpubr’ package (Fig. 1D). Few disease-associated KEGG 
annotations, including ‘measles’, ‘hepatitis C’, ‘influenza 
A’, ‘NOD−like receptor signalling pathway’, ‘Epstein−Barr 
virus infection,’ and ‘antigen processing and presentation’, 
indicated that pathogen recognition and innate immune 
responses were activated in patients with BD relative to HCs 
or DCs, which coincided with the GO functions (Table S2).

Identification of clinical trait‑specific module genes 
(MGs)

We focused on CD14+ monocytes and CD16+ neutrophils 
to hunt for clinical trait-specific MGs utilising WGCNA 
co-expression network analysis (Figure S2 and Table S3). 
When combining DEG expression profiles with clinical 
traits, we considered the most relevant modules associated 

with clinical manifestations of BD as significant modules 
comprising MGs for subsequent PPI and MCODE subnet 
analyses (Figure S3). Profoundly, we exploited GO/KEGG 
analyses in each MCODE subnet of CD14+ monocytes, 
uncovering ‘defence response to virus’, ‘cytokine-mediated 
signalling pathway’, ‘regulation of innate immune response’, 
‘lymphocyte/leukocyte mediated immunity’, ‘cell killing’, 
‘natural killer cell-mediated immunity’ and ‘positive regu-
lation of leukocyte adhesion to vascular endothelial cell’ 
as pathways associated with BD pathogenesis. Concerning 
CD16+ neutrophils, ‘defence response to virus’, ‘cytokine-
mediated signalling pathway’, ‘lymphocyte-mediated 
immunity’ and ‘leukocyte migration involved in inflam-
matory response’ were identified in GO analyses (Figure 
S3). Briefly, we unveiled a pathogen-triggered, lympho-
cyte-mediated, vessel-inflamed and innate immune system-
dominant characteristic of BD pathogenesis. Surprisingly, 

Fig. 1   Differentially expressed genes (DEGs) and Kyoto Encyclope-
dia of Genes and Genomes annotations. A DEGs in CD4+ T cells 
discriminating Behcet’s disease (BD) from inflammatory bowel dis-
ease (IBD). B DEGs in CD14+ monocytes discriminating BD from 
systemic lupus erythematosus. C DEGs in CD16+ neutrophils dis-

criminating BD from IBD. D DEGs involved in both angiogenesis 
(ATP2B4, MYOF, NRP1) and glycosylation (GXYLT1, ENG, CD69, 
GAA​, SIGLEC7, SIGLEC9, SIGLEC16) were presented via the viop-
lot package in R programme



864	 Immunologic Research (2023) 71:860–872

1 3

extra-molecular access to B cell-mediated immunity, 
mature B cell differentiation and immunoglobulin-mediated 
immune response might illuminate the possible participation 
of acquired immunity in the development of BD.

Moreover, the enrichment of ‘Epstein−Barr virus infec-
tion’, ‘TNF signalling pathway’, ‘NF−kappa B signalling 
pathway’, ‘measles’, ‘hepatitis C’, ‘influenza A’, ‘NOD-like 
receptor signalling pathway’, ‘natural killer cell-mediated 
cytotoxicity’, ‘Th1 and Th2 cell differentiation’ and ‘Th17 
cell differentiation’ in KEGG analysis supported our 
assumption regarding the aetiology of BD (data not shown).

Random forest (RF) and neural network (NN) 
analyses to establish disease classification model

Regarding the DEG set of CD14+ monocytes, we iden-
tified six PGs (P2RY2, DDHD1, SLC6A12, RPS29, 
USMG5, MS4A3) that distinguished BD and AAV 

samples using an appropriate MeanDecreaseGini index 
to construct a subsequent NN. Consistently, five PGs 
(EPHX1, PKP2, FCMR, EIF4B, HORMAD1) differenti-
ate BD and HC samples, nine PGs (NEXN, SNORD30, 
SNORD59B, SNORD28, ANO5, OTUD1, LOC399900, 
WDR74, RNU11) discerned BD and IBD samples and six 
PGs (KLRF1, SLC7A8, DKFZP434L187, FCGR1B, IFI6, 
IFITM3) distinguished BD and SLE samples. Leveraging 
R ‘pheatmap’ and k-means clustering, it was apparent that 
PGs could separate BD samples from HC, IBD and SLE 
samples (Fig. 2A–D).

As for CD16+ neutrophils, PGs recognized as candi-
dates for constructing the NN model could preferentially 
distinguish BD samples from AAV (IRAK3, COMMD6, 
FAM58BP, MALAT1, IRF7, COPZ1), HC (MIR326, 
CSTF3, MIR15A, TCEANC2), IBD (FAM58BP, ATP5J2, 
USF1, SNORD59B, MIR15A, FAM212B) and SLE samples 
(COMMD6, C10orf12, PCBP2, MTERF2) (Fig. 2E–H).

Fig. 2   Random forest construction using differentially expressed 
genes. A–H The upper graph presents the minimum value of the 
cross-validation error rate. The X-axis presents decision tree numbers, 
and the Y-axis presents the error of cross-validation. The lower graph 

illustrates the expression heat map of paramount genes with impor-
tance value ≥ 1 between patients with Behcet’s disease (BD) and 
healthy controls
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Afterwards, we input PGs from the RF classifier into the 
NN model and manually set the neuron levels of the hidden 
layer from 3 to 6 in E-MTAB-2713 as the training set. The 
visualisation of the predicted weight and NN model is pre-
sented in Fig. 3. PGs from CD14+ monocytes remarkably 
differentiated BD with an accuracy of 0.962; identically, the 
BD prediction value of PGs from CD16+ neutrophils was as 
high as 0.929 (Table 1).

Diagnostic performance of paramount genes (PGs) 
and validation in BD clinical subtypes

Receiver operating characteristic (ROC) curves with AUCs 
were portrayed via the ‘pROC’ package in both the train-
ing and validation groups (Table 1). AUCs exceeding 0.900 
for BD diagnosis in the training group suggested outstand-
ing diagnostic performance for all NN models (Fig. 3). 
We also used two other datasets, namely GSE17114 and 
GSE61399, to further verify the aforementioned diagnostic 

Fig. 3   Establishment of the neural network. A–H The upper panel 
presents the disease classification model containing input, hidden 
and output layers, and the thickness of the connecting lines represents 

the scores and weight for paramount genes. The lower panel presents 
the ROC curve and areas under the curve for the training dataset of 
E-MTAB-2713

Table 1   Prediction accuracy and AUCs differentiating patients with 
Behcet’s disease (BD) from control subjects (for training group 
E-MTAB-2713)

Abbreviations: AUC​, area under the curve; AAV, ANCA-associated 
vasculitis; HC, healthy control; IBD, inflammatory bowel disease; 
SLE, systemic lupus erythematosus

Category Prediction 
accuracy for 
controls

Prediction 
accuracy for 
BD

AUC​

Training group
CD14+ monocytes AAV 0.944 0.769 0.960

HC 0.538 0.962 0.946
IBD 0.923 0.989 0.996
SLE 0.846 0.966 0.988

CD16+ neutrophils AAV 0.983 1.000 0.999
HC 0.923 0.929 0.961
IBD 0.923 0.965 0.980
SLE 0.923 0.884 0.936
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models (Figure S4). More specifically, PGs constituting 
the NN model were deeply utilised for discerning clini-
cal subtypes in GSE17114 regarding MB versus non-MB, 
OB versus non-OB and VB versus non-VB. For PGs from 
CD14+ monocytes constituting the NN model differentiat-
ing patients with BD from HCs, these genes prominently 
distinguished MB and non-MB samples and VB and non-
VB samples with AUCs of 0.8750 and 0.9091, respectively 
(Fig. 4A–B and Table 2). The discriminative ability of PGs 

from CD16+ neutrophils in the NN model was excellent for 
BD clinical manifestations, as indicated by AUC exceeding 
0.70 (Fig. 4B and Table 2).

Importantly, enriched genes associated with angiogenesis 
(ATP2B4, MYOF, NRP1) and glycosylation (GXYLT1, ENG, 
CD69, GAA​, SIGLEC7, SIGLEC9, SIGLEC16) pathways 
in E-MTAB-2713 also demonstrated great discriminative 
ability for BD clinical subtypes in the GSE17114 dataset 
(Fig. 4C–D and Table 2).

Fig. 4   Validation perfor-
mance of diagnostic genes for 
determining clinical subtypes 
of Behcet’s disease (BD) in 
the GSE17114 dataset A for 
paramount genes in CD14+ 
monocytes and B CD16+ neu-
trophils. C–D Pathogenic genes 
involved in glycosylation and 
angiogenesis
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Landscape of immune cell infiltration

We calculated the relative distinctive immunocyte spectrum 
in both patients with BD and controls exerting the total gene 
expression data of CD14+ monocytes and CD16+ neu-
trophils. To the extent of CD14+ monocytes, chemokine 
receptor (CCR), para-inflammatory, plasmacytoid dendritic 
cell (pDC), Th cell, Tfh cell and type I IFN responses were 
significantly more prominent in BD than in AAV (Fig. 5A). 
Immature dendritic cell (iDC) and T cell co-inhibition was 
stronger in HC samples than in BD samples, whereas pDC 
infiltration was increased in BD (Fig. 5B). B cell, CCR, NK 
cell, pDC, Tfh cell and type I IFN responses were dramati-
cally elevated in BD versus IBD (Fig. 5C). The ascent of NK 
cell, Th cell, Tfh cell, Th2 cell and type I/II IFN responses 
distinguished BD from SLE (Fig. 5D).

In CD16+ neutrophils, we observed hyperactivation of 
NK cell, para-inflammation, Th cell, Tfh cell and type I 
IFN responses in BD versus AAV (Fig. 5E). Concerning 
differences in immune cell infiltration between patients 
with BD and HCs, B cell, neutrophil, NK cell and type II 
IFN responses were promoted in BD samples, whereas HC 
samples were typified by antigen presenting cell (APC) 
co-stimulation, checkpoint pathways, T cell co-stimulation 
and increased Th2 cell counts in HC samples as expected 
(Fig. 5F). As for the immunocyte characteristics of IBD, 
neutrophil and NK cell counts, T cell co-inhibition and 
type II IFN responses were prominently increased in BD, 
highlighting diverse immunological differences with IBD 
(Fig. 5G). Next, we observed that B cell, NK cell and Tfh 
cell counts were increased in BD, whereas SLE was typified 

by APC co-stimulation, CCR responses, checkpoint path-
ways, para-inflammation, T cell co-stimulation and type I 
IFN responses (Fig. 5H). When applied to the GSE17114 
dataset, significant distributions of Th1 cells, activated den-
dritic cells and mast cells were noted in the MB, OB and 
VB groups.

Discussion

In the present study, we depicted the infection-induced, 
glycosylation-involved, angiogenesis-promoted, vascular 
inflammation-related pathogenesis of BD based on bio-
logical/pathway enrichment analyses of DEGs in CD4+ 
T cells, CD14+ monocytes and CD16+ neutrophils in the 
E-MTAB-2713 dataset. MGs from the WGCNA co-expres-
sion network, which were subsequently applied to construct 
a PPI network, MOCDE subnet and proceed with GO/KEGG 
enrichment, revealed the lymphocyte-mediated participation 
of NK, Th1, Th2 and Th17 cells in the pathogenesis of BD 
from another aspect. Wondering which DEGs could preferen-
tially discriminate patients with BD from both HCs and DCs, 
RF classifiers and NN models were utilised to screen gene 
markers for BD differential diagnostics. In the verification 
phase, we surprisingly discovered the excellent capability of 
the identified PGs in the clinical sub-typing of patients with 
BD concerning MB, OB and VB features. Finally, ssGSEA 
unveiled the diverse landscape of immune cells between 
patients with BD and controls, providing evident proofs of 
dysregulated immune tolerance and T cell activation attrib-
utable to immature dendritic cell suppression as well as T 
cell co-inhibition in BD. Moreover, the promoted CCR, 
para-inflammation, pDC and type I IFN responses indicated 
a pro-inflammatory status and the foreseeable excitation 
of autoreactive T cells. Hence, elevated counts of Th, Tfh, 
Th2 and NK cells support the previous hypothesis of a core 
pathogenic role of T cells in the aetiology of BD.

In CD14+ monocytes, EIF4B and HORMAD1 were iden-
tified as DEGs differentiating patients with BD from HCs 
and patients with IBD/SLE (Figure S5), and these results 
were confirmed in the NN model in both the training and 
validation sets. EIF4B is acknowledged for its ability to initi-
ate protein translation, facilitate either pre-initiation complex 
docking or scanning from the 5′ end to the 3′ end at the 
first codon and promote cell survival and proliferation [31]. 
Imbalanced EIF4B protein expression is related to Alzhei-
mer’s disease, lymphoma, leukaemia and hepatocellular car-
cinoma, and it also modulates anti-viral immunity by IFN-
stimulated genes in innate responses [32]. An in vivo study 
revealed that EIF4B conditional knockout mice were prone 
to viral infection, severe lung inflammation and impaired NK 
cytotoxicity during influenza A virus infection [32]. RNA-
seq demonstrated that EIF4B deficiency led to disrupted T 

Table 2   Diagnostic values differentiating the clinical subtypes of 
Behcet’s disease (for validation group GSE17114)

MB, mucocutaneous manifestations; OB, ocular involvement; VB, 
large vein thrombosis, VB

Category Genes AUC​

MB VB OB

CD14+ monocytes HORMAD1 + EPHX1 
+ PKP2 + EIF4B

0.875 0.909 -

CD16+ neutrophils TCEANC2 + CSTF3 0.750 0.727 0.841
Angiogenesis ATP2B4 0.544 0.818 0.886

MYOF 0.786 0.750 0.614
NRP1 0.518 0.795 0.818

Glycosylation GXYLT1 0.732 0.523 0.818
ENG 0.661 0.705 0.909
CD69 0.857 0.750 0.705
GAA​ 0.911 0.568 0.955
SIGLEC7 0.679 0.591 0.818
SIGLEC9 0.875 0.614 0.864
SIGLEC16 0.625 0.659 0.818
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cell signalling and differentiation [33], thereby confirming 
the crucial role of translational control in viral pathogen-
esis. HORMAD1 is aberrantly expressed in multiple cancers, 
leading to perturbed genomic stability and DNA damage 
repair [34]. We observed higher EIF4B expression and lower 
HORMAD1 expression in patients with BD relative to HCs, 
implying the significance of translational control and anti-
infective activity in BD. In addition, EIF4B and HORMAD1 
were validated in GSE17114 for discriminating MB and VB.

We observed enrichment of SERPING1 in relation to 
‘complement activation’, ‘lectin pathway’, ‘regulation of 
humoral immune response’ and ‘fibrinolysis’, thereby con-
trasting patients with BD from those with AAV and SLE. 
This might convey hyperactivation of the complement 
system as well as abnormal excitation of the coagulation 

pathway, overlapping the frequent occurrence of deep vein 
thrombosis in the lower extremities and cerebral venous 
sinus as well as arterial thrombosis. RNA-seq analysis also 
revealed upregulation of SERPING1 in degrading fibrin thus 
influenced coagulation in SLEs [35]. Prior research indi-
cated that downregulated SERPING1 could inhibit com-
plement cascades via C3, exacerbating primary Sjögren’s 
Syndrome (pSS) [36].

OAS2 is an IFN-induced, dsRNA-activated anti-viral 
enzyme involved in innate anti-viral responses, occupying a 
vital status in lupus nephritis [37], rheumatoid arthritis (RA) 
[38] and pSS [39]. This coincides with our findings of the 
pathogenic involvement of viral infection in GO annotation 
as well as ‘NOD-like receptor signalling’ for pathogen rec-
ognition. IRF7, encoding interferon regulator 5, is involved 

Fig. 5   Single sample gene set enrichment analysis and immune cell 
infiltration (A–D) presenting the relative distinctive immunocyte 
spectrum in both patients with Behcet’s disease and control subjects 

based on the genes expressed in CD14+ monocytes. E–G Immuno-
cyte scenarios based on genes in CD16+ neutrophils
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in the pro-inflammatory stage. The gene carries risk alleles 
of SLE, and it might affect the phenotypes of SLE through 
altered DNA methylation [40, 41]. Seeking for GO annota-
tion, increased GBP5 was gathered in the immunological 
pathway for the positive regulation of NLRP3 inflamma-
some complex assembly triggered by infection and IL-18 
production in our study, contradicting the conclusion that 
selectively increased GBP5 levels in the synovial tissue 
of patients with RA consequently blunt pro-inflammatory 
cytokine expression [42]. Taken together, the aforemen-
tioned genes could underlie the infection-primed pathogen-
esis of BD adequately.

Concerning CD16+ neutrophils, all DEGs in both 
patients with BD and controls are represented as a Venn plot 
in Figure S6. STAT2 is induced by type I IFN, and it initiates 
the activation of IFN, the expression and function of which 
are augmented in SLE [43]. A recent study observed STAT2 
and its subsequent pro-inflammatory effect in pemphigus 
vulgaris in the surrounding and central areas of skin lesions 
[44], which echoes the mucocutaneous manifestation of BD. 
MOV10, which has helicase activity against RNA viruses, 
is also an IFN-inducible gene [45]. The OASL gene has a 
similarly good response to viral infection induced by IFN 
signatures [46]. We noticed enhanced STAT2, MOV10 and 
OASL expression in patients with BD relative to those with 
SLE, and GO/KEGG annotation unveiled ‘NOD-like recep-
tor signalling’, ‘cytokine-mediated signalling’ and ‘viral 
infection’ pathways in patients with BD, proclaiming intense 
inflammation to combat the potential infection. TCEANC2, 
located in the PARK10 region, is suggested to be involved in 
RNA processing, and it is major locus for Parkinson disease 
[47]. In addition, it might be one of the reliable biomarkers 
for differentiating the MB, VB and OB phenotypes of BD.

CD69 represents an immunoregulatory T cell receptor 
and C-type lectin. Selective deficiency of CD69 can exac-
erbate tissue damage, accelerate Th17 cell differentiation, 
suppress pro-inflammatory responses and increase the risk 
of autoimmune and chronic inflammatory diseases [48]. Our 
findings of decreased CD69 expression and its outstanding 
discriminative accuracy for BD clinical subgroups corrobo-
rated previous findings and potentially explained the ampli-
fication of Th17 in the peripheral blood of patients with BD.

Given that BD is considered a T cell-reliant disease, alter-
ations in the T cell balance, namely Th cell expansion and 
Treg dysregulation, contribute to the deterioration of BD, in 
which inflammatory damage could contribute to the recruit-
ment and activation of multiple immunocytes and cytokines. 
Our study revealed increases of Th, Tfh and Th2 cell counts. 
Previous research indicated that the proportions of Th1, Th2 
and Th17 cells were significantly higher in patients with BD 
than in HCs, and the Th17/Th1 ratio was significantly higher 
in patients with ocular involvement or folliculitis than in 
those without corresponding symptoms [49]. The percentage 

of Th17 cells expands in the active stage of the disease and 
declines in remission [50], suggesting that the scale of Th 
cells is closely related to BD features and activity. Geri et al. 
[51] found that IL-21 generated a Th17/Treg imbalance and 
inflammation in BD. CD4+ IL-17A+ Th17 cell counts are 
increased and CD4+ Foxp3+ Treg are decreased in patients 
with active BD. Meanwhile, Ahmadi and colleagues [52] 
confirmed that CD4+ IL-17A+ Th17 were higher in patients 
with BD than in healthy people, whereas CD4+ CD25+ 
CD127 Treg cells were decreased, resulting in a significantly 
increased Th17/Treg ratio in BD. Expression of the Tfh cell 
surface markers CXCR5, PD-1 and ICOS on circulating 
CD4+ T lymphocytes was increased in the CD4+TCRβ+ 
population in patients with BD in comparison with the find-
ings in HCs [53], supporting our observations.

NK cells are prominent as immunocytes, mediating 
immune regulation through cytolysis in auto-inflammatory 
diseases, in which the cytotoxicity and degranulation of 
NK cells exacerbate BD episodes. An increased NK1 cell/
NK2 cell ratio leads to the dominance of IFN-γ secreted by 
CD16+ NK1 cells, which inhibits the moderating effects 
of NK17 and NK2 cells in mucocutaneous BD. Simulta-
neously, it reflects disease activation and relapse, point-
ing to an apparent interaction between NK cells and IFN 
[54]. The NKG2D+ lymphocyte frequency is compactly 
associated with the BD activity score [55], the monitor-
ing of which assists clinicians in discriminating the disease 
stage of patients with BD with greater than 90% specificity. 
Our research should facilitate deeper cognition of heredi-
tary factors as pivotal drivers of NK infiltration in the BD 
pathogenesis.

Dendritic cells present antigens to activated T cells. 
Among dendritic cells, pDCs can secrete IFN-α in innate 
immunity, and they play a pathogenic role in diseases 
including autoimmune diseases such as SLE by produc-
ing large amounts of IFN. Meanwhile, immature dendritic 
cells accelerate immune tolerance [56]. It is reported that 
CD123+CXCL16+ pDCs are positively correlated with 
IFN-α in BD, being involved in Th1 type immune responses 
[57]. In current ssGSEA analysis, downregulation of iDCs 
and T cell co-inhibition while upregulation of pDCs have 
unmasked impaired immunological tolerance referring to 
autoreactive pathogenesis in Behcet’s disease.

Intriguingly, we proved the extensive infection aetiology 
related to prone genes in BD. Previously, HSV-1 DNA levels 
were higher in patients with BD and gastrointestinal involve-
ment than in those with Crohn’s disease, but anti-viral drugs 
against HSV were not effective treatments [5]. Ileal destruc-
tion in a patient with BD who received cyclosporine A for 
eye involvement was demonstrated to be interrelated with 
CMV infection rather than active manifestations of gas-
trointestinal involvement [58]. A history of tuberculosis is 
an independent risk factor for BD [4]. Of note, instead of 
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formulating active infections, bacteria or viruses are specu-
lated to change the immune responses to pathogens them-
selves and activate autoreactive T cells to produce cytokines 
that enables tissue-damaging neutrophil and macrophage 
infiltration in genetically susceptible participants with BD.

Systemic inflammation, immunocyte infiltration and 
vascular thrombosis and damage constantly occur in the 
pathogenesis of BD, and the graphical abstract of BD patho-
genesis has been summarised in Figure S7. Leukocytes syn-
thesise angiogenic factors that reversibly amplify inflamma-
tion through recruiting immunocytes, affecting angiogenesis 
in autoimmune diseases. The linkage of haemostasis and 
angiogenesis is not understood on account of the release of 
angiogenic factors by platelets, which irritate the process 
of neovascularisation [59]. Considering glycosylation is the 
major post-translational modification contributing to cellu-
lar maturation and functions, glycosyltransferases produce 
diverse glycoproteins. Aberrant glycosylation is regarded as 
a mechanism that causes tumour heterogeneity, and glycol-
gene signatures have acceptable prognostic value in the strat-
ification of pancreatic ductal adenocarcinoma [21]. Inspired 
by these findings, we retrieved genes regulating angiogen-
esis and glycosyltransferases from past citations to unearth 
potential gene signatures for heterogeneous phenotypes of 
BD. Importantly, pathway genes aggregated in angiogenesis 
(ATP2B4, MYOF, NRP1) and glycosylation (GXYLT1, ENG, 
CD69, GAA​, SIGLEC7, SIGLEC9, SIGLEC16), identically 
reinforcing their eminent discriminative value in subgroup 
classification for BD. However, our study has several limita-
tions. First, we did not filter probes without gene symbols 
at the beginning of the bioinformatical analyses; thus, the 
non-coding RNAs were included into our disease classifica-
tion models, which might hinder the further validation of 
these PGs using polymerase chain reaction platform among 
different BD cohort. Second, there is a potential bias in our 
methodology due to the small number of BD patients and a 
large cohort of DC/HC from dataset E-MTAB-2713.

In conclusion, our research identified potential gene signa-
tures carried by CD14+ monocytes and CD16+ neutrophils 
in training and verification datasets with suitable prediction 
accuracy for deciphering BD phenotypes. Pivotal pathogenic 
characteristics of pathogen infection, glycosylation and angio-
genesis are concurrently associated with the incidence of BD.
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