
REVIEW

Role of T cell-derived exosomes in immunoregulation
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Abstract
Exosomes are small membrane vesicles of endocytic origin that are secreted by most cells. They are composed of a lipid bilayer
containing transmembrane proteins and enclosing cytosolic proteins and RNA, mediating intercellular communication between
different cell types in the body, and thus influencing various physiological and pathological functions of both recipient and parent
cells. For their nanolevel structures with a stable nature and various biological functions, studies of exosomes have been the
subject of increasing interest in the past few years. It is widely known that different T cell subsets play important roles in cellular
and humoral immunity, and their exosomes were also reported to exert similar biological functions. While several groups
reported the secretion of exosomes by various T cells, the systematic summary involved in these exosomes are deficient. In this
review, we will summarize the structure and functions of exosomes derived from T cells in recent reports, discuss emerging
therapeutic opportunities, and consider the associated challenges.
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Introduction

T cells play central roles in cell-mediated and humoral immu-
nity. Several different subsets of T cells have been discovered,
each with distinct functions. According to the phenotype, T
cells canmainly be divided into CD4+ helper Tcells and CD8+

cytotoxic T cells. CD4+ T cells can be further divided into
Th1, Th2, Th9, Th17, Th22, follicular helper T cells (Tfh),
and regulatory Tcells (Tregs), each of which produces specific
effector cytokines under unique transcriptional regulation
[1–7]. Intercellular communication is an essential hallmark
of multicellular organisms and can be mediated through direct
cell–cell contact or transfer of secreted molecules [8]. In 1983,

exosomes were first found in the reticulocytes of sheep, and
they were named Bexosomes^ by Johnstone in 1987 [9].
Increasing evidences have shown that the transfer of
exosomes from one cell to another, as another novel mecha-
nism of cell signal transduction, plays an increasingly impor-
tant role in intercellular communication [10–12]. It has been
well established that almost all living cells can secrete
exosomes. These nanometer-sized particles can selectively
carry proteins and RNA from their origin cells, thus exert their
biological functions. Mostly, functions of these exosomes are
similar to their sources, but they can also be diverse depending
on the state of the origin cells [13]. These small vesicles can be
taken up by target cells via different manners, such as direct
membrane fusion, phagocytosis, endocytosis, and even pino-
cytosis [14]. The biological functions of exosomes can also
behave in different ways. For instance, exosomes can regulate
the expression of target protein by carrying mRNAs which
can be translated into the corresponding protein, by carrying
miRNAs that can degrade the intracellular mRNA of that pro-
tein, or by carrying siRNAs that can silence the gene corre-
sponding to that protein [15–17]. With increasing numbers of
studies on exosomes, functions of exosomes derived from T
cells have largely been unearthed, such as effectively activat-
ing or suppressing the immune response, promoting the in-
flammatory response, and participating in autoimmune and
infectious diseases [18, 19]. In this review, we will especially
focus on the structural features and major surface markers of T
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cell-derived exosomes. We also further introduce their roles in
mediating immune regulation and provide new ideas for the
future treatment of autoimmune diseases and cancers.

The role of exosomes in immune system

In immune system, exosomes possess immunomodulatory
properties, including antigen presentation, immune promo-
tion, immune suppression, and immune tolerance. For their
functions in antigen presentation, exosomes loaded with
specific peptides or antigens are capable of promoting the
activation of CD4+ T cells and CD8+ T cells, even in the
absence of dendritic cells (DCs) [20]. In addition,
exosomes derived from macrophages are able to transfer
their surface antigens to DCs, thus enhancing the response
of CD4+ T cells [21]. What is more, after presenting anti-
gens, DCs can also secrete exosomes to further activate
CD4+ T cells, CD8+ T cells, and natural killer cells (NK
cells) in an antigen-specific manner [22–24]. Recently,
exosomes have been demonstrated to be involved in the
proinflammatory response and the enhancement of im-
mune function [25–28]. For instance, exosomes released
by virus-infected macrophages can promote TNF-α secre-
tion of macrophages and neutrophils. Moreover, pathogen-
associated molecular patterns (PAMPs) on the surface of
exosomes can also strengthen immune surveillance [29].
Clinical studies have also found that there are large
amounts of exosomes in the bronchoalveolar lavage fluid
of patients with sarcoidosis. These exosomes can signifi-
cantly induce IFN-γ and interleukin (IL)-13 production in
autologous PBMCs and stimulate epithelial cells to pro-
duce IL-8, which may contribute to the initiation of inflam-
mation [30]. In addition, exosomes in the synovial fluid of
patients with rheumatoid arthritis have also been reported
to boost the immune inflammatory reaction and aggravate
the disease process [31]. Recently, researches on the im-
munosuppressive functions of exosomes mainly concen-
trate on tumor cells and several immunosuppressive cells.
Studies have already shown that exosomes derived from
tumor cells can impair T cells, B cells, monocytes/macro-
phages, NK cells, and DC functions and even promote the
proliferation of myeloid-derived suppressor cells (MDSCs)
[32–37]. MDSCs are a heterogeneous immature myeloid
cells that possess immunosuppression [38]. Interestingly,
Wang and his colleagues found that MDSC-derived
exosomes can attenuate dextran sodium sulfate-induced
colitis by inhibiting the Th1 immune response [39].
Simultaneously, Treg-derived exosomes have received
widespread attention for their ability to exert immunosup-
pressive effects, which can prolong survival in a kidney
allograft rat model [40].

The composition of exosomes

According to the current version of the exosomes database,
Exocarta (http://www.exocarta.org), more than 9700 proteins
have been found in exosomes, including cytoplasmic proteins,
membrane proteins, Golgi-associated proteins, and endoplas-
mic reticulum-related proteins [41–43]. In addition, other
metabolism-related enzymes, signal transduction proteins,
carrier proteins, and some histocompatibility antigens are also
widely found in exosomes [42].

Exosomes have a membrane structure that is rich in lipids.
However, the lipid composition of exosomes differs from that
of their source cells. There is much more sphingomyelin,
phosphatidylserine, phosphatidylinositol, ceramide, and cho-
lesterol in exosomes than in source cells, while source cells
contain a higher proportion of phosphatidylcholine [44].More
interestingly, exosomes have the highest lipid packing density
when compared to other extracellular vesicles, which shows
that the structure of exosomes may be more stable [45].

Moreover, a major characteristic of exosomes that can dis-
tinguish them from other biological vesicles is that exosomes
are rich in a large number of nucleotides, mainly including
microRNAs and mRNAs [46]. In addition, exosomes also
contain variety of other RNA species, including RNA tran-
scripts overlapping with protein coding regions, repeat se-
quences, structural RNAs, tRNA fragments, vault RNA, Y
RNA, circular RNA, and small-interfering RNAs [47–49].

The biological characteristics of exosomes

Studies have confirmed that surface markers of exosomes can
be analyzed in vitro and their contents are quite stable [49, 50].
DC-derived exosomes can carry many effector molecules,
such as MHC-I and MHC-II molecules, which could poten-
tially stimulate CD8+ and CD4+Tcells, respectively, as well as
other costimulatory molecules [51–53], which means that
exosomes are capable of sharing the faculties of their original
cells. In addition, exosomes are able to reach a wide range of
lymphoid organs through contact with corresponding cells,
and exosomes are independent of chemokines [54, 55]. It
was reported that high expression of fluorescence can be de-
tected in the lung, liver, spleen, pancreas, GI tract, and kidneys
in a dose-dependent manner 24 h after the intravenous injec-
tion of fluorescence-labeled exosomes [55]. These data dem-
onstrated that the distribution of exosomes is rapid and exten-
sive, which means that the biological effects of exosomes may
also diverse in vivo. More importantly, exosomes prepared in
vitro can be stored at − 80 °C for a long time and have no
response to several associated immunosuppressive molecules
[56]. Through the studies of biological characteristics of
exosomes, it may provide the great directive significance to
further clinical applications.
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The surface molecules of T cell-derived
exosomes

There are many function-related molecules in the membranes
of T cells, which are involved in cells activation, proliferation,
differentiation, antigen presentation, and effector functions.
Interestingly, these molecules are also found to be expressed
on T cell-derived exosomes.

The membrane of Tcell-derived exosomes is a lipid bilayer
that is commonly enriched in a set of proteins involved in the
processes mentioned above. These small vesicles can express
CD2, CD3/TCR, CD4, CD8, CD11c, CD25, CD69, LFA-1,
CXCR4, FASL, GITR, etc. (Fig. 1).

The functions of T cell-derived exosomes

In vitro studies have shown that T cells that were co-
stimulated with TCR and CD28 can secrete more exosomes
in vitro [57]. Moreover, T cells are able to regulate the release
of distinct exosomes subpopulations depending on their acti-
vation status [58]. However, other activators such as PMA and
ionomycin fail to promote the secretion of exosomes, which
indicates that exosomes secretion may be related to a kind of
physiological response occurring [59]. In the following dis-
cussion, we will further summarize different functions of T
cell-derived exosomes (Fig. 2).

The immunosuppressive effects of T cell-derived
exosomes

Tregs are a subset of T cells with immunosuppressive func-
tions [60]; more and more studies have focused on Treg-
derived exosomes due to their considerable immunosuppres-
sive effects, which can also be useful when considering pos-
sible therapeutic tools in autoimmune diseases and transplan-
tation [61]. Interestingly, it is reported that Tregs can secrete
more exosomes than other T cells, and the surfaces of those
exosomes mainly express CD25, CTLA-4, and CD73.
Specifically, CD73-expressing exosomes perform immuno-
suppressive functions through the production of adenosine,
which plays an important role in the anti-inflammatory re-
sponse [62–64]. They can also carry let-7b, let-7d, and
microRNA-155, which can inhibit the Th1 immune response
and mediate immune suppression [18]. With in-depth studies
on the biogenesis of exosomes, multivesicular body (MVB)-
dependent secretion may be one of the most important path-
ways in exosome secretion. Proteins of the Ras-related pro-
teins in brain (RAB) family, such as RAB11, RAB35, RAB7,
RAB27A, and RAB27B, have been shown to be involved in
exosome secretion in tumor cell lines of various origins
[65–69]. Interestingly, It was shown that Rab27-DKO Tregs
failed to release exosomes and thus failed to suppress Th1

cells [18], which mean that the proteins of RAB family also
play a significant role in exosomes secretion in T cells.
However, although the immunosuppressive functions of
Treg-derived exosomes are quite strong, the specific mecha-
nism is still unknown. Besides adenosine converted by CD73
and some miRNAs mentioned above, IL-10 and TGF-β may
be two additional important negative regulatory factors [70,
71]. Nevertheless, it is unknown whether these cytokines are
contained in Treg-derived exosomes. However, we believe
that this assumption was established based on the fact that
several cytokines were found in exosomes, and DC-derived
exosomes were reported to contain IL-10 and TGF-β [72, 73].
In conclusion, Treg-derived exosomes show great potential
for regulating the body’s immunity and can further be applied
to inhibit the graft rejection. In fact, Yu and colleagues have
already observed that the adoptive transfer of autologous
Treg-derived exosomes from rats can strengthen kidney func-
tion and prolong the survival of kidney allografts post-
transplantation [40].

The immunological synapse between T cells and antigen
presenting cells (APCs) was reported to promote the efficien-
cy of exosomes transfer [19]. Exosomes can be taken up by
DCs via peptide/major histocompatibility complex (pMHC)-
II/TCR and CD54/LFA-1 interactions. The surface molecule
FasL can bind its receptor Fas on DCs, which leads to the

Fig. 1 Typical surface molecular of T cell-derived exosomes. Important
membrane molecules found in a typical exosomes produced by T cells.
GITR glucocorticoid-induced tumor necrosis factor receptor, MHC I/II
major histocompatibility complex I/II, LFA-1/2 lymphocyte function-
associated antigen 1/2, TSG101 tumor susceptibility gene 101; FasL
Fas ligand or CD95L, CXCR4 C-X-C chemokine receptor type 4 or
CD184, TCRT-cell receptor. For more information about exosome com-
position, please see http://www.exocarta.org or http://www.
microvesicles.org
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apoptosis of DCs and mediates the silencing of the T cell
response in antigen-specific ways [74]. Interestingly, recent
studies have also shown that CD8+ T cell-derived exosomes
can regulate the functions of target cells, and these exosomes
can be endocytosed by APCs and B cells via pMHC-I/TCR
interactions and inhibit antigen-specific DCs mediated CD8+

CTL responses. In addition, these exosomes can also inhibit
anti-tumor immunity and diabetes in antigen-dependent way
[75]. Furthermore, macrophages cultured with CD8+ T cell-
derived exosomes lost contact sensitivity (CS), which may be
related to the induction of Tregs and inhibition of effector T
cells proliferation [76]. Moreover, by carrying miRNA-150
and transferring it to effector T cells, antigen-specific CD8+

T cell-derived exosomes can mediate immunosuppressive
function and inhibit experimental allergic contact dermatitis
induced in mice by high doses of reactive hapten. When
miRNA-150 was knocked down, this phenomenon disap-
peared, which suggested that microRNA-containing
exosomesmay also play a significant role in intercellular com-
munication of lymphocytes [77]. However, determining the

function of these exosomes merely by focusing on single or
several molecules on their surface is unreasonable and ambig-
uous, especially on lymphocytes, exosomes induce diverse
immune responses dependent on the different cells they are
targeting. Moreover, several other factors can play a role in the
final immunological effect of an exosome, including other
molecules on the exosomes surface, other types of RNA in
the exosomes, and even some kinases in exosomes that can
directly activate target cells [78]. As a result, further studies
are needed to figure out what exact functions exosomes have.

T cell-derived exosomes in promoting immune
responses

We have mentioned that T cells can secrete more exosomes
when co-stimulated with TCR and CD28. Valadi and his col-
leagues documented that CD3+ T cell-derived exosomes were
involved in the stimulation and proliferation of resting CD3+

T cells. When together with IL-2, the CD3+ T cell-derived
exosomes can induce a relative increase of CD8+ T cells,

Fig. 2 The immunoregulation of T cell-derived exosomes. Different sub-
types of T cells can secret their own exosomes. CD3+ T cells can take up
their own exosomes to promote the proliferation by an autocrine manner.
Exosomes derived from CD4+ T cells and CD8+ T cells can bind to
dendritic cells though peptide/major histocompatibility complex MHC/
TCR and ICAM-1/LFA-1 interactions, which lead to the apoptosis of

dendritic cells (DCs) by Fas/FasL and thus mediate the DC-mediated T
cell silence in antigen-specific way. For regulatory Tcells, they can secret
exosomes which contain Let-7b, Let-7d, and microRNA-155 to inhibit
Th1 immune response and mediate immune suppression. In addition,
CD73-expressing Treg-derived exosomes are able to produce adenosine
which may further inhibit the activation and proliferation of CD4+ T cells
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which is similar to what would be seen with IL-2 combined
with anti-CD3 and anti-CD28 mAbs. Moreover, the authors
also showed that these exosomes may contain CCL5
(RANTES), which has major effects on HIV inhibition [79].
CD8+ T cells were first confirmed to secrete secretory lyso-
somes, which can carry granzyme, perforin, and other effector
molecules and which play an important role in the specific
delivery of cytolytic molecules to target cells [80].
Coincidentally, exosomes derived from CD8+ T cells were
proved to suppress the CCR5-tropic (R5) and CXCR4-tropic
(X4) replication of HIV-1 in vitro [81]. This evidence indicat-
ed that there is an intracellular signaling mechanism involved
in the exosomes-mediated suppression of HIV-1 transcription,
which could be of potential interest for anti-viral treatment.
Overall, the studies on the immunological enhancement of T
cells are insufficient. The contradiction is that most T cell
subtype-derived exosomes show more immunosuppressive
properties, which are inconsistent with their source cells’
function. This phenomenon may be related to the different
target cells they interact with.When CD4+ Tcells interact with
DCs through (pMHC)-II/TCR and CD54/LFA-1, FasL can be
the main effector molecule, thus leading to the apoptosis of
DCs and silencing of the T cell response. However, as a tra-
ditional group of helper T cells, CD4+ T cells also highly
express CD40L and ICOS after activation [82, 83]. The con-
sequences may be different when their exosomes are taken up
by B cells. Whether CD4+ T cell-derived exosomes can carry
related effector molecules to activate B cells and promote
humoral immunity remains to be further studied.

T cell-derived exosomes in tumor

Studies have also shown that T cell-derived exosomes may be
involved in the progression of tumor formation or tumor in-
vasion. Exosomes from activated CD8+ T cells were shown to
activate ERK and NF-κB in melanoma cells, leading to in-
creasedMMP9 expression and promoting cancer cell invasion
in vitro, suggesting a role for T cell-derived exosomes in tu-
mor progression [84]. Using a Jurkat T cell line to study nat-
ural T cells, Roberts and his colleagues discovered that T cell-
derived exosomes can alter endothelial gene expression and
physiological processes, such as regulating endothelial cell
proliferation and vascular endothelial growth factor (VEGF)
signaling in a CD47-dependent manner [85], which means
that CD47-positive exosomes may also modulate tumor an-
giogenesis. In addition, Sun reported that exosomes derived
from irradiated esophageal carcinoma-infiltrating T cells
could promote the metastasis of esophageal cancer cells by
inducing epithelial mesenchymal transition [86]. These stud-
ies all documented that T cell-derived exosomes may play an
important role in tumor formation and invasion. However,
although Jurkat cells are characterized as immortalized Tcells,
the biological characteristics of Jurkat cells and human natural

T cells are not entirely consistent. For example, experiments
have proven that only 40% of proteins are shared between
these two exosomes according to proteomic analysis [87].
As a result, many more studies are needed to confirm the
precise biological functions of T cell-derived exosomes.

Reflections on T cell-derived exosomes

A large amount of studies have showed that exosomes can
also be used as biological markers for clinical diagnosis.
They can be detected in patient biofluids including serum,
urine, semen, saliva, and bronchoalveolar lavage [88–92].
For example, in the early stages of tumor formation, cancer
cell-derived exosomes, which play an important role in tumor
immune escape, angiogenesis, and invasiveness [93, 94], can
be detected in the peripheral blood, suggesting that tumor
exosomes can act as a biomarker for early tumor screening
[95]. T cell-derived exosomes can also be used as early
markers of disease development, for example, high concentra-
tions of CD4+ T cell-derived and CD8+ T cell-derived
exosomes were detected in serum from the peripheral blood
of chronic hepatitis B patients, while patients with nonalco-
holic fatty liver disease or nonalcoholic steatohepatitis had
high levels of invariant natural killer T (iNKT) cell-derived
and macrophage/monocyte-derived exosomes [96].

The latest studies on exosomes showed that donor
exosomes, rather than passenger leukocytes, could initiate
alloreactive T cell response after transplantation, which
showed the rapid and efficient function of exosomes in immu-
noregulation [97]. For T cell-derived exosomes, Treg-derived
exosomes have been shown to mediate immunosuppressive
effects and to be effective in inhibiting the development of
murine arthritis, and their clinical value has been extensively
discussed [61]. In addition, CD4+ T cell-derived exosomes
can specifically inhibit CD4+ T cell proliferation and CD8+

CTL responses, which provide the potential possibility of
CD4+ T cell-derived exosomes being used for the treatment
of autoimmune diseases and as preventers of immune rejec-
tion. Currently, chimeric antigen receptor gene-modified T
(CAR-T) cells have been widely recognized as a novel form
of viable tumor treatment by the medical community for their
exciting efficacy in blood cancer therapies. Although the treat-
ment showed unprecedented efficacy in hematologic malig-
nancies, some problems still exist in CAR-T cell treatments.
These problems include CAR-T cell-induced cytokine release
syndrome (CRS), which can lead to hypotension, nausea,
tachycardia, headache, rash, and shortness of breath caused
by the release of cytokines from immune cells after the treat-
ment. CAR-T cell therapies can even lead to high fever, hy-
potension, organ failure, and death [98]. As a consequence,
some scholars propose the application of CAR-T cell-derived
exosomes in cancer therapy. First, modified CAR-T cell-
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derived exosomes may kill target cells by granzymes and ly-
sosomal enzymes. It is known that the biological effect of
granzymes is dependent on perforin which polymerizes in
the cell membrane to form a nonspecific ion pore [99].
However, exosomes can directly transfer these granzymes
by membrane fusion with target cells or be endocytosed
[80]. In addition, for its nonliving property, CAR-T cell-in-
duced toxicity can be more easily controlled by using CAR-
T cell-derived exosomes than traditional treatment. Second,
exosomes, as a kind of small nanometer-sized particles, can
easily cross biological barriers such as the blood–brain barrier
(BBB) and blood–tumor barrier(BTB) [100]. Moreover,
CAR-T cell-derived exosomes show greater potential in pen-
etrating the extracellular matrix (ECM) of a solid tumor than
CAR-T cells, which means that these small nanometer-sized
particles may bemore helpful in treating solid tumor and brain
tumor. Third, since exosomes resemble liposomes consisting
of a bi-lipid membrane and an aqueous core, anti-cancer
agents can be directly loaded into CAR-T cell-derived
exosomes which can be used to kill target cells [101].

As discussed, although numerous researches have focused
on exosomes, the structure, formation, secretion, and their
function are still unclear. Especially for T cells and other orig-
inal lymphocytes derived exosomes, because of the difficulty
of obtaining a mass of high-purity cells, diverse responses to
different stimulations, and a great diversity of cell subsets, the
researches about T cell-derived exosomes are limited. In gen-
eral, there are still insufficient findings on exosomes derived
from T cells, and much more remains to be confirmed by
extensive experimental studies.

At present, many studies have focused on the regulation
of T and B cells by other nonlymphoid cells, such as DC-
derived exosomes, mesenchymal stem cell (MSC)-derived
exosomes, and tumor cell-derived exosomes. However, the
communication between lymphocytes via exosomes must
also exist, and the effects of these exosomes may be more
specific and more powerful. For B cell-derived exosomes,
it was shown that they are involved in antigen presentation,
leading to the activation of primed CD4+ T cells and
antigen-specific T cells [102, 103]. Additionally, a strong
cytotoxic effect on several kinds of tumor cells and im-
mune cells has been observed with NK cell-derived
exosomes [104]. Therefore, through the study of T cell or
other lymphocyte-derived exosomes, it may have a direc-
tive and practical importance to utilize artificially modified
exosomes to treat autoimmune diseases and cancers.
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