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Abstract Systemic sclerosis (SSc) is an intractable multifac-
eted disease with high mortality. Although its pathogenesis is
not fully understood, recent studies have advanced our knowl-
edge on SSc. The cardinal pathological features of SSc are
autoimmunity, vasculopathy, and fibrosis. The B cells in SSc
are constitutively activated and lead to the production of a
plethora of autoantibodies, such as anti-topoisomerase I and
anti-centromere antibodies. In addition to these autoanti-
bodies, which are valuable for diagnostic criteria or bio-
markers, many other autoantibodies targeting endothelial
cells, including endothelin type A receptor and angiotensin
II type I receptor, are known to be functional and induce acti-
vation or apoptosis of endothelial cells. The autoantibody-
mediated endothelial cell perturbation facilitates inflammatory
cell infiltration, cytokine production, and myofibroblastic
transformation of fibroblasts and endothelial cells.
Profibrotic cytokines, such as transforming growth factor β,
connective tissue growth factor, interleukin 4/interleukin 13,
and interleukin 6, play a pivotal role in collagen production
from myofibroblasts. Specific treatments targeting these

causative molecules may improve the clinical outcomes of
patients with SSc. In this review, we summarize recent topics
on the pathogenesis (autoantibodies, vasculopathy, and fibro-
sis), animal models, and emerging treatments for SSc.
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Introduction

The prevalence of systemic sclerosis (SSc) ranges from 0.7/
100,000 to 53/100,000 depending on the different ethnicities,
and there are higher numbers in the USA than in Europe or
Japan [1]. In a nationwide, cross-sectional hospital-based
study in Japan, patients with SSc comprised 0.92% of derma-
tological patients [2]. SSc has a high mortality rate due to the
development of SSc-associated interstitial lung disease and
pulmonary arterial hypertension, which are the most frequent
causes of disability and mortality in SSc [3–5].

Depending on the extent of skin involvement, SSc is clas-
sified into the following two main subtypes: limited cutaneous
SSc and diffuse cutaneous SSc. Given the heterogeneity of
clinical symptoms and signs, the American College of
Rheumatology/the European League against Rheumatism de-
veloped new classification criteria in 2013 [6–8].

SSc is not an inherited disease, therefore, twins show a low
disease concordance rate (4.7%) that is similar betweenmono-
zygotic and dizygotic twin pairs [9]. However, genetic factors
contribute to its susceptibility, as shown by a 60-fold higher
occurrence of the disease in families compared to the general
population [10–12]. Genetic linkage studies and genome-wide
association studies have identified many susceptible genes,
including the major histocompatibility complex (MHC) class
II as well as non-MHC genes related to the metabolism of
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extracellular matrix molecules, innate immunity, macrophage
activation, and T cell functions [10–12].

Systemic sclerosis (SSc) is a multisystem connective tissue
disease characterized by three cardinal pathological features,
including aberrant immune activation, vasculopathy, and tis-
sue fibrosis with an unknown aetiology [3, 4, 13]. Although its
pathogenesis is not fully understood, recent studies have ad-
vanced our knowledge on SSc. In this review, we summarize
recent topics on the pathogenesis (autoantibodies, vasculopa-
thy, and fibrosis), animal models, and emerging treatments for
SSc.

Pathogenesis

Pathogenesis of SSc remains unknown, whereas it is com-
monly thought that autoimmunity and vasculopathy precede
fibroblast activation and interstitial fibrosis [14, 15].
Autoantibodies to endothelial cells, ischemia–reperfusion in-
jury following Raynaud’s phenomenon, generation of reactive
oxygen species (ROS) with inflammatory cell infiltration, and
subsequent cytokine production trigger myofibroblastic trans-
formation of endothelial cells as well as fibroblasts and induce
excessive production of collagens and other extracellular ma-
trices [5, 8, 14, 15]. Various profibrotic cytokines, such as
transforming growth factor β (TGFβ), interleukin (IL)-4, IL-
13, IL-6, and IL-33 are likely to be involved in the develop-
ment of fibrosis [13, 14, 16–18].

Autoantibody and vasculopathy

The immune system activation is exemplified by the activa-
tion of B cells and the production of autoantibodies [19–23]. B
cells from patients with SSc overexpress the B cell stimulatory
receptor CD19 by 54% in patients with early SSc and by 28%
in those with long-standing disease compared to normal con-
trols [22–24]. Notably, a small increase (15–29%) in the
CD19 expression of B cells in transgenic mice induced auto-
antibody production [25]. In contrast, the function of CD22,
an inhibitory B cell molecule, is inhibited by anti-CD22 auto-
antibodies present in patients with SSc [22, 23, 25]. An in-
creased CD19/CD22 ratio may facilitate the sustained activa-
tion of B cells and consequent overproduction of various au-
toantibodies [22, 23, 25, 26].

Anti-nuclear antibodies are found in the sera of the vast
majority of SSc patients, and their antigenic specificity signif-
icantly correlates with the clinical characteristics of the disease
[19–21]. Autoantibodies are currently the most reliable bio-
markers for diagnosis, classification, and prediction of specific
clinical features of SSc [19–21]. Certain autoantibodies, such
as anti-topoisomerase I, anti-centromere, anti-RNAP III, anti-
U3 RNP, anti-Th/To, and anti-U1 RNP antibodies, are closely
associated with distinct clinical features and disease activities

of SSc [19–21, 27, 28] (Fig. 1). Other autoantibodies targeting
a variety of cytoplasmic, cell membrane, and extracellular
autoantigens were also detected in SSc [21, 23]. Some of
them, such as anti-endothelial cell, anti-intercellular adhesion
molecule-1 (ICAM-1), anti-endothelin type A receptor
(ETAR), and anti-angiotensin II type I receptor (AT1R) anti-
bodies, may be functional and pathogenic [21, 23]. In addition
to autoantibodies, a plethora of biomarkers related to immune
reactions [29, 30], endothelial cell function [31, 32], and the
extracellular matrix [33, 34] have been reported recently [19].

Raynaud’s phenomenon and abnormal nailfold capillary
changes, which are the representative vascular manifestations
of SSc, often appear before the onset of sclerosis [8, 15, 35].
Raynaud’s phenomenon is the abnormal thermal regulation of
blood flow that is probably triggered by endothelial injury
[15]. The skin fibrosis tends to occur on locations, such as
fingers, distal extremities, and face, which are frequently ex-
posed to cold temperatures [15]. Nailfold capillaroscopy re-
veals structural alterations in capillaries that include dilatation,
distortion, and microhemorrhages that lead to progressive loss
of the capillaries (Fig. 1) [36]. Microscopically, capillary dam-
age of SSc is characterized by endothelial apoptosis, intimal
and medial fibrous thickening, and adventitial fibrosis with
perivascular infiltration of the macrophages, B cells, and T
cells [15]. Precapillary arterioles then show endothelial prolif-
eration and mononuclear inflammatory infiltrates followed by
intimal proliferation and luminal narrowing [37]. The origin of
the cells that populate the intima and participate in collagen
production remains unknown. However, activated resident fi-
broblasts, circulating fibroblast precursors (fibrocytes), the en-
dothelial cells, and pericytes have all been implicated [15]. In
line with these findings, an endothelial cell to mesenchymal
transition is shown in the lesional vascular systems in SSc [5].

The endothelial apoptosis or activation is likely mediated
by functional autoantibodies [23, 38]. Anti-endothelial cell
antibodies cause endothelial cell apoptosis [39]. Anti-ICAM-
1 antibodies induce the production of ROS and expression of
vascular cell adhesion molecule-1 (VCAM-1) which may fa-
cilitate the attachment of immune cells [40]. Anti-ETAR and
anti-AT1R autoantibodies, which are detected in most SSc
patients, are agonistic antibodies that upregulate the expres-
sion of TGF-β, IL-8, and VCAM-1 of endothelial cells and
cause fibrosis, vasoconstriction, and recruitment of immune
cells [41–43]. Both AT1R and ETAR are expressed on cells of
both the vascular and immune system [38]. Angiotensin II
increased the production of TGFβ and collagen by fibroblasts
via AT1R [44]. Endothelin-1 also induced collagen produc-
tion and vasoconstriction via ETAR [45]. The expressions of
ETAR and AT1R are found to be highest in patients with early
SSc [46]. The anti-ETAR and anti-AT1R antibodies from SSc
patients induce obliterative vasculopathy when injected into
mice [43]. The endothelial cell apoptosis has been demonstrat-
ed in the skin lesions of patients with SSc as well as in avian
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SSc models [47]. Moreover, many SSc patients have antibod-
ies against a human cytomegalovirus-derived UL94 protein
that shares homology with NAG-2 (tetraspan novel antigen-
2), which is expressed on the surface of human endothelial cell
and fibroblast [48, 49]. The anti-UL94 peptide antibodies bind
to NAG-2 and induce Bscleroderma-like^ gene expression in
endothelial cells and fibroblasts [48, 49]. Thus, the molecular
mimicry mechanism links antibodies against the human-
cytomegalovirus-derived protein UL94 to the pathogenesis
of systemic sclerosis [48, 49].

Fibrosis

The degree of cell infiltration correlates with both the degree
and progression of skin thickening, which results from exces-
sive accumulation of type 1 collagen and extracellular matrix
proteins [3, 8, 50, 51]. These infiltrated cells, especially endo-
thelial cells and fibroblasts, are potential candidates for

producing various cytokines, chemokines, and growth factors
that induce fibrosis [3, 8, 50, 51]. Despite the differences in the
extent and distribution of skin involvement, both limited and
diffuse type SSc produce marked fibrosis followed by the
preceded autoimmunity, vasculopathy, and perivascular in-
flammatory cell infiltration [8, 50, 51].

Representative profibrotic growth factors and cytokines en-
compass TGFβ, connective tissue growth factor (CTGF),
platelet-derived growth factor (PDGF), IL-6, and IL-4/IL-13
(Fig. 1). After ligation with TGFβ receptor type II (TGFβRII)
and TGFβRI, TGFβ induces gene transcription of type I colla-
gen, α smooth muscle actin (αSMA), and CTGF via SMAD2/
SMAD3 phosphorylation [3]. An increased TGFβRI/TGFβRII
ratio was found in the SSc fibroblasts, which was implicated in
the overactivation of TGFβ signaling [52]. The expression of
αSMA is a hallmark of myofibroblastic transformation of acti-
vated fibroblasts, which is also frequently detected in SSc [53,
54]. CTGF is a cysteine-rich modular protein belonging to the

Fig. 1 Pathogenesis of systemic sclerosis. The cardinal pathological
features of systemic sclerosis (SSc) are autoantibodies, vasculopathy,
and fibrosis. B cells in SSc are constitutively activated with increased
CD19 and decreased CD22 expression, which leads to the
overproduction of a plethora of autoantibodies, such as anti-
topoisomerase I, anti-RNAP III, anti-U3 RNP, anti-centromere, anti-Th/
To, and anti-U1 RNP antibodies. These autoantibodies are associated
with characteristic clinical features, such as diffuse SSc (dSSc), limited
SSc (lSSc), interstitial lung disease (ILD), digital ulcer, renal crisis, ma-
lignancy, cardiomyopathy, myopathy, pulmonary artery hypertension
(PAH), and overlap syndrome. Many other functional autoantibodies
targeting endothelial cells, intercellular adhesion molecule 1 (ICAM-1),
endothelin type A receptor (ETAR), and angiotensin II type I receptor

(AT1R) as well as platelet-derived growth factor receptor (PDGFR) are
known to induce activation or apoptosis of endothelial cell (EC). The
stimulated ECs express reactive oxygen species (ROS), transforming
growth factor β (TGFβ), interleukin-8 (IL-8), and vascular endothelial
cell adhesion molecule 1 (VCAM-1). The autoantibody-mediated
endothelial cell perturbation facilitates inflammatory cell (Inf)
infiltration, cytokine production, and myofibroblastic transformation of
fibroblasts (Fb) and ECs. Profibrotic cytokines, such as TGFβ,
connective tissue growth factor (CTGF), IL-6, and IL-4/IL-13, play a
pivotal role in collagen production from myofibroblasts (MFb).
Perturbation of ECs and consequent profibrotic processes result in
vasculopathy (including capillaroscopic abnormalities and intimal
fibrosis) and tissue fibrosis (including skin fibrosis and ILD)
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CCN family of matricellular growth factors, all of which func-
tion as adaptor molecules connecting the cell surface to the
extracellular matrix [3, 55]. The expression of CTGF is induced
by TGF-β, ET-1, and hypoxia [3, 55]. The levels of CTGF are
markedly elevated in the lesional skin of SSc patients [56] and
in mouse models of scleroderma [57].

The expression of PDGF and its receptors is elevated in
SSc fibroblasts and in the lesional skin [58]. Antibodies that
stimulate the PDGF receptor (PDGFR) were frequently found
in SSc patients [59]. The autoantibodies recognize native
PDGFR and selectively activate Ha-Ras-ERK1/2 and ROS
cascades to induce type I collagen gene expression and
myofibroblast phenotype conversion in normal human fibro-
blasts [59]. The activated B cells secreted IL-6, which directly
stimulates fibroblasts [60–62]. IL-6 induces the type 1 colla-
gen expression via enhancing TGFβ-Smad3 signalling path-
way [62]. Both IL-4 and IL-13 likely activate fibroblasts and
induce type 1 collagen synthesis via a TGFβ-independent
approach [63–65]. Serum levels of IL-4 and IL-13 were sig-
nificantly higher in patients with SSc compared to normal
controls [66]. It is likely that IL-13, rather than IL-4, plays a
more dominant role in fibrosis [17, 67]. Notably, CD8+ Tcells
producing IL-13 have been shown to have skin-homing recep-
tors in SSc skin and they upregulate type 1 collagen produc-
tion when incubated with healthy dermal fibroblasts [68].

Animal models of systemic sclerosis

Inducible fibrotic models

Among inducible animal models, the most widely used and
established ones are a bleomycin-induced SSc model and a
sclerodermatous graft-versus-host disease model in mice [13,
69–71]. Recently, three new inducible murine models of SSc
have been established by utilizing ROS [72], DNA topoisom-
erase I antigen with complete Freund’s adjuvant [73], and
angiotensin II [74]. Basically, the focus of these inducible
models was put on the induction of fibrosis tissue and, to a
lesser extent, on the immunological aspects of SSc, instead of
its vascular pathology [13].

Genetic animal models

The best-characterized genetic animal models of SSc are tight
skin-1 (Tsk-1) mice, in which an in-frame tandem partial re-
duplication of the Fbn1 gene encoding fibrillin-1, which is a
major component of microfibrils mediating elastic fiber as-
sembly, is responsible for the phenotype [75]. Although the
Tsk-1 mice exhibit TGFβ upregulation with the aberrant acti-
vation of B cells and autoantibody production, the fibrosis of
Tsk-1mice occurs in the hypodermis, which is not observed in
human SSc [13]. Mice with constitutively active TGFβRI

recapitulate clinical, histological, and biochemical features
of human SSc [76]. In addition, mice expressing the Ctgf gene
in fibroblasts [77] orWnt10b in adipocytes [78] exhibit exten-
sive fibrosis in the dermis and internal organs.

New genetic animal models

Fra-2 is one of the components of Fos (c-Fos, Fra-1, Fra-2, FosB)
which dimerize with Jun (c-Jun, JunB, JunD) subunits to make
AP-1 transcription factor [13]. The Fra2 transgenic mice devel-
oped dermal and pulmonary fibrosis following the apoptosis of
endothelial cells [79, 80]. Urokinase-type plasminogen activator
receptor (uPAR) is a glycosylphosphatidylinositol-anchored cell
surface receptor expressed by several cell types, including
lymphohaematopoietic cells, fibroblasts, and endothelial cells
[13]. A major role of uPAR is to concentrate its ligand, uPA, at
the cell-matrix interface. uPA has a serine protease activity that
induces the conversion of plasminogen to plasmin and the acti-
vation of growth factors and pro-enzymes, such as matrix metal-
loproteinases [13]. Interestingly, the cleavage and/or inactivation
of uPA/uPAR is associated with the transition of fibroblasts to
myofibroblasts and subsequent fibrosis as well as with the func-
tional and structural abnormalities of microvasculature in SSc
[81–84]. In line with these findings, uPAR-deficient mice reca-
pitulate the fibrotic and vascular features of SSc [85]. However,
both Fra2 transgenic mice and uPAR-null mice totally lack im-
munological aspects, specifically autoantibody production, in
SSc (Table 1) [13].

In contrast to these animal models, Klf5+/−-; Fli1+/− mice
develop immune activation, vasculopathy, and fibrosis, which
are the three cardinal features of SSc [13, 86]. Fli1 is a member
of the Ets transcription factor family expressed in endothelial
and hematopoietic cells under physiological conditions, and to
a lesser extent in dermal fibroblasts [13]. Fli1 exerts a potent
repressor of the COL1A1 and COL1A2 gene expression in
dermal fibroblasts [87, 88]. The expression of Fli1 was de-
creased in dermal fibroblasts, dermal microvascular endothe-
lial cells, and perivascular inflammatory cells in the lesional
and non-lesional skin of SSc patients, especially in the lesional
skin [88]. Fli1 haploinsufficiency is enough to reduce the

Table 1 Phenotypic differences of new genetic animal models for
systemic sclerosis

Fra2 tg
mice

uPAR−/−

mice
Klf5+/−; Fli1+/−

mice

Dermal fibrosis + + +

Vasculopathy in the skin + + +

Pulmonary fibrosis + + +

Pulmonary arterial
occlusion

+ − +

Autoantibody
production

− − +
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production of type I collagen [87, 88]. However, Fli1
haploinsufficiency had no effect on CTGF expression [86].
Therefore, some additional factors are mandatory to upregu-
late the CTGF expression that is also the hallmark feature of
dermal fibroblasts derived from SSc patients [13, 56].
Kruppel-like factor 5 (KLF5) is a potent repressor of the
Ctgf gene [86]. Moreover, KLF5 was downregulated in the
lesional skin of SSc [89]. Thus, Klf5+/−; Fli1+/− double
haploinsufficiency mice spontaneously develop remarkable
dermal fibrosis, which is characterized by the increase in der-
mal thickness, the amount of collagen content, and the mRNA
of the Col1a1, Col1a2, and Ctgf genes, at the age of 3 months
[86]. In addition, the pathological cascade from vasculopathy
(stenosis of arterioles and bushy capillaries) to tissue fibrosis
was also present in these mice [86]. Furthermore, the Klf5+/−;
Fli1+/− mice mimicked the immunological aspects of human
SSc, including increased CD19 expression in B cells, upreg-
ulated production of IL-6, and the production of autoanti-
bodies (Table 1) [86].

Treatments and therapeutic perspectives

Although the treatment outcomes are not satisfactory, immu-
nosuppressive agents, such as corticosteroids [8], methotrex-
ate [90, 91], cyclophosphamide [92, 93], mycophenolate mo-
fetil [94, 95], and intravenous immunoglobulin [96, 97], are
currently being used [98]. ETAR antagonist and angiotensin-
converting enzyme blockade have been used to treat clinical
complications related to vasculopathies of patients with SSc
[99, 100]. Injection of botulinum toxin is useful for preventing
Raynaud’s phenomenon [101].

B cell depletion by rituximab (anti-CD20 antibody) im-
proves lung function and skin thickening in patients with
SSc [102–104]. Fresolimumab, a neutralizing antibody that
targets all three isoforms of TGFβ, also decreases skin fibrosis
with histological reduction of dermal myofibroblasts [105].
As for the anti-IL-6 receptor α antibody, a randomized con-
trolled trial revealed that tocilizumab tended to reduce the skin
thickening compared to placebo, but not significantly [106,
107]. Rapamycin binds to the FK-506 binding protein 12
and inhibits the function of mammalian target of rapamycin.
Rapamycin prevents fibrosis of the skin and lungs as well as
autoantibody production in a murine model of SSc [108]. In a
phase I, single-blinded, randomized, parallel trial of
rapamycin versus methotrexate, rapamycin was just as effec-
tive as methotrexate for skin sclerosis [109]. Pirfenidone, a
pyridine with a simple chemical structure, is an antifibrotic
agent, and it has been approved for the treatment of idiopathic
pulmonary fibrosis worldwide [110, 111]. Although the mo-
lecular mechanisms underlying the antifibrotic effects of
pirfenidone are not completely understood, it is thought to
work predominantly by modulating TGFβ and TNFα

signaling [8, 112]. Further clinical studies are needed to prove
the effectiveness of pirfenidone on the skin and pulmonary
fibrosis in SSc.

Conclusion

Pathogenesis of SSc is dominated by complex interactions
between vascular, immunological, and fibrotic processes, but
it is still poorly understood. SSc is an intractable disease with
high mortality. Research efforts towards understanding the
cellular and molecular basis of scleroderma have aimed to
reveal novel molecular targets and diagnostic agents, which
has led to early and accurate diagnosis as well as innovative
therapies against this disease [10, 112]. The development of
preclinical models, including animal models that accurately
recapitulate human disease, will be essential tools for the ulti-
mate goal of finding a cure for this disease. The list of poten-
tial molecular targets for the treatment of fibrosis is growing.
Several of those studies to target pathogenetic molecules have
direct translational implications for treating SSc in the very
near future [6, 11, 111].
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