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Abstract Immunological studies frequently analyze individual components (e.g., signaling pathways) of immune sys-

tems in a reductionist manner. In contrast, systems immunology aims to give a synthetic understanding of how these

components function together as a whole. While immunological research involves in vivo and in vitro experiments,

systems immunology research can also be conducted in silico. With an increasing interest in systems-level studies spawned

by high-throughput technologies, many immunologists are looking forward to insights provided by computational mod-

eling and simulation. However, modeling and simulation research has mainly been conducted in computational fields, and

therefore, little material is available or accessible to immunologists today. This survey is an attempt at bridging the gap

between immunologists and systems immunology modeling and simulation. Modeling and simulation refer to building and

executing an in silico replica of an immune system. Models are specified within a mathematical or algorithmic framework

called formalism and then implemented using software tools. A plethora of modeling formalisms and software tools are

reported in the literature for systems immunology. However, it is difficult for a new entrant to the field to know which of

these would be suitable for modeling an immunological application at hand. This paper covers three aspects. First, it

introduces the field of system immunology emphasizing on the modeling and simulation components. Second, it gives an

overview of the principal modeling formalisms, each of which is illustrated with salient applications in immunological

research. This overview of formalisms and applications is conducted not only to illustrate their power but also to serve as a

reference to assist immunologists in choosing the best formalism for the problem at hand. Third, it lists major software

tools, which can be used to practically implement models in these formalisms. Combined, these aspects can help

immunologists to start experimenting with in silico models. Finally, future research directions are discussed. Particularly,

we identify integrative frameworks to facilitate the coupling of different modeling formalisms and modeling the adaptation

properties through evolution of immune systems as the next key research efforts necessary to further develop the multi-

disciplinary field of systems immunology.
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Introduction

Since the discovery of cell in 1653 [1], significant progress

has been made in understanding the fundamental compo-

nents of biological systems and the mechanisms governing

them. These developments are summarized in various

‘‘omics’’ of biology [2, 3]. However, recently, the need to

have an integrated understanding of how these components

work together in a system is being increasingly realized [4].
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Immune systems have a high degree of interdependence

and interconnection between components. They have a

multihierarchical or multiscale organization (Fig. 1), where

components at a lower scale are integrated into functional

units at the next higher scale [5]. The units are robust and

exchange a limited amount of information with their sur-

roundings. Thus, they hide the detailed mechanisms oper-

ating at lower scales. At any scale, the system can be

studied phenomenologically as long as there are predict-

able causal relationships between the perturbations and

state changes. Indeed, there are separate subdisciplines of

biology addressing different phenomenological scales

(Fig. 1).

However, there are certain scenarios where phenome-

nological descriptions are not sufficient and an integrated

description of phenomena occurring at various scales is

unavoidable. For example, host–pathogen interactions

occur on all scales: from the molecular scale (recognition

of pathogen molecular patterns by immune cells) to the

cellular scale (phagocytosis of the pathogen by macro-

phages) and up to the population scale (spread of the

pathogen through host population and emergence of dif-

ferent strains through different host conditions) [6]. Ele-

ments at different scales interact: for example, host–

pathogen interactions at the population level determine the

selection pressure on both host and pathogen at the genetic

level. Thus, a full understanding of host–pathogen inter-

actions requires the integration of phenomena at various

scales. Such integration of different spatial and time scales

has been called by the term systems immunology [7, 8].

Another dimension of integration is transcale, which

involves aggregating and connecting information from

different disciplines of study at the same biological scale.

For instance, cells are studied from molecular, biochem-

ical, geometrical, biomechanical and various other

perspectives. These properties are interlinked: for example,

cytokine TGF-b increases cell stiffness and leads to an

elongated cell shape. Reciprocally, cells such as chondro-

cytes secrete TGF-b in response to mechanical stimulation

(mechanotransduction). Transcale integration brings toge-

ther such interdisciplinary information.

To achieve this integration, systems immunology com-

plements empirical and experimental approaches with

modeling and simulation. A model is an abstract repre-

sentation of a real system. Simulation refers to operating a

model under a configuration of interest to ‘‘simulate’’ the

system’s behavior. A model has some realism when

abstract entities in the model correspond to real compo-

nents in the system and mathematical or computational

rules governing the model correspond to real physical laws

[9].

Ideally, a model in systems immunology should give a

virtual description of an immune system in the same way as

a Google� map describes a physical landscape. The spe-

cialty of Google map is its multiscale structure. Zooming in

or out of the map not only changes its scale but also dis-

plays different features and annotations corresponding to

different resolutions. A model of an immunological system

should similarly give an integrated description of its

components at various scales. Such a model can be easily

used to represent the state of the system and infer its

dynamics while going from an initial to a final state.

A model therefore serves to synthesize existing knowl-

edge and data about a system via multiscale and transcale

integration. The knowledge and data could be static (without

temporal information) or dynamic. As a consequence,

missing information or gaps in understanding may be

revealed, which could initiate further experimentation and

guide data acquisition policies. A model can also serve to

generate new knowledge about the system by simulation,
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Fig. 1 Multiscale organization of immune systems and the subdisciplines of biology at various scales
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which is technically known as prediction. Simulation can

help in understanding system-level behavior over large

ranges of parameter values. This may be difficult to test in

vivo due to technological and financial constraints. Model-

ing and simulation may also demonstrate surprising or

counterintuitive consequences of system organization.

Indeed, a model can sometimes serve to provide mechanistic

explanations about the intricate working of the system [10].

Several formalisms have been proposed in the literature

for systems immunology modeling. Each formalism has its

particular characteristics that make it suitable for some

specific applications. There is no and there will not be any

global ‘‘best’’ modeling formalism. Most likely, the only

way to model something as complex as the immune system is

to blend (compound or aggregate) different formalisms in a

common multiscale transcale framework. We can see a trend

toward such ‘‘hybrid’’ or multiformalism modeling[11–14].

This paper is an attempt at describing the principal

formalisms that currently exist in the literature for systems

immunology modeling from an application point of view. It

is directed toward immunologists who are interested in

using systems immunology modeling but do not have a

theoretical or technical exposure to the field. It covers

theoretical principles, immunological applications and

software tools associated with the formalisms. Some recent

reviews have focused on only one or a few of these for-

malisms and only one or a few biological scales. Thus, an

overall view of the modeling field as it exists today is

missing. There is no review of available software. More-

over, there are no general guidelines to decide which for-

malism will be suitable for a given application. This review

tries to fill these gaps. The presentation has been kept as

much as possible nontechnical for the understanding of

immunologists. Technical details are referred to existing

relevant literature.

We first provide an introduction to computational mod-

eling and simulation, presenting the key concepts and

rationales. Then, formalisms are described in brief, covering

their basic principles and modeling strategy. Formalisms

covered in this paper include differential equations, cellular

automata and agent-based systems. Additional, but less

prominent, modeling formalisms are also introduced. For

each modeling formalism, we describe typical immunolog-

ical applications and available computational tools. Finally,

we identify and discuss the future research directions where

the intricate adaptive nature of immune systems would be

considered.

Modeling and simulation

A model is a representation of a real system in mathe-

matical or algorithmic terms. A model cannot possibly

include all details of a system. It is an abstraction suitable

enough to capture the essential mechanism of the real

system. Building a model minimally requires knowledge of

the entities in the system such as genes, proteins, cells,

organs etc., the characterization of these entities either by a

quantity (such as protein concentration, number of cells,

etc.) or by a discrete state (such as on/off state of a gene, an

individual being uninfected/infected/chronically infected,

etc.), and the interactions among different entities such as

regulation of genes by proteins, protein–protein interac-

tions, cell–cell interactions, etc. Additional knowledge

such as the description of compartments or other subspaces

in the system can also be useful.

In addition to knowledge of entities and interactions, a

model requires a mathematical or algorithmic structure

called formalism for its description [15]. Formalism regu-

lates modeling assumptions, model structure, governing

laws, nature of interactions, how a model is simulated, etc.

For example, one of the simplest formalisms is a static graph

which has traditionally been used for visualizing networks

of cell–cell interactions, gene expression or signal trans-

duction [16]. In a static graph, entities are represented by

nodes, their quantities or states by a weight or color and an

interaction between two entities as a (possibly weighted)

edge connecting the nodes. Such a graph can provide some

insight into the possible behaviors of a system. However, it

does not enable quantitative predictions. More descriptive

formalisms can enable quantitative analysis.

From an immunologist’s point of view, the important

question is which formalism is suitable for modeling an

immunological application at hand. Although there are no

readymade answers to this question, some important con-

siderations, such as the ones below, can guide the choice of

an appropriate modeling formalism. A glossary of some

technical terms in this connection is given in Table 1.

1. Objectives of the study—Different modeling formal-

isms have different modeling capabilities. The choice

of formalism depends on the questions to be answered.

For example, when exact numerical quantities of

entities and timings of events are of interest, quanti-

tative formalisms are appropriate. On the other hand,

when quantitative information is inessential or miss-

ing, qualitative models may be appropriate.

2. Scale of the model—Some formalisms are more

appropriate for modeling at certain biological scales.

For example, intracellular networks are suitably mod-

eled by formalisms having a static network structure,

whereas tissue, organ or individual scales where the

network is usually dynamic or nonexistent are some-

times more appropriately modeled by formalisms

supporting a dynamic network or agent-based model-

ing. Figure 2 gives a summary showing biological
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scales at which most applications of a certain formal-

ism are concentrated.

3. Size of the model—Models involving large number of

entities are easier to describe and use in compositional

formalisms which allow hierarchical organization of

entities and implicit definition of entity subtypes.

4. Nature of available data—The nature and amount

of data required to construct a model and learn its

Table 1 Glossary

Term Meaning

Quantitative

formalism

A quantitative formalism is concerned with numerically measurable attributes of the system such as protein

concentrations. It establishes relationships between these quantities with the help of mathematical functions

Qualitative formalism In a qualitative formalism, the exact numerical measurements are not important; rather, the states of the system (such as

the presence or the absence of a protein) and the sequence of state transitions are important. The relationships between

various entities are defined categorically, such as using combinatorial logic functions (Boolean AND, OR, NOT, etc.),

or state transition matrices, etc

Continuous-time

formalism

In a continuous-time formalism, time is represented as continuous numerical parameter (a real number). The exact

times when events occur in the system are measured

Discrete-time

formalism

In a discrete-time formalism, time is represented in integral steps according to when the state transitions occur in the

system. Thus, instead of the exact time when an event occurs, the discrete steps that lead to the event are of interest. In

general, the time steps are not of equal length. Discrete time formalisms support three different types of updating—

synchronous, asynchronous and concurrent

Synchronous update In synchronous update, all entities update their states at every time step and the current state depends on the previous

states of all entities

Asynchronous update An asynchronous update makes a more realistic assumption that different entities change states at different time steps.

The current state of an entity again depends on the existing states of all the other entities

Concurrent update Concurrent update is most general as it allows entities to change states independently at the same time. The current state

of an entity takes into account the current states of the other entities

Compositional

formalism

In a compositional formalism, the system is broken down into parts of manageable size and complexity, and these parts

are individually modeled. Then, the models for the parts are combined to give the full model. Compositionality is a

natural way of modeling multiscale biological systems

Flat formalism In contrast to a compositional formalism, in a flat formalism, all the entities in the system and their interconnections

with each other are represented in a single structure

Deterministic

formalism

In a deterministic formalism, the system has well-known numerical properties or states and the system evolves in a

predictable manner governed by known laws

Stochastic formalism In a stochastic formalism, there is unpredictability in the system arising from various factors such as noisy

measurements, missing or unknown details, heterogeneity in the system, etc

Network A set of interconnected entities, where a connection represents a well-defined interaction between a pair of entities

Static network A network in which entities and connections are fixed

Dynamic network A network in which entities and connections can appear or disappear in time

No network When interactions between entities are purely by chance or proximity, it is referred to as a no network situation

Distributed system A system that consists of independent functioning and possibly physically separated subsystems or processes

Deterministic 
differential 
equations 

Stochastic 
differential 
equations 

Piecewise linear 
differential 
equations 

Boolean 
networks 

Automata Statecharts 
Petri
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Process
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Fig. 2 Typical scales of application of various formalisms
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parameters varies for different formalisms. For exam-

ple, constructing a model in a quantitative formalism

may require comprehensive quantitative experimental

data. On the other hand, models can be constructed in

qualitative formalisms with little or no quantitative

data.

5. Availability of software tools—Some formalisms are

popular for certain modeling applications because

high-quality software tools are readily available. For

example, Petri nets are frequently used for modeling

intracellular processes since a well-developed tool Cell

Illustrator [17] is available for the purpose.

This review discusses the basic modeling approach and

characteristics of a few important formalisms for systems

immunology modeling. Some important characteristics of

various formalisms are compared in Table 2. For further

technical details, pointers are given in Table 2 to recent

reviews and helpful references. The first step toward

choosing a suitable modeling formalism is to explore

which formalisms have already been used in the literature

for modeling similar systems. This review attempts to

review salient modeling applications of each formalism.

For implementation of systems immunology models, a

wide variety of software tools is available. Models can be

implemented by programming in general purpose pro-

gramming or scripting languages like C??, Matlab,

Mathematica, R, Python, etc. Otherwise, one can use spe-

cialized tools that are preprogrammed to implement models

in a particular formalism. General purpose programming

languages provide flexibility of implementing any con-

ceivable model, but programming can be tedious and prone

to errors and may involve duplication of efforts in

rebuilding what has already been implemented by others.

Specialized tools, though limited in functionality, can save

time and effort and allow one to focus on modeling rather

than programming issues.

For immunologists beginning to take interest in systems

immunology, a good starting point would be hands-on

experience with existing tools that are user-friendly and

well documented and come with a set of example models.

This review describes a sample of available software tools,

which are in this sense ‘biologist-friendly’.

In terms of usage, software tools can be of various types

such as a working environment, an application, a plugin,

shell or a library. These terms are explained in Table 3.

Usually, working environments are a good starting point as

they provide a complete set of tools for a typical modeling

workflow including model construction, parameter esti-

mation, model checking, simulation, visualization and

typical analyses on a model.

Databases are very important part of modeling software,

which organize and curate experimental data and models.

However, in this review, we will not discuss about dat-

abases. We refer the reader to some recent reviews on this

topic [18–20].

Differential equations

Formalism

Differential equation models give a complete quantitative

description of system dynamics in continuous time and

space. In a differential equation model, all entities in a

system are represented by some real-valued quantitative

attributes such as their total numbers, concentrations,

masses, etc. All events in the system such as production,

degradation and transport of entities and interactions

among entities are expressed in the form of chemical

Table 2 Characteristics of various formalisms for systems biology modeling

Formalism Determinism Quantities Time Type of

analysis

Composition

(Hierarchy)

Scalability Review

papers

Deterministic differential

equations

Deterministic Continuous Continuous Quantitative No Low [137, 138]

Stochastic differential equations Stochastic Continuous Continuous Quantitative No Low [139]

Piecewise linear differential

equations

Deterministic Continuous Continuous Qualitative No Medium [140]

Boolean networks Deterministic Discrete Discrete Qualitative No Medium [141]

Automata Deterministic Discrete Discrete Qualitative No Low None

Statecharts Stochastic Discrete Discrete Qualitative Yes High [142]

Petri nets Stochastic Both Discrete Quantitative No Low [115]

Process calculi Stochastic Continuous Discrete Quantitative Yes High [143]

P systems Stochastic Discrete Discrete Qualitative Yes Low [144]

Agent-based modeling Stochastic Discrete Discrete Qualitative No Low [145]

Rule-based modeling Stochastic Continuous Continuous Quantitative No Medium [146]
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reactions. The rate of change of the quantity of products is

represented as a continuous function of the quantities

of reactants. The set of differential equations (or rate

equations) constitutes the model, and its parameters are

called rate constants. The rate constants are estimated from

experimental data. Ordinary differential equations (ODEs)

are used when only temporal dynamics are considered,

whereas partial differential equations (PDEs) are used for

dynamics in both time and space. Delay differential

equations (DDE) are used in systems with delays or lags

such as gestation times or transport delays.

Differential equation models can be deterministic or

stochastic. Deterministic differential equation models are

used when quantities of entities can be precisely measured

and the network of interactions among entities is static. On

the other hand, when the entities are present in small num-

bers (of the order of hundreds or less) or there are dynamic

interactions or external factors such as different initial states,

timing variability of responses, random external inputs, etc.,

stochasticity can no longer be ignored. Stochastic models

such as chemical master equation (CME), stochastic dif-

ferential equations (SDE), continuous-time Markov chains

(CTMC) and Bayesian dynamics model (BDM) are used

when these effects have to be explicitly accounted [21].

To simulate a differential equation model, the set of

equations is integrated with given initial and boundary

conditions to yield exact numerical quantities of all entities

in continuous time. Analytical solution is seldom feasible;

therefore, simulation is usually performed numerically

using computational algorithms.

Applications

Differential equations models of the immune system are

reviewed in [22–24]. Systems of ODEs have been exten-

sively used for modeling intracellular (genetic, signal

transduction and metabolic) networks. Precise continuous-

time dynamics of small networks containing up to tens of

entities (genes, proteins or metabolites) is frequently

studied using ODE models. However, for larger networks,

qualitative formalisms such as Boolean networks are pre-

ferred due to ease of parameter estimation and analysis. An

important analysis performed with an ODE model of an

intracellular network is the exploration of its steady states,

which is equivalent to understanding its equilibrium states

or homeostasis [26, 40, 41].

Models have been constructed to study the signaling

events in macrophages triggered by AvCystatin [25], the

IFN-related regulatory network [26] and NF-kappaB sig-

naling [27, 28]. Dynamics of gene expression in response

to activators and inhibitors is described using usual rules of

reaction kinetics along with Michaelis–Menten enzyme

kinetic equations and Hill function. These equations can

reproduce the characteristic sigmoid shaped dynamics of

gene transcription. ODE-based approaches have also been

used to study cancer–immune interactions [29–31], natural

killer cell response [32], B cell memory [33, 34], the role of

inflammation in atherosclerosis [35], interaction of HIV

with CD4? T cells [36], virus-neutralizing immunoglob-

ulin response [37], and cytotoxic T cell proliferation [38]

and activation [39].

Table 3 Categories of software tools

Term Meaning

Programming

environment

Software that allows users to define their own tasks by writing a sequence of instructions, called a code or program, in a

computer language. For example, Matlab is a programming environment where users can write programs for

performing a variety of computational tasks

Application An executable software, which can perform a fixed set of tasks. For example, CellDesigner is an application for drawing

gene-regulatory and biochemical networks

Plugin An addition or extension to an application at runtime. For example, SimBoolNet is a plugin for Cytoscape, which adds

functionality for simulating Boolean networks

Library A collection of reusable software code which software developers can include in their own programs. Software

developers share pieces of their software code with each other in the form of libraries. For example, libSBML is a

library for working with SBML models

Shell Software that provides a programming interface to an application. It allows the user to write a ‘‘script’’, which is a series

of commands that the application will execute. This makes it easier and faster to work with an application. For

example, Jarnac is an application for modeling ODEs, which uses a shell for programming modeling tasks

Working environment An environment (which can be an application, or a shell, or a graphical user interface) that allows using different

applications, which could otherwise be used on their own, within a common framework. It allows easy sharing of data

and results between different applications. The interactions can be hardwired (in case of an application or a GUI) or

programmable (in case of a shell). For example, Systems Biology Workbench (SBW) is a working environment that

integrates a number of applications for ODE model creation, analysis and simulation

Module A general term referring to a unit or an independent component, which can be a piece of code in a program or script, or a

plugin to an application, or an application in the context of a working environment
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Stochastic modeling is common at the intracellular scale

for gene expression and signaling [42]. Lysis-lysogenic

fate choice of k-phage-infected Escherichia coli [43] is a

classic example of a system where stochastic kinetic

modeling of gene expression is required to predict proba-

bilistic outcomes. Here, regulatory proteins Cro and CI

compete at low concentrations to control the switching of

gene regulatory network between lysogenic and lytic fates,

resulting in a probabilistic pathway selection. Other

examples of stochastic modeling include terminal differ-

entiation of B lymphocytes [44], variations or oscillations

in NFkB pathway [45], optimization of immunoglobulin

substitution therapy [46], and viral replication in cells

where few virus particles can initiate infection [47].

Simulation tools

Modeling a biological system with differential equations

involves multiple related tasks including model construc-

tion, verification, calibration (parameter learning), analysis,

validation, simulation and visualization. Currently there is

no single software tool, which can perform all of these

Table 4 Comparison of software tools for deterministic differential equation modeling

Software Category Modeling functions

Construction Calibration Analysis Simulation Visualization Scripting

Systems Biology Workbench (SBW) Complaint Modules and Application

BioModels importer SBW module X

CellDesigner Application X

JDesigner SBW module X

JSim Application X X X X X

Copasi Application X X X X X

Gillespie Simulator SBW module X

Jarnac Application X X X X X

Roadrunner SBW module X X

Auto C# SBW module X

Bifurcation discovery tool SBW module X

Frequency analysis SBW module X

Jacobian viewer SBW module X

3D Simulation SBW module X

Autolayout SBW module X

Others

Gepasi Application X X X X X

BioUML Working environment X X X X X

Mathematica with MathSBML Programming

environment

X X X X X X

MATLAB with SimBiology and

SBToolbox2

Programming

environment

X X X X X X

SBML ODE solver Library X X

JWS Online Webserver X X

Cytoscape Application X X

Kinetics Inference (Klnfer) Application X

Bio-SPICE Working environment X X X X X

Python with PySCes Programming

environment

X X X X X

Virtual Cell* Application X X X X

ECell Application X X X X

EnSuite/EnCORE Not yet mature

Biodyn Web Application X X

Oscill8 X X

* Virtually Cell supports geometry modeling, which is an additional feature compared to other tools in the list.
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tasks equally well. Therefore use of multiple tools is

imperative. Table 4 lists some software tools for working

with differential equation models.

A usual problem in using different software tools is that

each tool has its own way of handling data, which makes it

difficult to share information across different tools. Efforts

toward integration of systems biology software tools has

resulted in projects such as Systems Biology Markup

Language (SBML) [48], CellML [49], Systems Biology

Workbench (SBW) [50], and so forth. SBML and CellML

define common formats for sharing model structure, param-

eters and simulation results across different software tools.

Almost all software tools today are compatible with SBML.

SBW is a working environment, which integrates many

software applications and makes it easy to share information

across them. Within the SBW, CellDesigner, JDesigner,

Copasi and JSIM are useful graphical or scripting tools for

constructing and editing models in SBML format. Model

parameters can be estimated from an experimental dataset or

optimized over a given range using JSim and Copasi. Anal-

yses on a model, such as steady state analysis, sensitivity

analysis, mass conservation analysis, etc. are available in

JSim, Copasi, Jarnac, Roadrunner, AutoC#, Frequency Anal-

ysis, and Jacobian viewer. No tool for model verification

exists. However, partial verification is possible in Copasi.

Time course simulation can be performed in JSim, Copasi,

Gillespie simulator, Jarnac and Roadrunner. Through SBW

the same model can be passed around to different tools so that all

of these tasks can be performed within a single working session.

Apart from SBW, there are a number of independent

software tools that support systems biology modeling and

simulation as shown in Table 4. Being independent, each

tool tends to support as many features as possible within it.

For advanced users, Matlab, Mathematica, Python and

C?? are general purpose programming environments.

Biology specific capabilities such as support for SBML

format, graphical interface for model construction, sto-

chastic simulation, etc. are available through toolboxes

such as SimBiology and SBToolBox2 for Matlab, MathS-

BML for Mathematica, PySCes library for Python and

libSBML and SBML ODE solver libraries for C??.

Examples of differential equation models for immu-

nology are stored in the BioModels database. These can be

imported into SBW using the Biomodels importer and

serve as a useful guide for immunologists.

Automata and statecharts

Formalism

In contrast with differential equations, which describe the

immune system in continuous time and space, automata

provide a discretized approach where the immune system is

regarded as a system having a finite number of states, with one

of these states being the current system state. The automaton

receives inputs and ‘jumps’ to the next state depending upon

its current state and the input. A transition function defines a

mapping to a next state given the current state and an input.

An automaton is frequently visualized as a graph in which

each state is a node and possible state transitions are indicated

by directed edges between the nodes. Edges are marked with

the inputs or conditions, which enable that transition.

An automaton, which contains a finite number of states

and receives a string of inputs in discrete time is called a

finite state automaton. A cellular automaton [51] is a

special finite state automaton where states, or ‘cells’, are

arranged in a grid in any finite number of dimensions. It is

useful when spatial organization or patterns are important

in a model. Cellular automata have received significant

attention due to their ability to exhibit complex system-

level emerging behavior, which often strikingly reflect real

biological phenomena, using relatively simple local tran-

sition rules. A hybrid automaton is a mixed formalism with

both discrete states and continuous variables. A statechart

is an extension of a finite state automaton to include sup-

port for additional features such as nested state hierarchy,

concurrency and event broadcasting, which makes models

more powerful and scalable.

Applications

Cellular automata have been used in several immunologi-

cal applications for investigating specific mechanisms of

the immune system such as affinity maturation and

hypermutation in the humoral immune system [52] and

tolerance to pathologic rheumatoid factors [53]. Cellular

automata are suitable for studying self-organization and

colony formation of tumor cells and effect of the envi-

ronment and stroma on tumor progression. Thus cellular

automata and hybrid variant have been extensively used for

modeling the dynamics of various diseases such as tumor

growth and invasion [54–64]. In these computer simula-

tions, specific diseases’ factors (e.g., rate of spread, binding

affinities of cytokines) can varied to obtain a better

understanding of the diseases’ factors and how they may

impact the spread dynamics of the disease. Further diseases

investigated using cellular automata include: HIV [65, 66],

Epstein–Barr [67] and M. tuberculosis [68, 69].

Hybrid automata have been used in two types of appli-

cations: which involve a switch like behavior, and those

which extend cellular automata to a hybrid (mixed discrete

continuous) type. The former are mostly used for modeling

gene regulatory and signal transduction networks, while the

latter are mostly used for modeling at the tissue level

including tumors and immune system.
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Kam et al. [70] first applied statecharts for modeling the

transition of T cells into active or anergy states depending

upon protein tyrosine kinase (PTK) activity, costimulation

and inhibition. Subsequently, Efroni et al. modeled T-cell

maturation in thymus [71] and thymocyte development

[72]. Large numbers of individual T cells expressing dif-

ferent receptors were simulated and their interaction with

epithelial cells could be studied in real time by simulation.

In another study, Naamah et al. [73] studied how lymph

nodes orchestrate the interaction between antigens and

various B and T cells bearing receptors for these antigens.

States and transitions in the statechart framework were

used to simulate the activities in lymph node regions,

including immune cell behavior, receptors, interactions and

movement of cells, cell proliferation and differentiation.

Simulation tools

Popular applications that supports modeling of various

biological systems with cellular automata include DDlab

and Cell-Devs. The latter is a programming environment

for advanced users. CHARON is a programming environ-

ment, which has been extensively used for working with

hybrid automata models of biological systems. Bio Sketch

Pad is a graphical tool for supporting formal modeling,

analysis and simulation of biochemical and cellular net-

works with CHARON. Since its early introduction in 1992

by Celada and Seiden, the software package IMMSIM-C

[74, 75]1 has been employed numerous times for immune

systems modeling using hybrid cellular automata. In con-

trast with Cell-Devs, the utilization of IMMSIM-C does not

require expertise in computer programming. As such, this

modeling platform has been used for educational purposes

for undergraduate immunology courses at various univer-

sities (e.g., Princeton University, University of Genoa).

Also, IMMSIM-C was ported as a public web applica-

tion[76]2 where users can readily implement and simulate

immune system models online without requiring any

computational skills.

Though many programming environments exist for

modeling with statecharts, only Rhapsody has been used so

far for systems immunology modeling. Rhapsody provides

provisions for drawing statechart models and defining

transitions and other actions. It translates the statechart into

an executable Java/C?? code. Another software called

BioCharts, which is specifically meant for biological sys-

tem modeling with statecharts, is under development [77].

Agent-based models

Formalism

Agent-based modeling is a distinct paradigm compared to

the formalisms discussed above in at least two major ways.

Firstly, instead of measuring average or ensemble proper-

ties of entities such as concentration and total numbers,

agent-based models deal with discrete agents, which could

be individual molecules, cells, etc. The agents are auton-

omous, that is, they are not passively manipulated but can

make independent decisions. In some models, the agents

can learn and adapt their behavior. Secondly, the interac-

tion topology among the agents is a complex dynamic

graph. Agents can be free to move within a space. They

contact other agents and the environment by chance and,

during these interactions, change their state in accordance

with a set of well-defined rules. Agent-based models are

pertinent for modeling biological systems involving

dynamic interactions among heterogeneous components.

The model is capable of re-creating macrolevel phenomena

by the actions and interactions of microlevel individual

agents. This phenomenon is called emergence. Agent-

based models pay attention to the behavior of individual

agents, which is not possible in formalisms that charac-

terize ensemble properties of entities.

Applications

ABMs are suitable for modeling biological phenomena at

the multicellular level. Cells as agents are a natural meta-

phor. Thus, ABMs have been commonly used for modeling

inflammatory and immune response, tumor formation,

tissue morphogenesis, etc. Systemic inflammatory response

syndrome (SIRS) is an early and successful application of

ABMs [78–80]. The system has complex, nonlinear

dynamics driven by multiple feedback loops, due to which

analysis of isolated components fails to explain the sys-

temic responses. For instance, nitric oxide is responsible

for lethal drop in blood pressure in SIRS, but paradoxi-

cally, treatment with nitric oxide improved survival in

animal models [81]. The ABM was intended to reproduce

systemic behaviors from simple rules known to operate at

the cellular level. Despite several simplifications, the

model reproduced diverse clinical outcomes in SIRS and

provided practical insights into improving the treatment

protocol. The model also addressed a controversial issue

whether stimulation of pro- and anti-inflammatory cellular

responses is concurrent or separated by a time lag. ABM of

inflammation continues to be an active area of research

[82–85] and has been extended to other related applications

as well, such as modeling of Chagas’ disease [86, 87],

vocal fold inflammation [88], ischemia [89], leukocyte

1 http://www.immsim.org/.
2 http://www.cbs.dtu.dk/services/C-ImmSim-10.1/.
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rolling and adhesion [90], etc. ABMs have been recently

been combined with ODE and mechanotransduction mod-

els in multiscale modeling of human epidermis [91].

Various aspects of immune system response have been

modeled using ABMs. Some studies have modeled

immune responses to infections, such as formation of

granuloma in tuberculosis [92], formation of atheromatous

plaque in hypercholesterolemia [93], and the sites of

Epstein–Barr virus infection and persistence [94]. Other

studies have focused on the internal mechanisms of the

immune system such as the recognition of antigens by T

cells [95], B-cell activation following ligand presentation

[96], T-cell activation and proliferation in lymph nodes

[97], B-cell selection in germinal centers [98], unbalanced

differentiation of precursor T helper cells to TH1 and TH2

phenotypes [99], formation and recall of antivirus immu-

nological memory [100], etc. Other studies have attempted

to build a comprehensive model of the immune system as a

whole [101–105].

Simulation tools

Though many software tools exist for agent-based model-

ing [106, 107], only a handful are useful for systems

biology modeling. All agent-based modeling tools require

some programming skills. NetLogo is an easy-to-use plat-

form [108, 109] suited for prototyping agent-based models.

However, large-scale simulations would require a more

powerful platform. Swarm is a historical ABM platform.

Swarm models are written in Objective C, which makes it

accessible only to experienced programmers, though it now

also supports Java. MASON is a Java library with emphasis

on cross-platform portability, fast running simulations and

reduced space requirements. It is suitable for batch simu-

lations. Repast is one of the most advanced agent-based

modeling platforms. It is well suited for working with large

and complicated models. Though it is also built in Java, its

user-friendly interface called Repast-symphony helps keep

programming minimal. Another useful feature is its auto-

mated integration with many external tools such as Matlab,

R, SQL, VisAD (scientific visualization), JUNG (network

modeling), Excel and GIS software. It supports adaptation

and learning of agents through evolutionary algorithms, as

well as model optimization over Monte Carlo simulations.

It supports large-scale simulations though multithreading

and distributed computing.

Other formalisms

The discussion above covered some of the primary for-

malisms that have been used for modeling and simulation

of immune systems. However, there is also literature on

various other formalisms that have been used for modeling

in immunological applications.

Boolean or multilevel network models are used in

applications where there is a fixed network and the enti-

ties can take on a discrete number of states, ranging from

two (boolean) to multiple (multilevel). For example, in a

gene regulatory network, each gene may be represented

by two states (OFF or ON) or three states (LOW,

MEDIUM or HIGH). Using discrete states instead of

numerical values makes the model simple and easy to

analyze while capturing its essential dynamics. Boolean

and multilevel network models have been used for mod-

eling T-cell differentiation [110, 111], T-cell activation

[112], inflammatory signaling [113] and host–pathogen

signaling [114].

A limitation of Boolean networks is that the states of

entities must be updated one by one. Thus, they cannot

perfectly model concurrent or simultaneous events.

Immunological systems frequently function as concurrent

systems. For example, in humoral immunity B-cell pro-

duction, antigen presentation, B-cell activation, antibody

secretion and virus clearance are all concurrent processes.

In signaling networks, protein products of one event

dynamically serve as reactants or enzymes for the next set

of events, and thus, the production and consumption of

proteins are concurrent events. Petri nets [115] and process

calculi [116] are two other formalisms based on fixed

network and discrete representations of state and time,

which are especially suited for modeling concurrent and

distributed systems. Petri nets have a graphical represen-

tation, while process calculi have a textual representation,

so Petri nets can be easier to understand for nonspecialists.

These formalisms also provide formal analysis and verifi-

cation techniques (such as model checking [117]), which

makes it possible to analyze all possible model behavior

and causal and conflicting relationships. So they can

answer questions like is it possible to completely eliminate

a pathogen, will the parasite be able to complete its life

cycle, etc. An integrated Petri net model of the immune

system including innate, humoral and cellular immunity

has been reported in [118]. Similarly models of immune

system in process calculus, such as activation of helper T

cells, are reported in [119, 120].

P-systems or membrane computing is an emerging for-

malism for modeling concurrent and distributed systems.

Its specific advantage is that it explicitly models modules

or groups of entities separated by compartments and

together performing a specific function. Rules specify the

evolution and transport of entity groups. This makes it

easier to model some phenomena such as selective trans-

port of entities across membranes. P-systems have been

used to model the life cycle of infectious viruses [121,

122].
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Toward integrative modeling simulation platforms

and evolutionary systems immunology

In the previous sections, the principal modeling formalisms

and associated simulation tools were presented. In addition,

a range of relatively less prominent and more recent

modeling approaches were briefly described. Although this

survey is far from being exhaustive, it can be readily noted

that a wide variety of modeling formalisms exists where

there is no single formalism that can be clearly identified as

the universal best. This is also reflected in the literature,

where new modeling variants are continuously being

developed, addressing specific modeling needs and

immunological research questions. Although this may

appear to be a diverging and ultimately counter-productive

research effort, this diversity of modeling formalisms is

actually regarded as necessary and desirable by the authors.

What we believe is most important, and currently not

developed enough in systems immunology, is the access

and utilization of modular and integrative frameworks to

facilitate the coupling of differing modeling formalisms.

This also implies the need for meta-models (and public

repository for such models) accounting for the multilevel,

hierarchical nature of the immune system. Modularity is

here a key feature for such a framework, which would

enable the ‘plug-in’ of the different modeling formalisms

and simulation tools while preserving coherency of the

different modeled entities in both time and space [123,

124].

We propose an extension to in silco systems immu-

nology to investigate the ability of the immune system to

adapt to environmental changes through an evolutionary

process. Such an evolutionary approach to systems

immunology may be of interest due to the natural ability

of pathogens (e.g., HIV) to adapt through evolution [125,

126]. To date, a number of theoretical studies have been

conducted toward this direction [127–131] where the

adaptive properties of artificial immune systems have

been examined while involving the ‘innovation’ process

through mutations and selections. These algorithms have

been shown to be efficient when applied to high-

dimensional search or optimization problems [132] and

have inspired novel techniques in computer science to

realize computer intrusion detection systems [133].

However, when considering the modeling and simulation

of natural immune systems evolution, relatively less

studies have been reported in the literature [134, 135].

To explore further this research direction, significant

challenges would have to be addressed. Particularly,

preserving biological plausibility would be a hard con-

straint to ensure that the in silico evolutionary explora-

tion of immune systems remains within acceptable and

reasonable boundaries. A strong focus should thus be

placed on model validation. For instance, tracing the in

vivo evolution of pathogens [136] is an example of data

useful for validating in silico predictions. This proposed

evolutionary systems immunology approach may then,

ultimately, provide a complementary and potentially

useful tool for immunological and epidemiological

studies.

Conclusions

We hope that this review lowers the entry level for biolo-

gists to systems biology modeling and simulation. We gave

pointers to formalisms and also a list of their biological

applications to not only illustrate their power and usage but

also help biologists with specific problems at hand. This

can serve as a reference to quickly identify which for-

malism could be of interest. Finally, we believe that pro-

viding the list of corresponding software is the key to

adoption of modeling and simulation within biology

research laboratories. This last and practical section makes

this review a good entry point for biologists who wish to

not just build a theoretical foundation but to start experi-

menting with computational models.

We gave insights into preliminary questions whose

answers can guide the choice of an appropriate formalism.

These questions are listed in Sect. 2 (Modeling and Sim-

ulation) and further expanded in Tables 1 and 2. Figure 2

gives an overview of which formalism could be used

depending upon the biological level or scale of the problem

at hand. Finally, the software part (as illustrated by Table 4

for differential equations) guides one to the right software

tools to begin modeling and experimenting in a chosen

formalism.

We emphasized the fact that there is no universal best

modeling formalism. Modeling something as complex as

the immune system will require integration of different

formalisms in a common multiscale transcale framework.

Thus, we outlined move toward integrative modeling as

the next challenge for in silico systems immunology. We

also proposed modeling of the adaptive properties of the

immune system through evolution as a less studied but

promising challenge for systems immunologists.

Finally, we would like to emphasize the fact that there is

no modeling without data. Therefore, it is of utmost

importance to ensure that accurate and appropriate data are

available or that data generation and acquisition is included

in the modeling strategy.
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