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Abstract Members of the Herpesviridae family have the capacity to undergo both lytic and latent infection to establish a

lifelong relationship with their host. Following primary infection, human cytomegalovirus (HCMV) can persist as a

subclinical, recurrent infection for the lifetime of an individual. This quiescent portion of its life cycle is termed latency and

is associated with periodic bouts of reactivation during times of immunosuppression, inflammation, or stress. In order to

exist indefinitely and establish infection, HCMV encodes a multitude of immune modulatory mechanisms devoted to

escaping the host antiviral response. HCMV has become a paradigm for studies of viral immune evasion of antigen

presentation by both major histocompatibility complex (MHC) class I and II molecules. By restricting the presentation of

viral antigens during both productive and latent infection, HCMV limits elimination by the human immune system. This

review will focus on understanding how the virus manipulates the pathways of antigen presentation in order to modulate

the host response to infection.
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Introduction

Herpesviruses have coevolved with their hosts for millions

of years. This has led to the development of multifaceted

strategies of immune evasion that have allowed the virus to

survive in the face of a hostile host immune system. In this

regard, studying how different members of the herpes virus

family coexist with the host provides a unique approach to

better understanding host–virus interactions, fundamental

elements of the immune response and general cellular

processes. Human cytomegalovirus (HCMV), a member of

the b-herpesvirus subfamily, is characterized by its large

genome capacity and strict species specificity [1, 2]. Like

HCMV, many human herpes viruses establish unique cel-

lular sites of viral dormancy or latency [3]. As with

Epstein–Barr virus (EBV), herpes simplex virus type 1

(HSV1), and human herpes virus-6 and 7, HCMV has the

ability to periodically reactivate to form new transmissible

infectious virions, thereby contributing to its success as a

human pathogen. This review will focus on the strategies

utilized by HCMV to modulate antigen presentation that

contributes to viral persistence within the human host.

The HCMV life cycle

The HCMV virion structure is comprised of a proteinaceous

capsid containing a *250-kb double-stranded DNA gen-

ome, a tegument layer surrounding the capsid composed of

viral phosphoproteins, and an outer envelope containing

numerous glycoprotein complexes [4] (Fig. 1). HCMV

infection ensues by the initial attachment to extracellular
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heparan sulfate proteoglycans [5]. Due to its remarkably

broad cellular host range, HCMV entry pathways, receptor

utilization, and viral glycoprotein requirements are believed

to vary according to cell type [6]. Both wild type and clinical

strains of HCMV contain complexes of glycoproteins, gB,

gH/gL/gO, gH/gL/UL128/UL130/131, and gM/gN, neces-

sary for entry into epithelial and endothelial cells [7–13].

The AD169 laboratory strain of HCMV has lost a *20-kb

segment of its genome probably due to repeated passaging

and thus is incapable of efficiently infecting all cell types due

to a lack of UL128-131 genes. The formation of the gH/gL/

UL128-131 glycoprotein complex allows infection of

endothelial and epithelial cells, leukocytes, and monocytes

[8, 14, 15]. Loss of UL128-131 is apparently beneficial in

fibroblasts, as lab strains of HCMV possess a selective

advantage when grown in these cells [16].

Following virus attachment to the cell by viral glyco-

protein complexes, the alpha-helical coiled-coil domains

found in gB and gH drive the energetic fusion of the viral

envelope with the cellular membrane and subsequent cap-

sid release into the cytosol [17]. The capsid travels along

microtubule networks to the nucleus [18], where capsid

uncoating occurs and deposited viral DNA can initiate

transcription. HCMV undergoes temporally controlled

replication regulated by different segments of its genome.

The replicative cycle is divided into immediate early (IE),

early (E), and late (L) phases of replication. HCMV IE

transcripts are produced first and appear within 1–4 h post-

infection, with the IE1 and IE2 proteins being the best

characterized. IE proteins act as potent transactivators to

stimulate the transcription of E genes [19, 20]. The early

HCMV proteins function primarily to replicate viral

genomic DNA and alter host immune recognition. The

viral L genes function as structural components of the

virion that permit assembly and egress of newly formed

virus particles [21]. The viral packaging process incorpo-

rates a single, full-length viral genome within the capsid

that undergoes a primary envelopment at the inner nuclear

membrane, followed by de-envelopment at the outer

nuclear membrane [22, 23]. The naked nucleocapsid is then

released into the cytoplasm where tegumentation occurs

and assembly proceeds in discrete cytoplasmic compart-

ments [24–26]. The cytoplasmic viral capsid then under-

goes secondary envelopment where it is believed to acquire

an envelope from a distinct subcellular compartment whose

lipid composition most closely resembles synaptic vesicles

[27]. At the cell surface, the mature enveloped virion is

released, completing one cycle of lytic HCMV infection

approximately 72–96 h post-infection [28].

Viral latency and sites of HCMV carriage in vivo

In certain cell types, IE genes are silenced upon HCMV

entry resulting in a latent infection [29]. Viral latency can

be defined as the maintenance of viral genomes in the

absence of infectious virion production with the ability of

the viral genome to reinitiate a full replicative cycle under

specific stimuli. During times of latency, the viral genome

is maintained as an extrachromosomal plasmid at a low

copy number and only a subset of viral genes remain

transcriptionally active [30–33]. Most notably absent are

the transactivating viral IE genes, thus leading to a lack of

any subsequent lytic gene expression in cells carrying the

viral genome. Latent virus periodically reactivates as a

productive infection with the capacity to disseminate virus.

The greatest clinical threat from HCMV arises in the case

of immunosuppression and reactivation of latent virus

[34, 35]. In stem cell and solid organ transplant recipients

and HIV-infected individuals, a primary infection and

reactivated HCMV can replicate uncontrollably leading to

widespread dissemination and serious disease, such as

severe gastrointestinal tract infection, hepatitis, solid organ

rejection, and chronic graft-versus-host disease [36].

Early attempts to define cell types that carried latent

HCMV focused on analyzing transfusion-transmitted viral

disease among healthy seropositive carriers [37–39].

Infectious virus could not be isolated directly from the

blood of normal seropositive individuals [40], and the

transmission by blood and transfusion-mediated disease

could be reduced by leukocyte depletion [41]. With the

development of highly sensitive polymerase chain reaction

(PCR) techniques, more detailed analysis of blood from

healthy carriers identified HCMV DNA in peripheral blood

monocytes, but not T or B lymphocytes [42, 43]. This

discovery led to the question whether latently infected

monocytes acquired HCMV at an earlier stage of differ-

entiation along the myeloid lineage. PCR-based analysis of
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Fig. 1 A depiction of an HCMV virion. The HCMV virion consists

of an outer membranous envelope studded with glycoprotein com-

plexes critical for viral entry and membrane fusion, a tegument layer

of tegument phosphoproteins, and a capsid encapsulating a *250-kb

double-stranded DNA genome
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bone marrow-derived CD34? progenitors demonstrated

that these cells also carried HCMV genomes in vivo [44].

The actual number of mononuclear or hematopoietic pro-

genitor cells carrying viral genomes in natural latency was

deduced to be extremely low, in the range of 1 in 104–105

cells [45]. Furthermore, the physical conformation of

HCMV genomes in peripheral blood monocytes has been

assessed by PCR detection and electrophoretic separation

and migrates as a circular plasmid, or episome [46]. Taken

together, natural latency of HCMV is present in CD34?

progenitors and maintained in these cells as episomal

molecules as these cells differentiate to CD14? monocytes

and macrophages. Notably, endothelial cells have also been

proposed to be latently infected with HCMV, a cell type

derived from CD34? progenitor cells [47]. Why these cells

selectively maintain HCMV genomes and why other sub-

sets of cells arising from common progenitor cells do not

carry viral DNA remains to be understood.

Major histocompatibility antigen presentation

The human body presents a unique environment for colo-

nization by microorganisms, and the immune system is

crucial for recognizing the difference between ‘‘self’’ and

‘‘non-self’’ in all tissues. The concerted actions of the

innate and adaptive branches of immunity tailor a multi-

layered and specific response to infection by pathogens.

Innate immunity, the more evolutionarily conserved

branch, includes anatomical barriers such as skin and

mucosal layers and has the ability to detect pathogen-

associated molecular patterns (PAMPs). Innate immunity

also utilizes a variety of immune cells that respond to

inflammation and disruptions in cellular equilibrium. The

innate immune system reacts immediately and broadly to

infection (see reviews [48, 49]). The adaptive immune

response is composed of highly specialized cells whose

task is the generation of responses that are maximally tai-

lored to eliminate specific pathogens [50, 51]. A key

component of the adaptive branch of immunity is the

development of immunological memory [52]. This pro-

vides the host immune system with the ability to recognize

and quickly eliminate pathogens during subsequent

infections.

A bridge between the innate and adaptive immune

systems is antigen presentation. This pathway involves the

presentation of cellular and extracellular peptides by cell-

surface immune receptors termed major histocompatibility

complex (MHC) class I and II molecules [53]. Professional

antigen presenting cells (APCs) sample the extracellular

environment and internalize antigen either by phagocytosis

or by receptor-mediated endocytosis. Antigens are then

displayed on MHC class II molecules to CD4?

T-lymphocytes in order to initiate an immune response

[54, 55]. MHC class II molecules are loaded within

endocytic compartments with peptides 18–24 amino acids

in length derived from endosomal degradation [56]. CD8?

T-lymphocytes continually patrol host tissues, surveying

intracellular peptides presented by MHC class I molecules.

Class I molecules are typically loaded within the endo-

plasmic reticulum (ER) with peptides 8–10 amino acids in

length derived from cytoplasmic degradation by the pro-

teasome [57]. In addition, cross-presentation of exogenous

proteins within endosomes in a class I-restricted manner

provides an effective means of recognizing pathogen

infected cells [58]. Recognition of class I/II and peptide

complexes by CD4? or CD8? T-lymphocytes aids in

establishing and maximizing the capabilities of the immune

system, culminating in clearance of infected cells. The

adaptive immune system possesses the ability to generate

memory through activation and differentiation of immune

cells, somatic hypermutation of immunoglobulin antigen

receptors, increased antigen presentation, and the secretion

of cytokines and chemokines that provide direction to

responding immune cells [59]. Together, the adaptive

immune system responds effectively to both primary

infections and reinfections by preventing colonization,

establishing memory of the pathogen, and limiting cellular

damage during an infection. This review will focus on the

modulation of antigen presentation by HCMV and the

methods by which the virus confronts the challenge of

remaining dormant in cells. Other aspects of HCMV

immune evasion and those of other viruses can be found in

more comprehensive reviews [28, 60].

Modulation of antigen presentation by HCMV

MHC class I antigen presentation serves a crucial role in

alerting the immune system to infections. The efficient

establishment of latency by HCMV in the majority of the

human population highlights the virus’ successful ability to

evade the immune system. The HCMV genome encodes

multiple immune evasion proteins during the course of

infection that target different arms of antigen presentation,

including MHC class I and II molecules and inhibitory and

activating receptors of NK cells. Early work characterizing

essential and non-essential genes of HCMV observed that

infection led to the down-regulation of MHC class I mol-

ecules from the surface of infected cells [61–65]. The

genomic region implicated in this phenomenon was US2

through US11 [66]. The viral genes US2, US3, US6, US10,

and US11 have all subsequently been found to play dif-

ferent roles in modulating antigen presentation by limiting

the surface expression of MHC class I and II molecules

(Table 1; Fig. 2).
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Retention of MHC class I complexes in the ER: US3

HCMV US3 is expressed 1–4 h post-infection during the

IE period of viral replication and alters MHC class I anti-

gen presentation [67]. The US3 open reading frame (ORF)

is capable of creating three transcripts through alternative

splicing [27]. The largest transcript, producing a 22 kDa

protein, is required for retention of fully assembled MHC

class I complexes in the ER [67, 68]. This interaction with

class I complexes is dependent on the transmembrane and

ER-luminal domains of US3 [69, 70]. US3 can directly

bind to the ER-resident chaperone tapasin to inhibit opti-

mal peptide loading of class I [71]. Therefore, class I allelic

susceptibility to US3 retention correlates with tapasin

dependence for peptide loading and surface expression

[71]. Interestingly, US3 can also retain the trophoblast-

associated non-classical MHC class I alleles HLA-G and

HLA-C [72]. US3 appears to differentially regulate the

Table 1 HCMV viral antagonists of MHC class I and II antigen presentation

Protein/gene Infection phase Function References

US3 Immediate early Retains MHC class I molecules, reduces MHC class II presentation [67, 68, 73, 74]

US11 Early Induces degradation of MHC class I molecules [66, 76, 144]

US2 Early Induces degradation of MHC class I molecules [75, 83, 85]

US10 Early Retains MHC class I heavy chains, induces degradation of HLA-G [66, 102, 103]

US6 Late Inhibits the translocation of peptides by the TAP complex [104, 105]

UL82 (pp71) Early/late (tegument) Delays egress of MHC class I complexes from the ER to the Golgi [114]

UL83 (pp65) Early/late (tegument) Prevents generation of viral antigenic peptides [64, 113]

miRNA

US4-1 Immediate early/early Targets the mRNA of the aminopeptidase, ERAP1 [111, 112]

MHC Class I Heavy Chain

   Calnexin

Tapasin

US2, 
US10, 
US11

US6

β M

Antigenic Peptide

Viral Protein
Proteasome

TAP Complex

MHC Class I Complex

ERAP1miR-US4-1

US3, 
US10

ER Lumen

Cytosol UL83

UL82(pp71)

2

Fig. 2 Mechanisms of HCMV-mediated downregulation of MHC

class I molecules. Nascent MHC class I heavy chain enters the ER

lumen and binds to calnexin before associating with b2 microglobulin

(b2m). Protein-derived peptide fragments generated by the protea-

some in the cytosol are delivered to the ER lumen by the transporter

associated with antigen processing (TAP) complex. These peptides

are eventually trimmed by the ER-aminopeptidase 1 (ERAP1).

Tapasin bridges the MHC class I molecule and TAP to allow peptide

loading of an 8–10 aa peptide creating a mature MHC class I

complex. The HCMV-encoded proteins US2, US10, and US11 induce

proteasomal degradation of diverse alleles of MHC class I. US3 and

US10 bind and attenuate class I egress from the ER. US6 interacts

with the ER-luminal domain of the TAP complex and deactivates

TAP-mediated peptide translocation. The product of UL83, pp65,

may be involved in the phosphorylation of HCMV proteins to prevent

their proteasome-mediated degradation, thereby blocking the gener-

ation of HCMV antigenic peptides. The product of UL82, pp71, was

found to delay transport of MHC class I complexes from the ER or

cis-Golgi. Finally, the HCMV-encoded miRNA miR-US4-1 sup-

presses translation of ERAP1 to limit loading of antigenic peptides
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activity of two additional HCMV-encoded immunoeva-

sins—US3 enhances degradation of MHC class I molecules

by the US2 gene product [73], while it appears to diminish

destruction of class I induced by the US11 gene product

(unpublished data). Additionally, US3 reduces MHC class

II antigen presentation by binding to newly synthesized

class II a/b heterodimers and preventing their ability to

associate with the class II invariant chain [74]. The dual

function of US3 in evasion of both MHC class I and II

antigen processing highlights the importance of these

pathways in controlling viral replication.

Induction of MHC class I heavy chain dislocation

and degradation: US2, US11, and US10

HCMV US2 and US11 gene products are expressed during

the early phase of infection and down-regulate class I mol-

ecules during a virus infection [66, 75]. Expression of these

individual genes in U373 astrocytoma cells resulted in the

robust induction of proteasome-mediated MHC class I heavy

chain degradation [76, 77]. Strikingly, these viral gene

products co-opt a cellular process referred to as ER quality

control that is utilized to degrade misfolded ER proteins [78].

Despite the similar outcome of US2- and US11-induced class

I destruction, the proteins likely exert their action indepen-

dently from each other and using diverse strategies. For

example, a single glutamine residue within the transmem-

brane domain of US11 is required to induce ubiquitination

and degradation of MHC class I [79], while the US2 trans-

membrane domain and select residues in the cytoplasmic tail

are critical for class I instability [80, 81]. Also, only US2

inhibits MHC class II antigen presentation by inducing

degradation of HLA-DR-alpha and DM-alpha molecules in a

cell-dependent manner [82, 83]. These differences suggest

that US2 and US11 function independently to ensure a robust

class I downregulation during the early phase of infection.

One striking difference between US2 and US11 function

is the allelic specificity for class I destruction. US2 was

observed to alter levels of HLA-A2, HLA-B27, and HLA-G

gene products, but not other HLA-B, -C or -E alleles or

soluble HLA-G1 [84]. The observation of an interaction

between US2 and the susceptible class I proteins but not the

resistant molecules further supports the specificity of US2

mediated class I destruction [85]. In a similar set of

experiments, US11 induced the degradation of HLA-A2

and not HLA-G [86]. These differences are highlighted by

the molecular determinants of class I that dictate US2- and

US11-induced destruction. The length of the C-terminus in

class I heavy chains is a basis for its susceptibility or

resistance to US11-induced degradation [87], while the a2/

a3 ER-luminal region of class I can dictate US2-induced

degradation [85, 86, 88, 89]. Interestingly, HLA-G and -C

were resistant to US2- and US11-mediated destruction in

both human trophoblast and porcine endothelial cell lines,

suggesting different cell types may influence the function of

US2 and US11 [90]. Despite a pronounced downregulation

of HLA-A2 and HLA-B27 surface expression during

infection of fibroblasts with recombinant viruses expressing

US2 or US11 only, the infected fibroblasts were susceptible

to pp65 and IE1-specific CTLs suggesting that multiple

evasin molecules may be required to significantly limit CTL

activity [91, 92]. Thus, US2 and US11 together may have

evolved to target many class I alleles in order to maximize

evasion of antigen presentation in different cell types.

The discovery that US2 and US11 utilize cellular

complexes to induce class I destruction was a major driving

force to understanding the molecular mechanism of how

ER proteins are transported across the ER membrane and

degraded by the proteasome, a process referred to as ER-

associated degradation (ERAD) [93]. The study of class I

heavy chain extraction from the ER to the cytosol, known

as dislocation, led to the identification of cellular factors

that play key roles in ERAD. For example, the chaperone

Bip, which has been associated with ERAD, binds US2 and

US11, and this interaction is required for class I degrada-

tion [94]. Cellular factors specific for US11-mediated class

I degradation include the p97 AAA ATPase complexed to

Npl4 and Ufd1, the Derlin family of proteins as well as

SeL1L, OS9, UBC6e, AUP1, and UBXD8 [95–99]. The

US2 and US11 degradation pathways appear to be similar,

but not identical because many cellular factors are unique

to US2-mediated destruction. US2 utilizes ER-resident

proteins such as signal peptide peptidase (SPP), calnexin,

and calreticulin [87, 100]. The p97 AAA ATPase plays a

role in dislocation of heavy chains in US2-expressing cells,

but dislocation did not require Ufd1-Npl4 unlike US11-

mediated class I dislocation [101]. The cofactor prefer-

ences for US2 and US11 highlight a possible intrinsic

aspect of the ERAD pathway: the recognition, dislocation,

and degradation of different ER substrates may require

diverse cellular factors, and HCMV has evolved to take

advantage of this diversity to induce class I degradation.

HCMV US10 encodes an ER membrane glycoprotein that

also interacts with constituents of MHC class I antigen pre-

sentation [102]. US10 binds free class I heavy chains and

delays their transport from the ER. While US10 shares some

biological features with US3, such as class I binding and ER

retention capabilities, US10 does not influence US2 or US11

function [102]. In addition, while US10 delays class I egress,

it does not block class I maturation or surface expression

[66]. US10 was most recently characterized to specifically

down-regulate HLA-G molecules during overexpression and

infection studies [103]. Interestingly, this downregulation

occurred in a manner similar to class I targeting by US2 and

US11. US10 caused the dislocation and proteasome-medi-

ated degradation of HLA-G, but not classical class I
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molecules. However, US10 utilizes a distinct pathway to

induce degradation of HLA-G, as it fails to associate with

dislocation components such as Derlin-1 and SeL1L [103].

These findings highlight the extent to which HCMV targets a

common set of cellular substrates.

TAP inhibition: US6

Unlike US2, US3, US10, and US11, the HCMV L protein

US6 affects antigen presentation by an entirely different

strategy. As opposed to interacting with free class I heavy

chains or fully assembled class I complexes, US6 inhibits

the translocation of cytosolic peptides by the TAP complex

(TAP1/2) [104]. US6 binds to the ER luminal side of TAP1

and causes a conformational change that prevents the

binding of ATP [105]. Residues 89–108 in the ER-luminal

domain of US6 are sufficient and necessary for this inhi-

bition [106–108]. This inhibition of TAP activity affects

not only expression of classical MHC class I alleles but

also the non-classical alleles HLA-C and HLA-G in fetal

cytotrophoblasts [72]. The activities of US6, in addition to

US2, US3, and US11, does not affect the expression of

UL18, a virally encoded MHC class I homolog supporting

its specificity for HLA molecules [109, 110]. The evolution

of a viral gene targeting a step of antigen presentation that

affects all class I molecules suggests the importance of

ceasing antigen presentation during an infection.

Downregulation of ERAP1 translation: miRNA US4-1

In addition to the immune evasion proteins expressed within

the US2-11 region, an HCMV-encoded miRNA, HCMV-

US4-1 (US4-1) plays a role in inhibition of a CTL response

[111]. This miRNA specifically targets a messenger RNA

that encodes for the ER-aminopeptidase ERAP1, which is

involved in trimming of TAP-translocated peptides in the ER

[112]. By down-regulating translation of the ERAP1 tran-

script, US4-1 inhibits the trimming of precursors of class

I-restricted peptides. In an in vitro CTL assay, US4-1-med-

iated downregulation of ERAP1 resulted in reduced CTL-

mediated killing of HCMV-infected dermal fibroblasts.

miR-US4 likely acts simultaneously with the immune eva-

sion US proteins, but unlike these immunogenic glycopro-

teins, viral miRNAs cannot be presented on MHC I

molecules and may thus offer an additional strategy of

immune evasion, particularly during latent infection.

MHC class I downregulation by tegument proteins:

UL82 (pp71) and UL83 (pp65)

Finally, two HCMV-encoded phosphoproteins UL82

(pp71) and UL83 (pp65) are implicated in MHC class I

downregulation [113]. pp71, the product of the UL82 gene,

is a 71-kDa phosphoprotein contained within the tegument

of the HCMV virion that exerts many roles throughout the

HCMV lifecycle, including MHC class I downregulation

during late stages of infection [21]. Ectopic UL82

expression in human glioblastoma cells causes a dose-

dependent decrease in the accumulation of cell surface

MHC class I complexes [114]. pp71 was found to delay

transport of MHC class I complexes from the ER or cis-

Golgi. Furthermore, in glioblastoma cells infected with an

immune evasion-attenuated HCMV strain, RV7186, RNAi-

mediated disruption of UL82 led to increased accumulation

of MHC class I complexes on the cell surface. The phos-

phoprotein pp65, encoded by the gene UL83, is a major

component of the HCMV tegument and has been implicated

in subverting both innate and adaptive immune responses.

Fibroblasts infected with RVAd65, a pp65-deletion mutant

of the HCMV strain AD169, are recognized by IE-specific

CTLs, while cells infected with wild-type AD169 escaped

lysis [113]. Serine phosphorylation of the IE protein by

pp65, through a putative kinase domain may prevent its

presentation on MHC I molecules. Fibroblasts transfected

with IE and a mutant pp65 incapable of phosphorylation

were unable to prevent IE presentation [64, 113]. A sub-

sequent study, however, has suggested that an intimate

interaction of pp65 with the polo-like kinase 1 (Plk1) may be

responsible for the observed kinase activity of pp65 [115].

pp65 likely has roles in evasion of non-MHC class

I-dependent immune events as well, including accumulation

and destruction of the MHC class II allele HLA-DR and

antagonism of signaling pathways that affect NF-jB and

IRF1 [116, 117].

Functional evaluation of HCMV-mediated modulation

of antigen presentation

Although the biochemical functions of HCMV-encoded

immune evasion molecules have been studied extensively,

their greater role in contributing to viral infection is less

well understood. Almost all herpes viruses encode one or

more gene products that manipulate antigen presentation

implying that altering the surface expression of MHC

molecules contributes to virus survival and persistence in

the host. HCMV is quite extreme in this regard by encoding

for at least eight factors that can alter presentation of

antigenic peptides (Table 1). However, the functional sig-

nificance of the HCMV viral evasins is not clear consid-

ering the numerous HCMV-specific T cells found in a

seropositive individual. A CD8? T-cell response should

only pose a threat to the virus once a humoral immune

response has been initiated. Therefore, CTL evasion may

only be beneficial in enabling HCMV to reach sites of

persistence after initial infection, or following a recurrent
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infection with a diverse HCMV strain in a host with pre-

existing immunity to HCMV. Interestingly, HCMV-spe-

cific CD8? T cells from HCMV-seropositive donors

revealed a decrease in epitope-restricted cell lysis in a

‘‘immune evasin’’-dependent manner [118]. Studies in

Rhesus monkeys suggest the function of immune evasin

molecules during a virus ‘‘super infection’’ [119]. Viral

MHC class I interference was found to be dispensable for

primary infection of monkeys with RhCMV, while suc-

cessful reinfection of monkeys was dependent on down-

regulation of MHC class I molecules mediated by the

RhUS2-11 region. Furthermore, animal studies using wild-

type mouse CMV and variant viruses lacking the immune

evasin genes demonstrated that the evasin molecules con-

tribute to the level of viral load in tissues [120]. Collec-

tively, these studies support the paradigm that viral

immune evasins likely narrow the ‘‘window of immune

detection’’; thus providing CMV the time to generate viral

loads required for effective dissemination and transmission

of the virus.

The lack of surface class I molecules during a virus

infection makes the infected cell prone to natural killer

(NK) cell lysis. Not surprisingly, HCMV employs various

mechanisms to evade NK cell lysis, an important arm of

the innate immune system for viral clearance [68]. HCMV

has also evolved the capability to concomitantly express

MHC class I homologs in order to escape detection by NK

cells [121]. HCMV glycoproteins can directly bind and

sequester NK-activating ligands that are induced by

infection [122–124]. Additionally, selective, allele-specific

degradation of MHC class I imparts protection against both

CTL-mediated and NK-mediated cell lysis [125–127]. For

more information on viral evasion of NK cell lysis, consult

the following reviews: [60, 128–130]. Considering the

large repertoire of mechanisms that HCMV employs to

suppress the innate immune response and its well-charac-

terized ability to block antigen presentation, it is possible to

posit a temporally coordinated model of systemic HCMV

infection that demonstrates the evolutionary advantage for

innate immune suppression versus humoral immune

evasion.

Immune evasion during latency, an open frontier

HCMV commits a large portion of its genome to modu-

lating recognition by the immune system, most notably

through a blockade of MHC class I and II antigen pre-

sentation and NK cell evasion. This control of immune

sensing provides a transient advantage to the virus to allow

for replication of the viral genome, dissemination, and

persistence within the host. However, during a latent

infection, HCMV must utilize a distinct repertoire of

immune evasion strategies because there is very little viral

protein production [3] contributing to the antigenic pool of

peptides and the lack of expression of proteins that mod-

ulate antigen presentation. Studies have shed light on how

HCMV is able to exist in a quiescent state despite the

presence of a strong humoral immune response [28]. Of

particular interest is the UL111.5A region of the genome

that encodes for a viral homolog of the potent immuno-

suppressor interleukin-10 (cmvIL-10). The cmvIL-10 pro-

tein was identified in mononuclear cells from healthy bone

marrow and mobilized peripheral blood allograft donors,

suggesting its possible contribution to immune evasion

[131–135]. Also, surface MHC class II levels were reduced

on latently infected cells in a US2-US11 independent

manner utilizing a granulocyte–macrophage progenitor

model system, likely due to cmvIL-10 [132, 136]. Reduced

levels of MHC class II and an inhibition of allogeneic and

autologous CD4? T-cell responses were also observed in

HCMV-infected CD34? progenitors cells [137].

Yet another strategy of HCMV immune evasion may

be to restrict the differentiation of CD34? progenitor cells

to dendritic cells (DCs), which are potent APCs. In vitro

infection of monocytes inhibited the differentiation of

these cells into DCs [138], thereby limiting their ability to

trigger an immune response. Interestingly, direct infection

of monocyte-derived DCs exhibited reduced abilities for

endocytosis, phagocytosis, and migration in response to

RANTES, MIP-1a, and MIP-3b [139]. These virus-

infected cells also had a reduced ability to induce pro-

liferative responses in alloreactive T cells. More recent

studies have confirmed that DCs derived from HCMV-

infected monocytes have altered phenotypes and func-

tional defects and that these effects are the result of a

blockade in GM-CSF signaling [140]. DCs generated

from PBMCs of patients with HCMV disease were found

to be impaired in their ability to stimulate allogeneic

lymphocytes [141]. Surprisingly, in another report,

HCMV was found to activate CD11c ? DCs and plas-

macytoid DCs, and infected CD11c ? DCs retained full

capacity to stimulate T cells [142]. A recent study dem-

onstrated that extracellular signal-regulated kinase-mito-

gen-activated protein kinase (ERK-MAPK) signaling

induced by IL-6 in interstitial-like DCs can drive reacti-

vation of HCMV infection in an ex vivo latency model

[143]. For a full review of CMV-induced modulation of

DCs, see [139]. Taken together, the current body of work

available regarding HCMV infection of DCs may indicate

that HCMV further modulates immune recognition in

these potent antigen presenting cells and that infection of

monocytes establishes an ideal reservoir for reactivation

from latency.
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Concluding remarks

The mechanisms of immune evasion by HCMV bring

about fundamental questions regarding viral evasion in the

face of host immunity. For example, how are immune

evasion mechanisms coordinated? Could the temporal

expression of these mechanisms reveal information about

the life cycle of the virus? Can the employment of some

mechanisms over others, or an interruption in the cascade

of viral gene expression, determine the nature of an HCMV

infection? As mentioned, HCMV is capable of existing in a

latent form for the lifetime of the human host, so how are

immune evasion strategies modified to adjust for different

states of infection and how are they involved in reactiva-

tion of an HCMV infection? Analogously, how is HCMV

able to coordinate immune evasion functions in order to

reactivate in the face of a fully primed immune system?

Links between the differentiation state of infected cells and

viral reactivation have already been identified, so there is

clearly a sophisticated mechanism by which HCMV senses

its cellular environment to control its own propagation. The

analysis of HCMV latency is likely to be an area of

increased focus in the near future. Knowledge of the

molecular mechanisms of HCMV propagation and immune

evasion will be the key to studies of pathogenesis and the

virus life cycle within the human host.
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