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Neutrophil apoptosis and the resolution of infection
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Abstract Polymorphonuclear leukocytes (PMNs) are the most abundant white cell in
humans and an essential component of the innate immune system. PMNs are typically the
Wrst type of leukocyte recruited to sites of infection or areas of inXammation. Ingestion of
microorganisms triggers production of reactive oxygen species and fusion of cytoplasmic
granules with forming phagosomes, leading to eVective killing of ingested microbes.
Phagocytosis of bacteria typically accelerates neutrophil apoptosis, which ultimately pro-
motes the resolution of infection. However, some bacterial pathogens alter PMN apoptosis
to survive and thereby cause disease. Herein, we review PMN apoptosis and the ability of
microorganisms to alter this important process.
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Introduction

Polymorphonuclear leukocytes (PMNs or neutrophils) are the most abundant leukocyte in
humans and typically the Wrst type of white cell recruited to sites of infection. Neutrophils
are the primary cellular defense against bacterial and fungal infections. PMNs ingest
microbes by a process known as phagocytosis, and the ingested microorganisms are
destroyed by the combination of reactive oxygen species (ROS) and cytotoxic components
of granules [1–4] (Fig. 1). This task is facilitated by the numerous receptors enriched on the
cell surface and proinXammatory stimuli.

On the other hand, PMNs contain or produce many cytotoxic molecules that can cause
signiWcant damage to host tissues/organs if the inXammatory response is not tightly regulated.
Resolution of the inXammatory response is a complex process and includes production of
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host-derived anti-inXammatory mediators and apoptosis of PMNs. SpeciWcally, PMN
apoptosis and removal of apoptotic PMNs by macrophages is a mechanism to clear eVete
neutrophils and ultimately facilitate the resolution of inXammation.

This review highlights two areas of neutrophil biology related to immune system
homeostasis and the innate host defense, namely, PMN apoptosis and the ability of
microbes to manipulate this process, and the resolution of the acute inXammatory response,
including clearance of apoptotic cells by macrophages.

Granulocytes, granulopoiesis, and the development of myeloid cells

Granulocytes (basophils, eosinophils, and neutrophils) can be diVerentiated physically from
lymphocytes and other circulating leukocytes based upon multiple phenotypes, such as the
presence of characteristic granules in the cytoplasm, a multilobed nucleus and speciWc cell sur-
face markers (Fig. 2, top panels). Development of granulocytes involves transcription factors
distinct from those that facilitate lymphocyte maturation [5–9]. Many of these transcription
factors are required for granule protein maturation and ligands essential for PMN activation, as
diVerent granules appear during separate stages of PMN development ([9], reviewed in [1,
10]). Secondary or speciWc granules predominate in mature neutrophils, whereas the relative
number of azurophilic or primary granules decreases during granulocyte maturation [11].

Circulating leukocytes and other cells of the immune system develop from pluripotent
stem cells located in bone marrow [12]. Granulocytes diVerentiation proceeds through a

Fig. 1 Neutrophil phagocytosis and microbicidal activity. Following phagocytosis, microbes are destroyed
by ROS and antimicrobial proteins released from granules. See text for details. FcR, Fc receptor; CR, com-
plement receptor; MPO, myeloperoxidase
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concerted series of steps that include granule formation and ultimately exit of mature
PMNs from bone marrow to peripheral blood [1, 9–11, 13–18]. This maturation and diVer-
entiation process takes »6.5 days and is called granulopoiesis, i.e., the formation of granu-
locytes [11]. Although PMNs have a relatively short life span, the greatest percentage of
hematopoiesis is committed to the production of neutrophils––nearly 60% of all leukocytes
in bone marrow are granulocyte precursors. Mature PMNs are terminally diVerentiated
cells and circulate in the bloodstream for »10–24 h before migrating into tissues [15–18].
Neutrophils may function for an additional 1–2 days in tissues before undergoing apoptosis
[11, 17] and are then cleared by macrophages [19, 20]. Remarkably, PMN turnover is on
the order of 1011 cells per day in the average adult human [15].

Recruitment of neutrophils from the bloodstream

Neutrophil recruitment, priming, and extravasation

Neutrophils survey venules and lymphatic organs for signs of invading microorganisms
and/or host tissue injury and inXammation. These “signs” are often chemoattractants, host- or

Fig. 2 Neutrophil apoptosis. Human neutrophils isolated from peripheral blood have multilobed nuclei when
fresh (0 h), whereas those cultured for 24 h in vitro have condensed nuclei of apoptotic cells (24 h). Left pan-
els, transmission electron micrographs. Right panels, brightWeld micrographs of PMNs strained with a mod-
iWed Wright-Giemsa. Nucleus, n. Transmission electron microscopy was performed by David W. Dorward at
Rocky Mountain Laboratories, NIAID
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microorganism-derived molecules recognized by receptors on the cell surface. Chemoat-
tractants recruit PMNs to sites of infection or areas of tissue damage. Most chemoattrac-
tants, such as IL-8, lipopolysaccharide (LPS), and N-formylated peptides (e.g., fMLP), also
prime neutrophils for enhanced function (see Table 1 in [21]).

Neutrophil priming was originally deWned as the ability of a primary agonist such as
LPS to enhance superoxide production by a secondary stimulus [22]. Secretory vesicles,
gelatinase-containing granules, and a limited population of speciWc granules fuse with the
plasma membrane during priming [23], thereby enriching the cell surface with receptors
important for host defense and the inXammatory response. Primed cells can be diVerenti-
ated from unprimed cells in part by distinct cell morphology, e.g., cell size and/or granular-
ity by Xow cytometry, or increased expression of surface receptors such as CD11b [24].
Some priming agents are agonists or ligands of TLRs, and in vitro and in vivo experiments
have shown that TLRs are critical for PMN priming as well as pathogen recognition [25].

Neutrophils enter sites of infection by exiting peripheral circulation through the endo-
thelial wall in a process called extravasation. This process is initiated by selectins, a C-type
lectin family of glycoproteins that are expressed on activated endothelial cells (E- and
P-selectin), platelets (P-selectin), and primed/activated PMNs (L-selectin, CD62). As part
of the inXammatory response, E- and P-selectin become up-regulated on endothelial cells
and interact with L-selectin expressed on the surface of neutrophils. This initial interaction,
called “tethering,” facilitates subsequent rolling of PMNs along the surface of the endothelium.
Rolling is followed by Wrm adhesion promoted by CD11b/CD18 [26] and CD54 [27], and
transmigration is mediated in part by CD31 [28], CD54 [27], CD44 [29], and CD47 [30].
Following extravasation, there are several possible fates for PMNs related to apoptosis and
turnover, and these are discussed in detail below.

PMN microbicidal activity

PMNs destroy pathogens through a series of well-coordinated steps that result in the pro-
duction of ROS and enrichment of phagosomes with cytotoxic molecules from cytoplasmic
granules (called degranulation) (Fig. 1). ROS are derived from superoxide produced by a
multisubunit enzyme complex called NADPH oxidase (reviewed in [3]). The phagocyte
NADPH oxidase is composed of at least 7 proteins that reside in cytosolic and membrane
compartments in resting PMNs. During cell activation, cytosolic oxidase components
translocate to the phagosome membrane and associate with the membrane component,
Xavocytochrome b558, to form the assembled NADPH oxidase. NADPH oxidase assembly
and activation is regulated by multiple signaling events, including phosphorylation of one
of the cytosolic proteins, p47phox, and several SH3-domain interactions [3, 31]. NADPH
oxidase catalyzes the formation of superoxide (O2

¡), which dismutates rapidly to H2O2,
although O2

¡ and H2O2 are weakly microbicidal [2].
As the phagosome forms/matures, granule components such as myeloperoxidase (MPO)

accumulate in the phagosome [11]. MPO catalyzes a reaction with H2O2 and chloride to
form hypochlorous acid (HOCl) and other secondarily derived ROS such as OH·and singlet
oxygen [32]. Neutrophil cytoplasts––neutrophils lacking nuclei and depleted of cytoplas-
mic granules––retain a respiratory burst, but lack MPO. Odell and Segal reported that
cytoplasts phagocytose Staphylococcus aureus, but bacteria are not killed unless they are
coated with MPO [33]. MPO activity is inhibited by azide, and to a lesser extent cyanide,
and this inhibition decreases killing of bacteria by neutrophils [34].
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Landmark work by Rosen and KlebanoV [35] demonstrated that the key antimicrobial
components of human PMNs, NADPH oxidase and the MPO-halide system, serve as
redundant mechanisms to kill ingested microbes. Consistent with this notion, MPO deW-
ciency in humans does not necessarily correlate with morbidity from infections (reviewed
in [4]). PMNs from MPO-deWcient individuals retain microbicidal activity against several
bacterial pathogens, although at a lower rate than PMNs from normal donors [4]. Collec-
tively, these Wndings suggest that a combination of mechanisms is necessary for optimal
killing of microbes.

In addition to the intracellular proteins that degrade the ingested microbes, the surface
of PMNs is decorated with multiple receptors that bind to foreign particles, including
those that bind pathogen associated molecular patterns (PAMPs). Many pattern recogni-
tion receptors (PRRs) do not promote phagocytosis directly, although they do prime
phagocytes for enhanced uptake/activation or function as co-receptors. For example,
TLRs recognize numerous PAMPs [36], but there is little data available to show that
TLRs promote phagocytosis directly (reviewed in [37]). By comparison, neutrophil
dectin-1 [38], a C-type lectin PRR, binds �-glucan residues on fungi and this interaction
triggers phagocytosis [39]. Phagocytosis of unopsonized �-glucan particles is morpholog-
ically diVerent than phagocytosis of complement-opsonized zymosan, suggesting that signal
transduction following these receptor-ligand interactions is distinct [39]. Importantly,
dectin-1 mediated phagocytosis elicits ROS production and degranulation, and ultimately
killing of fungi [39].

PMN apoptosis and the resolution of the acute inXammatory response

Normal turnover of cells, regardless of type or tissue location, is governed by apoptosis,
and defects in apoptosis lead to profound and devastating conditions ranging from cancer to
autoimmune diseases. Neutrophils undergo constitutive or spontaneous apoptosis as a
mechanism to maintain immune system homeostasis [19]. Importantly, PMN apoptosis is
accompanied by a general decrease in cell function and proinXammatory capacity, which is
key to non-inXammatory removal of eVete cells [40, 41]. Neutrophil apoptosis can be initi-
ated by extrinsic pathway stimuli (extracellular, e.g., tumor necrosis factor-alpha (TNF�) or
FAS ligand) or intrinsic pathway stimuli (intracellular, e.g., ROS and/or that mediated by
mitochondria). Neutrophil apoptosis is a non-inXammatory process characterized by loss of
cytoplasmic granules, rounding of the nucleus, and condensation of nuclear heterochroma-
tin [19, 20] (Fig. 2, lower panels). PMNs also undergo apoptosis after phagocytosis, a pro-
cess also known as phagocytosis-induced cell death (PICD, see below). Apoptotic
neutrophils are subsequently ingested by macrophages, providing the means to resolve the
inXammatory response without releasing cytotoxic molecules that would otherwise damage
host tissues. Phagocytosis of apoptotic PMNs was Wrst observed by Elie MetchnikoV in the
19th century [42].

Spontaneous (constitutive) PMN apoptosis

PMN apoptosis can be induced through multiple mechanisms (Fig. 3a, b). Spontaneous
neutrophil apoptosis is an intrinsic process, meaning that the signal to initiate apoptosis
originates from within the cell (Fig. 3a). Many proteins and/or molecules are known to reg-
ulate constitutive PMN apoptosis and only a few examples are provided here. For example,
MCL1 is a key BCL2-family protein located in the nucleus and cytoplasm of PMNs [43–45].
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As senescent neutrophils undergo apoptosis, MCL1 levels decline rapidly, presumably
degraded by the proteasome (and there is a concurrent decrease in MCL1 mRNA), suggest-
ing neutrophil survival is regulated by MCL1 expression [46].

Src homology 2 domain-containing inositol 5�-phosphatase (SHIP-1) is an intracellular
protein critical for signal transduction during PMN apoptosis [47]. The molecule is a nega-
tive regulator of immune receptor and cytokine and growth factor receptor signaling [48].
SHIP-1 is recruited to the plasma membrane of myeloid cells after ligation of CD18 [49],
and this initiates an anti-apoptotic signaling cascade that requires the Src kinase Lyn and

Fig. 3 Mechanisms of PMN apoptosis. (a) Intrinsic pathways of apoptosis result from intracellular signals,
while extrinsic pathways (b) originate from extracellular signals
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the anti-apoptotic protein, Akt [48]. Ship-1¡/¡ mice have increased numbers of myeloid
cells and form lung granulomas after infection [50]. It was proposed that the granulomas
fail to resolve because Ship-1¡/¡ cells display enhanced survival and proliferation [50].

BCL2A1 is another protein important for PMN survival. Like MCL1, BCL2A1 is a
member of the BCL2 family of proteins, and BCL2A1 mRNA is constitutively expressed in
human neutrophils [51]. PMN BCL2A1 is up-regulated by G-CSF or LPS, agonists known
to promote neutrophil survival [51]. Promyelocytic HL-60 cells have increased BCL2A1
mRNA after neutrophilic diVerentiation with all-trans retinoic acid [51], suggesting that the
protein has an important role in mature neutrophils.

BCL2-associated X protein (BAX) interacts with the mitochondria, an intracellular
organelle known to regulate PMN survival [52, 53]. In contrast to BCL2A1, BAX is a
BCL2-family member that promotes neutrophil apoptosis. Upon translocation to the mito-
chondria, BAX is cleaved by calpain-1 to an 18-kDa fragment unable to interact with
BCL2 family members, thereby promoting apoptosis [54, 55]. Inhibition of BAX cleavage
in vivo leads to increased and prolonged inXammation, indicating that the protein is
required for the resolution of acute inXammation [52]. Using BAX antisense gene silenc-
ing, Dibbert et al. showed that PMN apoptosis is delayed in several human inXammatory
diseases and there is an associated decrease in BAX protein expression [56].

Soluble extracellular factors also inXuence spontaneous PMN apoptosis [57]. For example,
macrophage migration inhibitory factor is a proinXammatory cytokine that delays cleavage
of BAX and ultimately neutrophil apoptosis [58]. PMNs stimulated with G-CSF or GM-
CSF have decreased expression of BAX, suggesting the anti-apoptotic eVect of these
cytokines is in part related to inhibition of BAX. GM-CSF and G-CSF also preserve the
chemotaxis and phagocytosis capacity of PMNs aged in vitro [40, 59], indicating inhibition
of apoptosis is tied to the preservation of PMN function.

In addition to BAX activity, mitochondria regulate their transmembrane potential,
which is critical for cell survival. As depicted in Fig. 3a, ROS and oxidative stress can lead
to PMN apoptosis through disruption of mitochondria transmembrane potential [60–65].
Neutrophil mitochondria contain calpain-1 and its release can activate pro-apoptotic factors
or degrade anti-apoptotic proteins [66]. Although human neutrophils express low levels of
cytochrome c, it plays an important role in apoptosis [65]. As cytochrome c is released
from the mitochondria, it associates with apoptotic protease-activating factor 1 (APAF-1)
and initiates apoptosis [53].

Several distal eVector proteins participate in apoptosis. Caspase 3, caspase 8, and caspase 9
trigger proteolytic cascades that result in the apoptotic death of human neutrophils [67]
(Fig. 3b). The importance of neutrophil caspases in inXammation is illustrated in a recent
study by Tanejo et al. [68], in which it was reported that individuals with bacterial sepsis have
signiWcant reduction of caspase-3 and caspase-9 activities and decreased neutrophil apoptosis.

These are only a few speciWc examples of the molecules known to regulate spontaneous
neutrophil apoptosis and overlap exists with extrinsic pathway stimuli as described below.

FAS/FAS ligand-mediated apoptosis

In contrast to spontaneous PMN apoptosis, FAS-mediated, TNF�-mediated and TRAIL-
mediated apoptosis proceed by an extrinsic pathway, as an extracellular signal initiates
apoptosis (Fig. 3b). Extrinsic pathway signals are usually soluble protein factors that bind
to membrane-bound receptors on the cell surface and trigger apoptosis. FAS (CD95) is the
nidus of the death-inducing signaling complex (DISC) and is expressed on the surface of
neutrophils as well as on virtually all other cells in humans [69]. Neutrophils also express
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FAS ligand (FASL, CD95L) [70], and FASL–FAS interaction initiates PMN apoptosis in a
caspase-dependent manner. Because PMNs express FAS and soluble FASL, PMN apopto-
sis is triggered through autocrine and paracrine pathways. FAS-mediated PMN apoptosis
can be suppressed by GM-CSF, G-CSF, interferon-gamma (IFN�), TNF�, and the tyrosine
kinase inhibitors herbimycin A and genistein [70], thus highlighting the complexity of
signaling pathways involved in regulating neutrophil turnover.

FAS is a transmembrane protein containing a FASL-binding extracellular domain and
FAS-associated death domain (FADD) on its intracellular region. Interaction of FASL with
FAS leads to clustering of FADDs on the cytoplasmic side of the plasma membrane, which,
in turn, leads to caspase activation and apoptosis. As with many other signaling receptor
complexes, e.g., T- and B-cell receptors, current evidence indicates that FAS accumulates
in cholesterol-rich membrane domains called lipid rafts and that clustering of these receptors
leads to caspase-8 activation and, ultimately, cell death. Macrophages also secrete FASL in
response to phagocytosis [71]. Secretion of FASL by macrophages induces leukocyte
apoptosis in a paracrine manner and assists further with the resolution of inXammation
[71]. For example, Jimenez et al. studied patients with systemic inXammatory response
syndrome, and PMNs from these patients have decreased FAS-mediated apoptosis and
accompanying tissue damage following bacterial infections, presumably from the accumu-
lation of activated neutrophils that release tissue degrading enzymes [72].

TNF� receptor (TNFR)-mediated apoptosis

The TNFR is a transmembrane protein containing an extracellular TNF� binding domain and
a TNFR-associated death domain (TRADD) in the cytoplasmic region of the protein [73]
(Fig. 3b). Neutrophils express two TNFRs, TNFRSF1A (55-R, CD120a, or TNFRI) and
TNFSFR1B (75-R, CD120b, or TNFRII), and each has a slightly diVerent role in PMN apop-
tosis. Gon et al. showed that TNFRI is required for TNF�-mediated PMN apoptosis and its
ability to promote apoptosis is enhanced by TNFRII [74]. Blocking TNFRI but not TNFRII
with speciWc antibodies inhibits neutrophil apoptosis [74]. Additional work has shown that
TNFRI is dominant using TNFR-selective mutants [75]. As with FADDs, TRADDs cluster
in lipid rafts during TNFR–TNF� binding. This clustering of signaling molecules leads to the
recruitment of adaptor molecules and activation of transcription factors. Although similar to
FAS/FASL-mediated apoptosis in many ways, one major diVerence is that TNF� receptor-
mediated apoptosis does not depend solely on caspase activation [76].

TNF� can elicit inXammatory or anti-inXammatory eVects depending on the type of cell
with which it interacts. Notably, TNF� has been shown to have both pro-apoptotic and anti-
apoptotic eVects toward neutrophils. Van den Berg et al. showed that this bi-polar eVect is
concentration dependent [77]. At low concentrations (·0.1 ng/ml), TNF� delays PMN
apoptosis and elicits production of proinXammatory cytokines, whereas at higher concen-
trations TNF� initiates apoptosis [77]. Consistent with these observations, high concentra-
tions of TNF� (10–100 ng/ml) override the ability of IFN� and GM-CSF to delay apoptosis
[77]. Moreover, the ability of TNF� to induce neutrophil apoptosis was linked to ROS pro-
duction, since PMNs from patients with chronic granulomatous disease (CGD, see below)
and PMN cytoplasts fail to undergo apoptosis in the presence of high concentrations of
TNF� [76, 77]. Individuals with TNFR-associated periodic syndrome (TRAPS) have a
defect in the TNFR and, therefore, diminished TNF�-induced PMN apoptosis [78]. Patients
with TRAPS experience recurrent fever attacks lasting >1 week that is associated with
abdominal pain, severe arthromyalgias, rash, and periorbital edema. However, TRAPS has
not been associated with increased infection [78].
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TNF-related apoptosis-inducing ligand (TRAIL)

Our understanding of TRAIL-induced PMN apoptosis is relatively recent compared to that
of FAS- or TNF-receptor-mediated apoptosis. Five TRAIL receptors (TRAIL-R1, TRAIL-
R2, TRAIL-R3, TRAIL-R4, and TRAIL-R5) have been identiWed and PMNs express
TRAIL-R2 and TRAIL-R3 constitutively [79, 80]. Of the Wve TRAIL receptors, only
TRAIL-R1 and TRAIL-R2 have the ability to induce pro-apoptotic, caspase-dependent
signaling (Fig. 3b), whereas TRAIL-R3 and TRAIL-R4 are decoy receptors that lack the
ability to induce apoptosis [81]. TRAIL-R3 and TRAIL-R4 do not have intact death
domains and these receptors have been proposed to serve as “decoys” that inhibit apoptosis
either by sequestering TRAIL or by complexing with TRAIL-R1 or TRAIL-R2 upon bind-
ing to the ligand. Either mechanism would inhibit apoptosis, but there is paucity of data to
provide conclusive support to this notion. TRAIL-induced apoptosis appears important for
senescent PMNs that preferentially home to bone marrow after circulating in peripheral
blood [82]. Trail¡/¡ mice have an enhanced susceptibility to autoimmune diseases [83],
and Trail blocked experimentally in animal models exacerbates inXammation caused by
type 1 diabetes [84] and autoimmune encephalomyelitis [85]. PMNs also express and
secrete TRAIL, which has been implicated in host defense against virus-infected cells and
tumor cells [86]. IFN� up-regulates TRAIL expression and IFN�-activated PMNs store
TRAIL in an intracellular pool that is mobilized following exposure to proinXammatory
mediators [79, 87, 88]. TRAIL expressed and secreted by PMNs acts in an autocrine
manner to induce apoptosis [87].

Down-regulation of proinXammatory capacity

PMNs produce numerous cytokines and chemokines following phagocytosis, including
TNF� and IL-8, which contribute to the inXammatory response [89–91]. Production of
these molecules is regulated in part at the level of gene expression [92, 93]. Microarray-
based studies have shown that phagocytosis initially up-regulates neutrophil transcripts
encoding proteins that play an important role in the acute inXammatory response, such as
IL-1�, IL-1�, IL-1�, IL-1RN, IL-8, IL-10, IL-12�, IL-15, TNF�, vascular endothelial
growth factor (VEGF), oncostatin M (OSM), IL-6, GRO�, and GRO� [21, 94–97]. Taken
together, these processes are critical for defense against invading microorganisms. How-
ever, once phagocytosis is complete and microbes are destroyed, these PMN functions are
down-regulated coincident with the induction of apoptosis [95, 98–102]. For example, key
proinXammatory or signal transduction molecules, including CXCR1 and CXCR2, are
down-regulated during the initial stages of apoptosis [94]. Walcheck et al. have shown
recently that phagocytosis-induced neutrophil apoptosis is accompanied by shedding of
L-selectin and concomitant increased surface expression of ADAM17, a metalloprotease
that likely plays an important role in the down-regulation of neutrophil function [103, 104].
In general, most primary PMN functions, including chemotaxis, phagocytosis, superoxide
production, and degranulation, decrease signiWcantly with apoptosis [40, 41].

IL-6 receptor (IL-6R) transsignaling

IL-6 signals through a receptor system composed of the IL-6R, an 80 kDa transmembrane
protein that binds the signaling molecule gp130. Although the expression of IL-6R is
restricted to a small subset of cells, gp130 is expressed ubiquitously. IL-6 can also elicit
responses through a pathway involving soluble IL-6R (sIL-6R) and this phenomenon is
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known as IL-6R transsignaling. sIL-6R is generated by either shedding from the cell
surface by proteolytic cleavage or possibly alternative splicing of IL-6R mRNA [105, 106].
Chalaris et al. demonstrated that apoptosis is accompanied by the release of IL-6R from
cells, a phenomenon mediated by ADAM17 [103, 104]. sIL-6R recruits mononuclear
phagocytes to the site of infection, which are then either directly involved in the removal of
apoptotic PMNs or diVerentiate into macrophages that carry out this task [107]. This
process links the acute inXammatory stage of disease and resolution of the inXammatory
response.

Resolvins and lipoxins

Endogenous mediators termed resolvins and protectins actively participate in the dampening
of host responses to orchestrate resolution of inXammation. These endogenous mediators
lend more evidence that the resolution of inXammation is an actively regulated program
rather than a passive termination of the immune response. After the initial inXammatory
response, these molecules promote recruitment of macrophages to sites of inXammation
and initiate the resolution of the acute inXammatory response [108]. One of these mediators
is known as lipoxin A4 (LXA4), which is generated from arachidonic acid via the lipoxy-
genase pathways. Together with the aspirin-triggered 15-epi-LXA4 (ATL), these mole-
cules are among the Wrst to down-regulate PMN inWltration and begin the “slow down”
during the course of inXammation [109–111]. For example, lipoxins drive the resolution of
inXammation by stimulating nonphlogistic uptake of apoptotic PMNs by Wxed-tissue mac-
rophages [112].

Removal of apoptotic PMNs by macrophages

As with removal of undesirable, autoreactive T-cells in the thymus, apoptosis is a mecha-
nism to clear eVete PMNs. Apoptotic cells maintain membrane integrity for a Wxed period
of time and need to be cleared quickly to prevent secondary necrosis and the release of
cytotoxic molecules that would otherwise cause inXammation and/or damage to host
tissues. Clearance of apoptotic neutrophils has been studied mainly with human monocyte-
derived macrophages [113] and mouse alveolar macrophages [114]. Although clearance of
apoptotic cells is not completely understood, several macrophage receptors have been
implicated in this process (Fig. 4). These molecules include the phosphatidylserine (PS)
receptor [114, 115], complement receptors [116], scavenger receptors and lectins [117], the
�v�3/CD36/thrombospondin recognition system [118, 119], CD14 [119], and CD44 [121–
123]. The redundancy of removal mechanisms suggests that clearance of apoptotic neutro-
phils is a critical process to preserve immune system homeostasis.

Phosphatidylserine receptor (PSR)

Transposition of PS from the inner leaXet of the plasma membrane to the outer leaXet is a
traditional hallmark of cells undergoing apoptosis. Recently, Park et al. have shown that
stabilin-2 serves as a novel PSR and that blocking stabilin-2 on macrophages inhibits
phagocytosis of apoptotic cells and causes release of proinXammatory cytokines [124].
Miyanishi et al. identiWed Tim4 as a PSR through the use of an antibody library and
showed that blocking Tim4 in vivo resulted in an accumulation of apoptotic cells in the
thymus and the development of autoantibodies [125]. The transcript encoding the Psr is
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expressed in several tissues in mice [126]. Human and mouse macrophages express the Psr
and it is required for clearance of apoptotic cells in vitro and in vivo [126–128]. Conse-
quently, mice genetically deWcient in the gene encoding Psr have accumulation of apoptotic
cells in the lung and brain during embryogenesis and develop autoimmune diseases [126, 129].
It is possible that the generation of autoimmune diseases in these models results from the
pool of apoptotic cells that releases autoantigens over time.

Complement receptors

The human complement cascade can be activated by antibodies (classical pathway) or by
oligosaccharide antigens on microbes or apoptotic cells (lectin and alternative pathways)
(reviewed in [130]). Each of the complement cascades is a sequential, proteolytic cascade
that results in opsonization of targets with C3b(i) and/or lysis of opsonized cell by the
membrane attack complex (MAC). Complement proteins, speciWcally C3b and its break-
down products, bind to apoptotic cells, possibly through the exposure of PS [116], and
altered lipid and carbohydrate moieties. This process facilitates removal of apoptotic cells
from tissues (reviewed in [131]). The majority of complement receptor phagocytosis is
mediated through one of the four receptors that bind to complement component C3; CR1
(CD35), CR2 (CD21), CR3 (CD11b/CD18), and CR4 (CD11c/CD18). Macrophages
express CR3 and CR4 as well as the C1q receptor, which binds to the Wrst component of the
classical complement pathway. The importance of C3 and C1q in apoptotic cell clearance

Fig. 4 Receptors on macrophages that bind antigens on apoptotic cells. Apoptotic neutrophils are recognized
by speciWc receptors present on mononuclear phagocytes. See text for details
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has been shown in mice with targeted deletion of the genes encoding these receptors [129,
132]. Grevnik et al. reported that although systemic lupus erythematosus patients have
reduced total complement hemolytic activity in their sera, complement-mediated phagocy-
tosis of apoptotic cells remained unaVected [133]. This observation can be explained by
diVerential depletion of speciWc complement components in the patients, i.e., reduced
levels of C9 and normal levels C3.

Vitronectin (�v�3)/CD36/thrombospondin recognition system

Vitronectin (�v�3 integrin), CD36, and thrombospondin are believed to function in a com-
plex on macrophages and promote binding and uptake of apoptotic cells. Cooperation
among these three antigens occurs during recognition of apoptotic PMNs by human mono-
cyte-derived macrophages [118] and murine bone marrow-derived macrophages [113].
Thrombospondin functions somewhat like C3b in that thrombospondin binds to an
unknown ligand on apoptotic cells, which then is recognized by the CD36/vitronectin com-
plex expressed on macrophages. CD36 is an 88 kDa multifunctional glycoprotein, a B-type
scavenger receptor, expressed by several cell types including monocytes, endothelial cells,
epithelial cells, and several tumor cell lines [134]. In addition to thrombospondin, oxidized
PS has recently been shown to be a ligand for CD36 [135]. Macrophage CD36, along with
�v�3 integrin, is important for the removal of apoptotic cells during the resolution of viral
infections [119]. The domain on CD36 that is critical for the removal of apoptotic cells has
been localized to amino acids 155–183 [136].

CD44

CD44 is a »90 kDa surface protein that binds to hyaluronic acid. Ligation of CD44 gener-
ates intracellular signals that speciWcally augment clearance of apoptotic PMNs [121, 122].
For example, blocking CD44 with anti-CD44 Fab’ antibodies decreases macrophage-medi-
ated phagocytosis of apoptotic bodies [121]. Furthermore, CD44-deWcient mice have
reduced capacity to clear apoptotic PMNs post-inXammation [137].

CD14

CD14 is a 53–55 kDa protein expressed on monocytes, on macrophages, and at relatively
low levels on granulocytes. Although CD14 is a co-receptor for LPS/LPS-binding protein
[138], recent evidence indicates CD14 also binds intercellular adhesion molecule-3
(ICAM-3) on leukocytes [139]. CD14 can be expressed in soluble form (sCD14) and may
bind apoptotic cells and subsequently react with a sCD14 receptor on phagocytes [140].
Little is known about the role of CD14 in the removal of apoptotic PMNs; however, there is
good evidence that CD14 is crucial for the removal of apoptotic lymphocytes [141, 142].

Scavenger receptors and lectins

In addition to the Xipping of PS from the inner leaXet to the outer leaXet of the plasma
membrane, sugars and oxidized lipids that are exposed on the surface of apoptotic cells are
modiWed and recognized as “non-self” by macrophages. These modiWcations are recog-
nized by scavenger receptors and lectins expressed on the surface of macrophages and
Wbroblasts [143].
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Non-inXammatory removal of apoptotic PMNs

Neutrophil apoptosis and the removal of apoptotic neutrophils is a nonphlogistic process.
Phagocytosis of apoptotic cells by macrophages, monocytes, or dendritic cells causes these
cell types to produce anti-inXammatory cytokines [144, 145]. For example, macrophages
exposed to apoptotic cells secrete TGF-�, which suppresses LPS-mediated release of
inXammatory cytokines by infected cells [146]. Macrophages also secrete factors that con-
tribute to PMN apoptosis (e.g., soluble FASL [71]) and increase expression of anti-inXam-
matory factors [147]. For example, in the airway (bronchi and lungs), apoptotic PMNs are
ingested by alveolar macrophages without release of inXammatory mediators (reviewed in
[148]). Moreover, engagement of apoptotic cells by CD36 on macrophages inhibits produc-
tion of proinXammatory cytokines TNF�, IL-1�, and IL-12, but increases secretion of TGF-
� and IL-10, both anti-inXammatory cytokines [149].

In addition to the autologous signals that contribute to the anti-inXammatory process, ste-
roids––speciWcally glucocorticoids––promote a non-inXammatory environment during
phagocytosis of apoptotic cells. Human and murine macrophages exposed to glucocorticoids
for 24 h have enhanced ability to phagocytose apoptotic leukocytes [150]. Compared to
macrophages, peripheral blood monocytes have a much lower phagocytic capacity toward
apoptotic cells, but incubation of human monocytes with glucocorticoids induces the pheno-
type of monocyte-derived macrophages much more competent to ingest apoptotic cells [19,
151]. The ability of monocytes to phagocytose apoptotic leukocytes after incubation with
glucocorticoids has been linked to 11�-hydroxysteroid dehydrogenase (11�-HSD), a mole-
cule not present in monocytes [152, 153]. Cytokines also inXuence phagocytic capacity of
macrophages toward apoptotic cells. For instance, IFN� inhibits the glucocorticoid-induced
ability of macrophages to clear apoptotic PMNs [154].

Factors that prolong neutrophil survival

Although neutrophil apoptosis is critical for granulocyte homeostasis and the resolution of
inXammation, many proinXammatory molecules extend PMN survival during the initial
stages of the inXammatory response. For example, neutrophils that migrate to sites of tissue
inXammation have a prolonged lifespan and become resistant to both FAS- and TNF-
induced apoptosis [155]. This delay in apoptosis likely promotes robust early response to
infection or inXammatory insult and is important because it would increase the window of
time during which neutrophils can be recruited to such sites and remain fully functional.

Host-derived factors as well as bacterial and fungal products serve to delay neutrophil
apoptosis. Cytokines, such as IL-1�, TNF�, GM-CSF, G-CSF, and IFN�, recruit PMNs to
sites of infection and each of these molecules can delay PMN apoptosis [57, 156, 157].
Notably, most of the host-derived cytokines that delay apoptosis also prime neutrophils for
enhanced function to a second agonist. Complement component C5 is cleaved to form C5b,
a member of the membrane attack complex, and C5a, a powerful chemotactic agent for
neutrophils [158]. C5a protects PMNs from apoptosis and this process involves BCL2-
antagonist of cell death (BAD) and phosphoinositol-3 kinase [159]. Bacterial products,
especially LPS and lipoteichoic acid (LTA), are potent inhibitors of PMN apoptosis [57].

In addition to soluble factors, the extracellular environment can signal PMN apoptosis.
For instance, acute hypoxia enhances the inXammatory response and causes a decrease in
PMN apoptosis that has an additive eVect with GM-CSF [160]. This eVect is also BCL2-
independent, suggesting that another intracellular, pro-survival signaling molecule is
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involved in this process [161]. Hypoxia also increases TLR4 expression and enhances the
pro-survival eVects of LPS toward human PMNs [162].

Role of toll-like receptors (TLRs) in PMN apoptosis

TLRs in combination with other receptors, e.g., complement receptors, promote rapid and
eYcient recognition of pathogens by neutrophils [163, 164]. To date, ten TLRs are
expressed in human tissues and all but TLR3 are expressed in neutrophils [165]. Ligands
for TLRs include lipoproteins (TLR1/TLR2) LTA (TLR6), LPS (TLR4), Xagellin (TLR5),
double-stranded DNA (TLR3), single-stranded RNA (TLR7), and unmethylated CpG DNA
of bacteria and viruses (TLR9) [166]. TLR1, TLR2, TLR4, TLR5, and TLR6 are expressed
on the surface of PMNs, whereas TLR79 is localized to intracellular compartments and
recruited to the plasma membrane during PMN priming/activation [166–169].

Although all TLRs play an important role in the innate immune response, only TLR2,
TLR4, and TLR6 seem to modulate PMN apoptosis directly. Of these TLRs, TLR4 seems
to be more tightly coupled to PMN survival than either TLR2 or TLR6. TLR4 binds to LPS
and this interaction up-regulates IL-8 mRNA and leads to prolonged neutrophil survival
that involves monocytes [170]. This observation can be explained in part by the ability of
monocyte CD14 to bind LPS, thereby signaling release of a factor that acts in a synergistic
manner with TLR4 to prolong PMN survival [171]. The monocyte-dependent delay in
PMN apoptosis can be reconstituted by adding peripheral blood mononuclear cells
(PBMCs) to highly puriWed PMNs [172]. Sta. aureus peptidoglycan and LTA, agonists for
TLR2, also delay PMN apoptosis [173, 174]. In PMN preparations that have been depleted
of monocytes by magnetic bead isolation, TLR4 ligation to LPS is the principal TLR sur-
vival signal. However, the LPS-mediated delay in apoptosis in the absence of monocytes is
relatively short (»4 h), as opposed to the 22-h delay observed in the presence of monocytes
[43, 175].

Phagocytosis-induced cell death (PICD)

Neutrophil apoptosis diVerentiation program

Although a widely accepted view was that mature PMNs have little biosynthetic capacity,
recent evidence clearly indicates that this previous view is incorrect. Human PMNs
express »12,000–14,000 transcripts and have signiWcant biosynthetic potential. Changes in
PMN transcript levels (and associated proteins) during phagocytosis are an important com-
ponent to the resolution of the inXammatory response [89, 92, 93, 95, 97, 176–180]. Fur-
thermore, phagocytosis of bacterial pathogens, including Burkholderia cepacia, Borrelia
hermsii, Sta. aureus, Str. pyogenes, and Listeria monocytogenes, is followed by global
changes in neutrophil gene expression concurrent with induction of apoptosis [94]. These
Wndings provide an explanation for the increased RNA synthesis in neutrophils following
phagocytosis that was originally reported by Martin Cline in the 1960s [181]. Bacteria-
induced apoptosis or PICD correlates well with alterations in transcripts encoding factors
that promote or repress cell death, inXuencing the fate of PMNs [94]. Furthermore, PICD is
accompanied by down-regulation of genes encoding proinXammatory molecules [94, 177].
Based on these Wndings, it was proposed that bacteria induce an apoptosis diVerentiation
program in human PMNs that facilitates timely neutrophil turnover during infection. The
neutrophil apoptosis diVerentiation program represents the Wnal stage of neutrophil matura-
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tion and regulates in part multiple processes in human neutrophils, including apoptosis and
associated decreased function.

Bacteria-induced cell death

Phagocytosis-induced cell death (PICD) is a mechanism to clear tissues of spent neutro-
phils containing dead or partially digested microbes, thereby facilitating the resolution of
infection [94, 182–185]. As with spontaneous neutrophil apoptosis, timely removal of neu-
trophils––although in this case after phagocytosis––would prevent release of cytotoxic
molecules into surrounding host tissues, a phenomenon mediated by necrotic lysis [186].
This process is important because neutrophils and neutrophil products are known to con-
tribute to inXammatory diseases [187–191]. The mechanism of neutrophil PICD remains
incompletely deWned, but progress has been made.

Watson et al. were the Wrst to demonstrate that phagocytosis accelerates PMN apoptosis
[192]. Since that time, many bacteria have been shown to trigger neutrophil apoptosis or
PICD (Table 1). Importantly, the work by Watson et al. linked PMN ROS with apoptosis
[192] and ROS play a crucial role in neutrophil apoptosis [3, 47, 60–62, 95, 161, 182, 188,
193–199]. The bacteria: PMN ratio dictates in part the level of ROS produced in vitro,
which in turn inXuences cell fate. For example, interaction of E. coli with human PMNs at
a 1:1 ratio (1 bacteria per PMN) delays PMN apoptosis, whereas increasing this ratio to

Table 1 Bacteria that modulate cell death in neutrophils and other phagocytes

Bacterial pathogen Leukocyte aVected References

Anaplasma phagocytophilum Neutrophils [176, 221–223, 230, 265]
Borrelia hermsii Neutrophils [94, 99]
Bordetella pertussis Macrophages, neutrophils [266–274]
Burkholderia cepacia Macrophages (J774.2), neutrophils [94, 275–277]
Chlamydia pneumoniae Macrophages, neutrophils, 

promyelocytic cells (U937, THP-1)
[224, 231, 278–280]

Chlamydia trachomatis Macrophages, neutrophils [281, 282]
Clostridium diYcile Macrophages, eosinophils [283, 284]
Escherichia coli Macrophages, monocytes, neutrophils [182, 206, 285–293]
Fusobacterium necrophorium Neutrophils [294]
Fusobacterium nucleatum Neutrophils, peripheral blood 

mononuclear cells
[295]

Haemophilus somnus Neutrophils [296]
Helicobacter pylori Macrophages, monocytes, neutrophils [205, 297–300]
Listeria monocytogenes Dendritic cells, macrophages, neutrophils [251, 301–306]
Mannheimia (Pasteurella) 

haemolytica
Neutrophils [307–309]

Mycobacterium bovis-BCG Macrophages, monocytes, neutrophils [310–315]
Mycobacterium tuberculosis Macrophages, monocytes, neutrophils [184, 210, 316–337]
Neisseria gonorrhoeae Neutrophils [199]
Photobacterium 

damselae subsp. Piscicida
Macrophages, neutrophils [338]

Porphyromonas gingivalis Neutrophils, promyelocytic cells (THP-1) [339, 340]
Pseudomonas aeruginosa Dendritic cells, macrophages, neutrophils [158, 259, 341–349]
Shigella dysenteriae Macrophages, neutrophils [350, 351]
Staphylococcus aureus Neutrophils [61, 173, 174, 185, 

214, 352–354]
Streptococcus pneumoniae Macrophages, neutrophils [207, 211, 355–362]
Streptococcus pyogenes Promyelocytic cells (U937), neutrophils [218, 220, 363, 364]
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10:1 triggers apoptosis/PICD (see Fig. 2a of ref. [192]). Simons et al. found similar results
with Neisseria gonorrhoeae using low (1:1) bacteria: PMN ratios, although the readout was
caspase activity rather than ROS production [200]. These results underscore the delicate
balance between factors that delay apoptosis (e.g., LPS) and those that trigger PICD (ROS).
Inasmuch as pathogen-induced apoptosis is complex process involving a multitude of
signaling molecules and bacterial components, the process is likely dictated by the speciWc
microbe and/or number of microbes ingested.

Coxon et al. showed that neutrophils from Cd11b/Cd18¡/¡ mice have decreased ROS
production and delayed apoptosis [195]. Work by Kobayashi et al. used PMNs from 6
X-linked CGD patients to demonstrate that ROS are essential for PICD and a micro-
array-based approach was used to investigate the role of ROS in PICD [188]. Zhang
et al. reported that ROS production triggered by ligation of CD11b/CD18 ultimately
activates initiator caspases 3 and 8 in PMNs and that PICD occurs independent of typi-
cal death receptors (e.g., FAS/FASL) [60]. Additional links between ROS production
and PMN apoptosis were identiWed in myeloperoxidase-deWcient mice and may involve
generation of hypochlorous acid [64, 201]. The importance of ROS in the resolution of
infection is exempliWed by studies in CGD mice, which revealed that neutrophils fail to
undergo apoptosis after interaction with pathogens and are thus not removed from the
site of infection [202]. Together, these studies revealed that NADPH oxidase-derived
ROS are an important intracellular link between the destruction of bacteria and the
resolution of infection.

Although most proinXammatory cytokines and many bacteria-derived factors delay
apoptosis [57, 174, 203–206], a complex signaling system exists such that bacteria-induced
apoptosis or PICD overrides any delay in apoptosis due to these factors [207, 208].

Modulation of neutrophil cell death by bacterial pathogens

While phagocytosis-induced neutrophil apoptosis or PICD is desirable for the resolution of
infection and prevention of excessive or chronic inXammation, many pathogens have
devised means to alter apoptosis and promote pathogenesis [99]. Here, we provide a few
examples of this phenomenon and refer the reader to recent reviews on the topic for a more
comprehensive overview [99, 209].

Community-associated methicillin-resistant Sta. aureus (CA-MRSA) and Streptococcus
pyogenes cause direct PMN lysis and/or accelerate bacteria-induced apoptosis to the point
of secondary necrosis [94, 99, 204, 210–213]. The most prominent CA-MRSA strains pro-
duce leukotoxins known to cause lysis of human neutrophils, but at sublytic concentrations
these toxins induce apoptosis [214]. It has been suggested that lysis of neutrophils by cer-
tain Sta. aureus strains promotes severe pathologic states such as necrotizing pneumonia or
fatal sepsis, although this hypothesis remains to be tested. Inasmuch as PMNs are the pri-
mary cellular defense against staphylococcal infections, depletion of neutrophils seems a
likely component of CA-MRSA pathogenesis [212, 215, 216]. However, Sta. aureus leuko-
toxins such as Panton-Valentine leukocidin (PVL) play little or no unique role in causing
cell lysis after phagocytosis [213], a phenomenon that occurs rapidly after uptake of the
most prominent CA-MRSA strains [212].

Str. pyogenes is associated with human infections ranging from mild pharyngitis to life-
threatening necrotizing fasciitis [217]. Notably, Str. pyogenes accelerates neutrophil PICD,
thereby causing necrosis [211, 217–220]. As with CA-MRSA, Str. pyogenes kills neutro-
phils to survive within the human host.
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Pathogens that delay neutrophil apoptosis

In contrast to macrophages, few bacteria are known to survive and replicate within neutro-
phils. A. phagocytophilum is an obligate intracellular bacterium that delays neutrophil
apoptosis to survive within PMNs [176, 221–225]. Although progress has been made, the
mechanism(s) by which A. phagocytophilum delays apoptosis are not well understood. The
pathogen is ingested by caveolae-mediated endocytosis and survives within inclusions/
vacuoles that do not contain critical components of the NADPH oxidase [226, 227]. More-
over, A. phagocytophilum actively alters normal neutrophil granule traYcking and inhibits
NADPH oxidase activation [176, 228, 229]. Notably, the pathogen fails to induce neutro-
phil apoptosis and dysregulates neutrophil gene expression to maximize survival and
dissemination within the mammalian host [221–223, 230]. By prolonging the lifespan of
neutrophils after uptake, A. phagocytophilum survives and disseminates in the host [223].

PMNs readily phagocytose C. pneumoniae and a small fraction of internalized bacteria
remain viable for up to 90 h after uptake [224]. C. pneumoniae multiplies within neutro-
phils and delays constitutive apoptosis such that both phases of the Chlamydia biphasic life
cycle occur within PMN inclusions [224, 231]. Delay of neutrophil apoptosis by C. pneu-
moniae can be as long as 3 days and is associated with decreased caspase-3 activity [224].
Prolonged PMN survival may be mediated by LPS and autocrine production of IL-8 [224].
Intracellular growth of Chlamydia is essential for pathogenesis, because the host cell
supplies nutrients and shields the microbe from antimicrobial serum factors.

Mechanisms of cell death

Overview

The resolution of infection is complete when bacteria and spent host cells are cleared from
tissues. Although phagocyte apoptosis or PICD has been reported after phagocytosis of
many types of bacteria, the mechanism of cell death remains incompletely deWned. For
example, it is not always apparent if bacteria cause apoptosis after phagocytosis or if the
observed cell death is a more cursory form of host cell lysis. Delineating the mechanism of
host cell death is an important Wrst step toward the development of better therapeutics for
inXammatory disorders [232].

Initially, cell death was thought to proceed through either apoptosis or necrosis. How-
ever, necrosis is really the end result/equilibrium of cell death and thus not a cell death
mechanism [233]. Several unique types of cell death are now known to occur depending on
speciWc conditions, including the environment and state of the cell (Table 2). These condi-
tions include extracellular factors, e.g., the presence of inXammatory markers or pH of the
extracellular Xuid, and intracellular factors such as the abundance of ATP [234]). For
example, under conditions where ATP is depleted or limiting, cell death proceeds by onco-
sis, which entails cell swelling and lysis. However, when ATP is abundant, cell death will
proceed via the more organized and non-inXammatory forms of cell death, such as apopto-
sis or autophagy. Importantly, a cohort of cell death mechanisms has been identiWed in cell
populations in organs under stress [235]. Therefore, the resolution of bacterial infections
through host cell death/turnover may encompass multiple mechanisms and not occur solely
via apoptosis. As the diVerent mechanisms of cell death receive more attention, the subcel-
lular markers that distinguish these mechanisms have become more deWned. Each of the
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mechanisms can be distinguished from the others based on physical characteristics in com-
bination with biochemical assays (Table 2).

Apoptosis

Apoptosis, also referred to as type I cell death, is deWned as a non-inXammatory form of
cell death characterized by membrane blebbing, nuclear condensation, and cytoplasmic
condensation. As stated above, apoptosis can be initiated by extracellular signals or by
intracellular signals. The end result is an orderly destruction of the infected/damaged cell
that does not cause inXammation in the surrounding tissues.

Typically, apoptosis is detected by DNA degradation, caspase activation, and/or early
exposure of PS on the cell surface. Nuclear fragmentation or DNA “laddering” can be
visualized by transmission electron microscopy (condensation and fragmentation of the
nucleus) or agarose gel electrophoresis. Caspases are expressed initially as pro-proteins
that undergo activation by proteolytic cleavage. As such, activated caspases can be
detected by Western blot or Xow cytometry analysis (using a Xuorophore labeled reagent
that binds only to the activated caspase). The traditional marker for neutrophil apoptosis
is nuclear condensation [19], as membrane blebbing does not appear to occur in vitro
(Fig. 2).

Although other assays have been utilized to monitor apoptosis, several reports have
shown that these methods may not be speciWc for apoptotic cells. For example, apoptotic
DNA damage has also been monitored by terminal deoxyribonucleotidyl transferase-medi-
ated dUTP nick end labeling (TUNEL). However, Grasl-Kraupp et al. reported that
TUNEL staining does not discriminate between apoptotic and late oncotic cells [236]. The
plasma membrane of oncotic cells is extremely porous and TUNEL probably stains DNA
via large holes in the cell membrane. During apoptosis the inner leaXet of the plasma mem-
brane containing PS becomes exposed to the extracellular space and the exposed PS can be
detected using labeled annexin V. As with TUNEL, recent evidence has shown that late
oncotic cells stain positive for annexin V, thereby bringing into question the speciWcity of
annexin V staining apoptotic cells [237, 238].

Autophagy-induced cell death

Autophagy, also known as Type II cell death, is a process whereby cells catabolize dam-
aged components so that the essential building blocks, amino acids, lipids, carbohydrates,
and etc., can be utilized for cellular repair, especially under times of cellular stress. Cells
have the capacity to catabolize damaged proteins as well as entire organelles, including
mitochondria. Autophagy was Wrst observed in yeast and several genetic markers correlate
with the formation of autophagic vacuoles in yeast and mammalian cells.

Autophagy-induced cell death is a programmed cell death that is distinct from apoptosis.
SpeciWcally, autophagy-induced cell death is induced under conditions of cellular starva-
tion or endoplasmic reticulum (ER) stress [239]. Although the mechanism of autophagic
cell death is not understood, two genetic markers, beclin 1 and ATG7, are critical for this
non-apoptotic death pathway in mammalian cells ([240, 241] and reviewed in [242]). Dur-
ing autophagy-induced cell death, caspases are not activated, although there is cytoplasmic
condensation and a reduction in cell size. The most deWning feature of autophagy-induced
cell death is the formation of multilamellar autophagosomes that engulf intracellular com-
ponents. These large vacuoles are easily distinguished from other subcellular compart-
ments using transmission electron microscopy. The formation of these large multilamellar
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vacuoles may be cell type dependent and more studies need to be done with phagocytes to
determine if these vacuoles form in vitro or in vivo. After autophagosome formation, intra-
cellular components are degraded during autophagosome––lysosome fusion [243].

Pyroptosis

Pyroptosis is a programmed cell death mechanism that results in cell lysis, tissue inXamma-
tion, and recruitment of host professional phagocytes. As with apoptosis, nuclear DNA is
cleaved during pyroptosis, although this event is dependent on caspase-1-stimulated nucle-
ase activity and not poly(ADP-ribose) polymerase [244]. Caspase-1 activation is a key
event of pyroptosis and the enzyme activates IL-1� and IL-18. These cytokines in turn
recruit macrophages and PMNs to the site of infection. Caspase-1 activity also leads to the
formation of pores in the eukaryotic cell membrane, allowing an inXux of extracellular ions
that causes cell swelling and lysis [244]. Shao et al. found that caspase-1 has enzymatic
activity toward several proteins in the glycolytic pathway, suggesting a link between
metabolism/ATP production and pyroptosis [245].

Analogous to the apoptosome complex that mediates apoptosis, pyroptosis is controlled
by the formation of a large (»700 kDa) multiprotein complex known as the inXammasome.
The inXammasome is composed of a sensor (NOD-like receptor) [246], an adaptor molecule
(apoptosis-associated speck-like protein containing a CARD, ASC, or PYCARD), caspase-
1, and caspase-5 [247]. Engagement of sensor molecules with ligands such as PAMPs trig-
gers formation of the inXammasome complex [248]. It is interesting to note that activation
of the inXammasome occurs in the host cell cytosol after bacteria escape from the phago-
some. Bacteria that activate the inXammasome complex include Shigella [249], Francisella
tularensis (reviewed in [250]), L. monocytogenes [251], Yersinia [252], and Salmonella
enterica serovar Typhimurium [244, 253, 254].

Oncosis

Like pyroptosis, oncosis is a form of cell death characterized by cell swelling and lysis.
Earlier research had deWned cell swelling and lysis as necrosis, but necrosis is now widely
accepted as the end result of cell death. Necrosis not only includes the lysis of infected cells
but also the equilibrium or damage that is caused to surrounding tissues after a cell has
lysed [233]. Oncosis, also known as Type III cell death, occurs through multiple mecha-
nisms, but two of the most prominent involve pore forming toxins of pathogenic bacteria
and complement-mediated lysis. Pore forming toxins such as alpha-hemolysin of Sta.
aureus have the ability to lyse a variety of host cell types, and complement-mediated cell
lysis occurs after the formation of the complement membrane attack complex on C3b-tar-
geted cells. As a result, intracellular contents and inXammatory cytokines are released into
the extracellular milieu, causing tissue damage and inXammation. Oncosis occurs when
membrane integrity is damaged and an eZux of inorganic ions (e.g., Ca2+, Na+, Cl¡)
increases the intracellular and intraorganelle osmotic pressure [255, 256]. Depletion of
ATP and loss of mitochondrial transmembrane potential accompanies this eZux of ions
into the cell.

Bacteria such as Brucella abortus, Campylobacter jejuni, Pseudomonas aeruginosa, and
Salmonella enterica serovar Typhimurium can cause host cell death after phagocytosis
[257–260]. These bacteria escape from phagosomes and then alter cell metabolism through
the expression of toxins that disrupt membrane integrity, thus causing oncosis. The invasive
ability of Cam. jejuni has been associated with the expression of its cytolethal distending
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toxin and subsequent ability to cause oncosis of epithelial cells [258]. Dacheux et al.
showed that P. aeruginosa cystic Wbrosis isolates induce rapid (within 60 minutes) oncosis
of macrophages and PMNs that is type III secretion-dependent [259]. Expression of Xagella
proteins is required for Sal. enterica-mediated oncosis of and escape from human macro-
phages [260].

NETosis

A novel form of PMN death named NETosis has been described recently [261, 262]
(Table 2). Neutrophil extracellular traps (NETs) are extrusions of plasma membrane and
nuclear material composed of granule components and histones. NETs were initially
reported to occur with viable PMNs [261, 262] and this Wnding was conWrmed by others
[263]. However, subsequent studies by Fuchs et al. suggest that the process of NET forma-
tion involves a type of cell death the authors called NETosis [261, 262]. NETosis occurs in
an NADPH oxidase dependent manner [259] and bacteria deWcient in DNAses are suscepti-
ble to killing by NETs [264]. Although the physiological relevance in vivo has been
debated, as has the issue of whether NETosis is distinct from other types of cell lysis, it is
clear that in vitro NETs bind and kill extracellular microorganisms. Further research is
needed to better understand these interesting structures.

Summary of neutrophil death mechanisms

Although there are many fates for phagocytes after interactions with microorganisms, the
manner of cell death has serious repercussions that can impact severity and duration of dis-
ease. Pyroptosis and oncosis cause inXammation that recruits leukocytes to the site of
infection, but if unchecked, these processes can cause necrosis that leads to the damage of
surrounding cell and tissues. In contrast, apoptosis and autophagy are non-inXammatory
forms of cell death that recruit phagocytes to the site of infection. A comprehensive
understanding neutrophil apoptosis, death, and turnover is critical for a full understanding
of bacterial pathogenesis mechanisms.

A paradigm for the resolution of infection

Neutrophil apoptosis is essential for maintaining normal immune system homeostasis and
this process facilitates the resolution of inXammation. PMN apoptosis is mediated by both
intrinsic and extrinsic mechanisms, and apoptotic cells are subsequently cleared by macro-
phages through multiple receptor-ligand interactions.

Neutrophil fate is altered by interaction with microorganisms. In most cases, the out-
come of this interaction dictates whether the ingested organism will ultimately cause dis-
ease. Based upon our current knowledge, there are two possible outcomes for neutrophil-
bacteria interactions (Fig. 5) [99]. On one hand, phagocytosis and killing of bacteria
culminate with induction of apoptosis/PICD and the subsequent removal by macrophages,
ultimately resulting in the resolution of infection (Fig. 5, top). Alternatively, pathogens
such as A. phagocytophilum, C. pneumoniae, Str. pyogenes, and Sta. aureus alter neutro-
phil apoptosis to survive, and thereby disseminate and cause disease [176, 217, 219, 221,
222, 224] (Fig. 5, bottom). This relatively simple model will need reWning and revision as
we continue to accumulate new information.
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Concluding comment

The use of genomics-based technologies has dramatically enhanced our discovery of mech-
anisms of bacterial virulence and fundamental immunology. A better understanding of
innate host defense, host cell death, and bacterial pathogenesis will likely provide informa-
tion important for development of vaccines, treatments, and prophylactic agents designed
to prevent and/or control infections.
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