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Abstract Optimum but balanced food intake maintains healthy growth and disease-free

lifespan. However, imbalanced and over-nutrition promotes obesity, diabetes, malignancy,

osteoporosis, infectious diseases, etc. In 1936, McCay reported that calorie restriction

prevents weight gain and extend lifespan in rodents. In early 1970, Dr. Good at University

of Minnesota and Dr. Walford at UCLA began studies in mice by reducing protein and

calorie intake and studying their impact on immune function. Dr. Good’s group (Jose,

Fernandes, Kramer, Cooper, Day, etc.) reported changes in humoral and cellular immunity

at present known as innate and adaptive immune function. Later, much interest was

devoted by late Dr. Good on studying the role of calorie restriction (CR) and the role of

zinc on immunity, particularly their role on aging, autoimmunity, and malignancy. Both

functional role of T-cells, NK-cells and B-cells and their interaction during CR was studied

extensively. We recently decided to pursue the beneficial effects of n-3 fatty acids (fish oil)

with and without CR on controlling autoimmune-disease in NZB 9 NZW F1 mice. Our

results indicated that n-3 FA when fed ad-libitum prolongs lifespan higher than commonly

consumed n-6 FA (corn oil) in these mice. Moreover, n-3 FA + CR is found to be more

effective than n-6 FA + CR. Some of the beneficial changes by n-3 FA include enhancing

antioxidant enzymes and lowering Th-1/Th-2 cytokines, adhesion molecules, COX-2/PGE2

levels, pro-inflammatory cytokines (IL-1b, IL-6 and TNF-a etc. The decreased pro-

inflammatory cytokines were also found to protect against bone loss in OVX mice. Further,

Fat-1 transgenic mice (which make n-3 FA endogenously in vivo from n-6 FA) when fed

CR revealed decreased NF-jB and AP-1 activity and increased expression of life-pro-

longing gene SIRT1. Also CR and n-3 FA decreases body weight and increases insulin

sensitivity, as well. Thus, to prevent obesity decreased calorie intake with n-3 FA sup-

plement is far more effective and may have protection against CVD, malignancy,

autoimmunity, and osteoporosis. The CR studies undertaken in primates and recently in

humans are showing very encouraging results. Inorder to understand more precisely the

role of diet and nutrition, new approaches exploring the link through nutrigenomics,
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proteomics and metabolomics may soon provide insight into controlling age-related dis-

eases by following a balanced food intake.

Keywords n-3 fatty acids � Calorie restriction � Pro-inflammatory cytokines �
Aging � Bone

Introduction

The field of nutrition and immunology was originally developed by Dr. Robert A. Good in

early 1970 at the University of Minnesota along with Drs. Yunis, Fernandes, Jose, Cooper,

Kramer etc [1]. Interestingly, I also studied with Ranadive in early 1960, in India, the role

of nutrition, particularly the use of pharmaceutical waste products as a dietary supple-

ments, to increase the yield of eggs and meat in chickens and to improve the breeding

performance in rats and mice, primarily because at that time, commercially pelleted diets

for feeding laboratory animals were not available [2–5]. Due to this prior experience in

nutrition and animal studies, I was fortunate to join Yunis’s lab in 1968 and able to

continue my nutrition studies with Yunis and particularly with Good and published a series

of papers, studying the role of nutrition on breeding of mice and its influence on auto-

immunity and renal disease in NZB and NZB 9 NZWF1 mice [6, 7]. However, most

active work on nutrition and cellular immunity was, however, carried out by Jose and Good

in early 1970, which received much attention to appreciate the protein deficiency and its

relationship to cellular immunity [8–12]. Since Dr. Good is a noted pediatrician, he too

immediately recognized and fostered nutrition research to study the impact of either

nutrition deficiency during early growth and development or the adverse effects of excess

nutrition on obesity, cancer, and particularly on aging. Soon with Yunis and Good, I also

undertook a series of studies in the area of calorie restriction to prevent the development of

renal disease and to reduce breast cancer in mice [13–17]. Later when Dr. Good moved to

New York to head the Sloan Kettering Institute, he persuaded me to join him to continue

our close and active collaborative work in the field of calorie restriction and aging. The

brief summary of the impact of ad-libitum food intake on diseases of aging (Tables 1, 2)

was very much in mind of Dr. Good and he was keen on studying various cellular and

molecular mechanisms involved in reducing the development of autoimmune disease,

cancer, and delaying the aging process by calorie restriction which he actively pursued

with many of his young investigators in Oklahoma and at St. Petersburg, Tampa, Florida as

well with me in San Antonio [18–34]. Dr. Good and we also studied in early years using

short lived NZB 9 NZW F1 autoimmune prone mice fed ad-libitum (AL) were found to

respond to AL feeding and found to die much earlier with kidney disease by becoming

Table 1 Nutrition and immune function described originally in 1970s by late Dr. Good

•Protein deficiency, calorie deficiency

•Impairs macrophage function

•Increases cytotoxic T-cell function

•Decreases antibody production

•Decreases serum inhibitor factors
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obese, whereas, CR fed mice maintain much less body weight and found to live signifi-

cantly longer than AL fed high-fat or low-fat fedmice (Fig. 1).

Calorie restriction

The earliest evidence that CR retards aging and extends median and maximum lifespan in

rodents was first presented in the 1930s by McCay et al. [35]. Since then similar obser-

vations have been made in several species including mice, rats, fish, etc. [36, 37]. Our own

CR studies which had began over 30 years ago with Dr. Good, have investigated the role of

CR on mammary cancer [13], autoimmune disease [16], and aging mice and rats [38–40].

Earlier studies undertaken in CR fed mice for changes in immune functions were also

carried out at the same period by Walford and Weindruch et al. [41–43]. We also reported

marked changes in IL-2 production [20, 44], Th1/Th2 subsets, changes in insulin receptors

and an increased long-chain FA [45, 46]. In addition, we reported increased levels of free-

radical scavenging antioxidant enzymes in CR fed mice [46]. Recently, caloric or energy

restriction was shown to down regulate expression of several genes linked to inflammation

by using oligonucleotide microarrays [47]. Masoro et al. has made very important

observations in rats fed CR lifelong and has reviewed this subject very often [48–50].

Table 2 Calorie Restriction (25–40%)

•Prolongs life span

•Inhibits diseases of aging

•Prevents obesity and hyperglycemia

•Increases antioxidant enzymes and DNA repair processes

•Modulates immune function and alters gene expression

•Decreases insulin resistance

•CR studies in primates are encouraging and in humans CR trials are underway

Fig. 1 NZB/W female mice as SLE disease model
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Weindruch et al. have also made several key observations including major changes by CR

in gene regulation. Due to earlier studies by both Dr. Good and Walford and their coin-

vestigators, and based on encouraging results seen in rodents, the CR studies were then

undertaken later in primates and appear to show several benefits [51–53]. Longevity

remains to be still established in these models but delayed death with CR is anticipated. CR

fed monkeys have lower-body temperature and insulin concentration than AL fed monkey

[54]. It is quite encouraging to note that moderate CR studies in humans are revealing quite

encouraging results even with a 6 month dietary duration [55]. The precise mechanism of

CR-induced lifespan extension is not fully known, yet several theories have been proposed

which were recently discussed briefly by Masoro [48, 49]. Although restricting individual

nutrients can extend lifespan, based on extensive studies, cutting down 20–40% ma-

cronutrients or calories but keeping same level of vitamins and micronutrients can extend

maximal lifespan [48]. Several theories have been put forth for the primary mechanism

involved in the extension of lifespan such as 1. The growth retardation hypothesis; 2.

Reduction of body fat hypothesis; 3. Reduction of metabolic rate hypothesis; 4. Oxidative

damage attenuation hypothesis; 5 Altered glucose-insulin system hypothesis; 6. Alteration

of the growth hormone IGF-I Axis hypothesis; and 7. Hormesis hypothesis. However, at

present based on recent supportive data the following two hypotheses 1. Oxidation damage

attenuation hypothesis and; 2. Attenuation of insulin-like signaling hypotheses are both

gaining much more attention for elucidating the mechanism involved in prolonging the

lifespan [48, 56].

Due to our published experience with nutrition, immunity and aging we later initiated

studies using n-3 FA alone AL or along with CR, we decided to pursue our recent

hypotheses i.e., prevention of oxidative damage, inhibition of inflammation, and inhibition

of insulin-like signaling pathway by adopting n-3 FA + CR studies. There is evidence that

n-3 FA alone increases insulin sensitivity thus combining n-3 FA + CR should have a

synergistic effect during aging. Most importantly, we also have pilot data to support these

two hypotheses: that n-3 FA + CR decrease inflammatory mediators and that it decreases

insulin and glucose and increases adiponectin in CR fed aging mice. Oxidative damage and

ROS production by various immune cells follows during aging in many target tissues and

are now linked to the functional loss in metabolic energetics [57]. Recent studies have

shown that age-dependent increase in mitochondrial oxidative damage induces rise in ROS

production [57], and their attenuation by CR [58].

Indeed, inhibition of ROS generation maybe a major cause for the reduction in the

mitochondrial DNA (mtDNA) damage in CR. We strongly feel that because of upregu-

lation of antioxidant enzymes by n-3 FA [59] and also by CR [60], it is now strongly linked

to the upregulation of anti-inflammatory genes particularly those encoding ROS scav-

enging proteins [61]. The capability of long-term CR to induce decrease in ROS production

has been shown in various tissues by various investigations such as rat mitochondrial

gastrocnemius muscle [58] rat heart mitochondria [62] and rat liver mitochondria [63]. It is

well-established that mitochondrial DNA plays a major role during the aging process [64].

A series of studies carried out in AL and CR fed rats have shown that long-term CR

decreases the rate of mitochondrial H2O2 production and mtDNA oxidative damage in

various tissues [58]. It was also shown that the quantitative reduction of mtDNA oxidative

damage was closer to that found for mitochondrial free-radical generation in various

tissues. We too have noticed increased antioxidant enzymes and decreased free radicals

(MDA production) in CR fed animals.
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Calorie restriction and SIRT1

In the field of CR and aging research many investigators were searching for life prolonging

genes and were fortunate to first identify in yeast a silence information regulator 2 (Sir2)

gene [65]. It was induced by CR in yeast and Drosophila and shown to have an effect in life

prolonging effect of CR [66]. Deletion of this gene led to the elimination of life prolonging

effect of CR. It was simultaneously shown to be a histone deacetylase. The deacetylation of

histones lead to the closure of the chromatin in the nucleosome with a suppression of gene

transcription. Furthermore, acetylation of histones leads to an opening-up of the chromatin

in the nucleosome and an increase in gene transcription. The activity of histone acetylation

is dependent upon NAD, which accumulates intracellularly in the absence of glycolysis

[67, 68]. These life-prolonging genes have been further identified in mammals and have

been given the name sirtuins (SIRT1-7 in humans). Among these SIRT1 is the first to have

a role linking it to aging and in metabolic regulation. SIRT1 in mammals has now been

shown to deacetylate proteins other than histones. They induce p65, a component of NF-jB

signaling pathway and is a major mediator of the transcription of NF-jB dependent pro-

inflammatory genes [69]. In addition, SIRT1 also deacetylates FOXO-1 [70] and p53 [71]

and thus SIRT1 may have a role in the regulation of metabolism and cell proliferation.

SIRT1 has recently been shown to have an important role in metabolic regulation [72]. In

fasting or CR fed mice SIRT1 has been shown to be activated by increasing concentrations

of pyruvate. SIRT1 in turn stimulates genes which regulate gluconeogenesis like PEPCK

and SIRT1 suppresses glycolysis simultaneously [73]. These actions would stimulate

hepatic glucose production and reduce glucose utilization. In this role it acts through a

physical and functional association with PGC-1a and HNF 4a [73]. It also deacetylates

PGC-1a to induce gluconeogenesis. Thus, it may have a hyperglycemia inducing effect and

may play a role in the regulation of fasting state during CR. However, it appears that the

role of SIRT1 is much more complex and needs more research to elucidate its role in

regulation and interaction with various factors like oxidative stress and protection induced

by CR during aging. We, however, would like to establish whether the expression of

SIRT1 varies between n-6 FA and n-3 FA, fed AL and CR mice, and particularly in

transgenic Fat-1+ mice fed CR diet. Elevated SIRT1 is quite apparent in Fat-1+ + CR mice

in our pilot studies (unpublished data), and therefore we plan to measure PGC-1a and

PPARc expression along with SIRT1 to see its close interaction during aging, particularly,

in mice fed n-3 FA + AL and n-3 FA + CR. We anticipate mice fed n-3 fatty acids and CR

may live much longer than mice on corn oil and CR diets.

Role of n-3 fatty acids in health and disease

Since the original report of Bang et al. [74] on the diet consumed by Greenland Eskimos

and the decreased incidence of cardiovascular disease (CVD), there has been considerable

interest in the use of n-3 fatty acids as dietary supplements, and interest in clinical uses is

receiving much attention [75, 76]. Several studies have shown promising results against

inflammatory disorders including cardiovascular and autoimmune disorders [77, 78]. It is

now accepted that the use of n-3 fatty acids will decrease the risk of CVD in the US

population [79]. n-3 fatty acids also decreased the incidence of several chronic diseases

that are closely linked particularly to the increase in saturated fat and n-6 vegetable oil

consumption in the USA [80]. A recent health study in nurses revealed that higher con-

sumption of fish and n-3 fatty acids as well as fruits and vegetables was associated with a
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lower risk of heart disease (HD), and particularly HD related deaths [81]. Furthermore, the

blood level of n-3 fatty acids is a predictive biomarker for sudden death in men [77, 82].

Although the mechanism of n-3 fatty acid mediated inhibition of inflammation and CVD is

not fully understood, a great deal of supportive evidence indicates that alterations in

arachidonic acid-eicosanoid pathway intermediates, changes in lipid metabolism and/or

decreases in pro-inflammatory cytokine production along with changes in expression of

numerous genes and transcription factors are clearly involved [83–88]. Figure 2 shows the

synthesis of higher-chain FA and lists the n-6 and n-3 FA sources [89].

The majority of studies on the effects of n-3 fatty acids have been carried out using FO

or FO concentrates containing low levels of EPA and DHA. Even when purified EPA or

DHA has been used there is a significant interconversion in the body in vivo, therefore, the

effects of one without the other cannot be inferred with absolute certainty. However,

effects on brain growth and development and visual acuity in infants are ascribed to DHA,

since DHA is preferentially taken up in the brain and is found in high concentrations in

brain tissue. DHA promotes neurite growth and strengthens the periventricular vascular

system against hemorrhage [90].

It is widely accepted that FO, rich in n-3 polyunsaturated fatty acids, protect against

several types of cardiovascular diseases such as myocardial infarction, arrhythmia, ath-

erosclerosis, and hypertension [91, 92]. Although, the precise cellular and molecular

mechanisms for these beneficial effects are still unknown, one of the mechanisms may be

their direct effect on vascular smooth muscle cell functions. These n-3 PUFAs activate

K+ ATP channels and inhibit certain types of Ca2+ channels [93]. There are probably at

least two mechanisms for these actions: 1) n-3 PUFAs can alter the eicosanoid profile

and cytokine-induced expression of inducible nitric oxide synthase and COX-2 through

modulation of signaling transduction pathways, 2) n-3 PUFAs also modulate vascular

smooth muscle cell proliferation, migration, and apoptosis. Recent studies strongly

suggest that DHA has more potent and beneficial effects than EPA in these systems [94].

DHA has also been reported to be the most potent at decreasing plasma triglycerides, and
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DHA (but not EPA) supplementation significantly increased serum HDL-cholesterol

[95, 96] which is associated with more efficient reverse cholesterol transport and reduced

risk of coronary heart disease [97]. At least a portion of the hypotriglyceridemic effect of

n-3 fatty acids has been attributed to increasing circulating apoE levels [98].

Besides, numerous beneficial effects of n-3 FA on several other chronic diseases

including osteoporosis are also encouraging. Even though some earlier clinical fish oil

studies did show anticipated benefits, some of the reasons for unfavorable results were the

variability in the quantity and quality of FO used, variations in the oils used as controls,

variability in patient selection, absence of antioxidants to prevent rancidity of oils, and lack

of availability of concentrated FO early on. At present, odor-free oils highly enriched in

EPA and DHA are available and only a few capsules per day are needed to produce

favorable results [99]. A recent study has shown that dietary supplementation with FO may

be beneficial in modifying symptomatic disease activity in SLE patients [100].

Since, n-3 fatty acids have been found to increase apoptosis [101, 102], it is quite

possible that combination of various drugs with n-3 FA may increase the death of

inflammatory cells, thereby further increasing the therapeutic benefits of the drugs [103].

n-3 FA initially provided beneficial effects in the control of renal disease in animal models

and IgA nephropathy in humans [104–107]. Our own studies, either with CR or FO, or

recently with a combination of FO and CR, have shown several beneficial effects on

antioxidant enzyme mRNA levels in B/W and MRL/lpr mice [59, 99, 108–114]. When

B/W mice were fed with either with 5% corn oil or 5% fish oil AL a significantly increased

lifespan was noted in FO fed mice. In contrast, when a 5% corn oil diet when fed 40% CR,

mice lived much longer almost double the life-span whereas when fed a diet with 5% fish

oil with CR they however lived much longer than CO + CR fed mice (Fig. 3). Several

recent studies have also shown numerous beneficial effects of n-3 fatty acids on normal

strains of mice and rats as well as in healthy humans [115–121]. The beneficial effects of

n-3 fatty acids have now been linked to changes in various genes and transcription factors

including novel bioactive mediators, for example, resolvins, docosatrienes and protectins

[84, 122–125]. Our ongoing studies on T-cell differentiation for Th1 and Th2 cytokine

Fig. 3 Effect of fat source and calorie restriction on survival in low-fatfed NZB 9 NZW F1 mice. Survival
curves are significantly different at P \ 0.0001 by Logrank test. Median survival CO/AL 242, CO/CR 450,
FO/AL 354, FO/CR 665. Source: Jolly, et al., J. Nutr. 131:2753, 2001
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inhibition by n-3 fatty acids and down regulation of NF-jB and other transcription factors

(T bet) likely to reveal new mechanistic information.

In the early years of research with n-3 FA, several adverse effects of FO were noted in

humans and animals primarily because of oxidation of the oils. We, therefore, undertook

detailed studies using vitamin E (vit-E) and we and others also reported much favorable

results particularly, the elevated antioxidant enzymes in n-3 FA + CR fed mice which may

have decreased free radicals and facilitated in increasing the life span [59] (Fig. 4). Soon

afterwards the value of antioxidants on prevention of oxidation, particularly during storage

of the capsules was recognized. Currently, odor-free concentrated FO with added anti-

oxidants is regularly available at health food stores. Very recently, FDA approved

OMACOR (fish oil) is available to treat hypertriglyceride in patients [126]. Our recent

studies clearly showed that concentrated 5/50 DHA enriched fish oil is far more effective in

controlling autoimmune disease and increasing the life-span of B/W mice (submitted for

publication). Further, our recent studies using low levels of n-3 FA (5%) and CR is also not

only showing increased longevity but also showed to prevent bone loss with age as well

(ongoing studies).

n-3 fatty acids on bone

Nutritional supplements are compounds that are found in food material that is consumed

everyday, therefore any side effects are minimal or none. One such nutritional supplement

that affects the pro-inflammatory cytokines and protects bone is n-3 FA. n-3 FA decrease

cytokines like IL-1b, IL-6 and TNF-a? thereby, reducing bone resorption [39, 59, 60, 101,

110, 127–129]. We have shown that n-3 FA when fed to ovariectomized young Balb/C

mice downregulated the expression of RANKL and inhibits activation of NF-jB sug-

gesting that n-3 FA can inhibit osteoclastogenesis [130]. In the case of mice fed casein and

corn oil and when ovariectomized 20% bone was lost whereas casein and FO fed mice had

10% bone loss. Interestingly, mice fed soy protein and corn oil had 13% bone loss whereas,

soy + FO had only 3% bone loss indicating that soy proteins + FO had far more protection

against bone loss (Fig. 5). Further, the mechanism of bone loss was also linked to increased

NF-jB expression. In-vitro when EPA+DHA added to bone marrow cells showed
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markedly less NF-jB expression, whereas, fatty acids from corn oil (LA + Arachidonic)

showed high NF-jB expression(Fig. 6). In another study, long-term feeding of n-3 FA to

MRL/lpr mice (6 weeks to 12 months of age) also showed that BMD increased at the end

of the treatment period [131]. In other studies using young male rats, n-3 FA have been

reported to increase alkaline phosphatase activity [132] and in growing rats, IGF-1 and

IGFBP levels increased [133, 134] suggesting that n-3 FA may play a role in increasing

bone formation as well. In Table 3 and 4 briefly the immune mechanism involved and the

role of n-3 FA in preventing bone loss are listed.

It is well established that loss of body weight, seen after CR, is associated with lower-bone

mass. Similarly, male F344 rats, on 40% food restricted (FR) diet also showed lower BMD.

This study further reported that with age, rats fed AL lost bone whereas rats fed FR did not

loose bone [135]. Middle aged female F344 rats on 40% FR diet had lower-cancellous bone

mineral content in the proximal tibia, distal femur and the fourth lumbar vertebra when

compared to that of AL rats [136]. In the tibia-fibula junction there was increased bone
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resorption in the endocortical surface thereby increasing bone marrow space [137]. In aged

female Sprague Dawley rats, fed 40% energy restricted diet for 9 weeks, the bones showed

reduced BMD [138]. In male Wistar rats, fed 80% food for 4 weeks, lower-bone mass and

strength were reported when compared to their AL fed counterparts [139]. In male rhesus

monkeys on 30% FR for 6 years, there was significantly reduced bone mineral content [140].

The mechanism by which FR reduces bone mass is not yet clear, but bone modeling in FR

animals, especially in the cortical bone, seems to be envelope specific, since endocortical

bone formation rates increased significantly but there was no change in the periosteal bone

formation rates [137]. We strongly feel that n-3 FA when fed either AL or moderate CR will

prevent bone loss during aging. In Fig. 7, we summarize also the immune and molecular

mechanism involved in preventing bone loss by n-3 FA.

Table 3 Bone loss and the immune system

•The immune system has recently been linked to bone loss

•Pro-inflammatory cytokines such as IL-1, IL-6 TNFa, GM-CSF, and prostaglandin E2 increase osteoclast
proliferation

•Estrogens and TGF-b decrease production of these cytokines and inhibit osteoclast activation and bone
resorption

Table 4 n-3 Fatty acids prevents bone loss

•Lack of certain fatty acids in the diet contributes to bone loss

•Mammals cannot synthesize fatty acids with a double bond past the D9 position

•Dietary intake of EFAs determines membrane composition in all cells

•Membrane EFAs determine the production of various cytokines by lymphoid cells
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Fat-1 mouse

Recently, Kang et al. developed a transgenic (Tg) mouse model that can endogenously

synthesize n-3 FA and lowers in vivo n-6 FA. The synthesis of n-3 FA was achieved

through the expression of the Fat-1 transgene encoding for an n-3 desaturase from

Caenorthabditis elegans which utilizes n-6 FA as a substrate [141, 142]. In wild type mice,

the polyunsaturated FA (n-6 FA) found in the tissues are mainly (98%) the linoleic (LA,

18:2n-6) and arachidonic acids (AA, 20:4n-6) with trace amounts of n-3 FA. In contrast, in

there transgenic mice, a large amount of n-3 FA including a-linoleic (ALA, 18:3n-3), EPA

(20:5n-3) and DHA (22:6n-3) are found in all the tissues [143, 144]. Thus, the levels of n-6

FA LA and AA, in Tg mice tissues are significantly reduced indicating the conversion of n-

6 FA to n-3 FA, and hence the ratio of n-6/n-3 is reduced from 20:1 to nearly 1:1. This

reduction of n-6/n-3 FA ratio leads to an anti-inflammatory state instead of pro-inflam-

matory state without feeding any exogenous n-3 FA. We feel that this animal model will be

useful to study the role of n-3 FA parallel to exogenously supplied n-3 FA. Last year, we

obtained Fat-1 breeding pairs from Dr. Kang, and are bred in-house. We recently crossed

Fat-1+ mice with B6 mice and after genotyping the progeny, mice were separated into

Fat-1+ x B6 and Fat-1- X B6 mice. These mice have similar genetic background except

that Fat-1 gene was found in *50% of the mice. This mouse model may be an invaluable

tool to establish the role of n-3 FA on longevity both in the absence and in combination

with CR. Our pilot data indicate that Fat-1 gene prevents bone loss in OVX mice.

Moreover, elevated SIRT1 protein levels and decreased IL-6 and TNF-a cytokines were

also observed in Fat-1+ + CR mice (unpublished observation). Thus, we are extremely

excited to undertake our proposed CR studies both in B6 mice fed n-3 FA as well as Fat-1

mice with CR. Our recent published studies [145] indicates significantly decreased NF-jB

Fig. 8 Effect of fat-1 transgenic mice fed calorie restricted on LPS-induced NF-jB p65/p50 activity in
cultured splenocytes. WT/AL = wild type ad libitum, WT/CR = wild type calorie restricted, fat-1/AL = fat-1
mice ad libitum, fat-1/CR = fat-1 mice calorie restricted. Bhattacharya et al., BBRC 349:525–530, 2006
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in Fat-1+ + CR fed mice than in Fat-1- + CR fed mice indicating the anti-inflammatory

role of n-3 FA particularly along with CR (Fig. 8). Thus, new studies are needed to

establish whether moderate CR diet along with consumption of fish or supplementing with

fish oil capsule will provide benefits in decreasing age-related on set of diseases particu-

larly CVD and bone loss during aging.

Summary

In summary, soon after the discovery of the importance of bone marrow and the thymus in

the development of B-cells and T-cells, Dr. Good also established the importance of

nutritional deficiency and excess in altering the cellular and humoral immunity and later

the changes in innate and adaptive immunity to prevent infection and to enhance the

cellular immunity during the protein-calorie deprivation using various animal models.

Further, the role of moderate caloric or food restriction in increasing life-span of short

lived and long lived animals and in the reduction of mammary cancer was also unfolded by

Dr. Good and his coinvestigators.

In later years the functional role of n-3 fatty acids and caloric restriction on reducing

the autoimmunity and inflammation particularly the role of n-3 fatty acids on osteo-

clastogenesis was also established by my coinvestigators and myself. It is with great

respect, we recognize the foresight of Dr. Good in pursuing the role of nutrition and

diet on immunological function and its relationship on the development of diseases of

aging.
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