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Abstract
Approximately one-tenth of the general population exhibit adrenal cortical nodules, and the incidence has increased. Afflicted 
patients display a multifaceted symptomatology—sometimes with rather spectacular features. Given the general infrequency 
as well as the specific clinical, histological, and molecular considerations characterizing these lesions, adrenal cortical tumors 
should be investigated by  endocrine pathologists in high-volume tertiary centers. Even so, to distinguish specific forms of benign 
adrenal cortical lesions as well as to pinpoint malignant cases with the highest risk of poor outcome is often challenging using 
conventional histology alone, and molecular genetics and translational biomarkers are therefore gaining increased attention as a 
possible discriminator in this context. In general, our understanding of adrenal cortical tumorigenesis has increased tremendously 
the last decade, not least due to the development of next-generation sequencing techniques. Comprehensive analyses have helped 
establish the link between benign aldosterone-producing adrenal cortical proliferations and ion channel mutations, as well as 
mutations in the protein kinase A (PKA) signaling pathway coupled to cortisol-producing adrenal cortical lesions. Moreover, 
molecular classifications of adrenal cortical tumors have facilitated the distinction of benign from malignant forms, as well as 
the prognostication of the individual patients with verified adrenal cortical carcinoma, enabling high-resolution diagnostics that 
is not entirely possible by histology alone. Therefore, combinations of histology, immunohistochemistry, and next-generation 
multi-omic analyses are all needed in an integrated fashion to properly distinguish malignancy in some cases. Despite significant 
progress made in the field, current clinical and pathological challenges include the preoperative distinction of non-metastatic 
low-grade adrenal cortical carcinoma confined to the adrenal gland, adoption of individualized therapeutic algorithms aligned 
with molecular and histopathologic risk stratification tools, and histological confirmation of functional adrenal cortical disease 
in the context of multifocal adrenal cortical proliferations. We herein review the histological, genetic, and epigenetic landscapes 
of benign and malignant adrenal cortical neoplasia from a modern surgical endocrine pathology perspective and highlight key 
mechanisms of value for diagnostic and prognostic purposes.
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Introduction

Approximately one-tenth of the general population exhibit 
adrenal cortical nodules, and the incidence has increased, 
most likely as a consequence of increased usage of 

abdominal imaging studies. These lesions might either 
be hormonally active or silent, and the former category is 
usually associated to specific hormone-specific symptoms 
depending on the secreted substance (mineralocorticoids, 
glucocorticoids, sex steroids) [1, 2]. The lesions can be 
multifocal, bilateral, or solitary, and recent advances have 
helped us understand that many of the synchronous mani-
festations of multiple cortical nodules are actually several, 
independent foci with mutation-driven neoplasia rather than 
true “hyperplastic” lesions. Of all adrenal cortical lesions, 
benign adrenal cortical adenoma is the most common tumor, 
occurring in all age groups and both sexes, while adrenal 
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cortical carcinoma is exceedingly rare [2]. Current clini-
cal and pathological challenges include the preoperative 
distinction of non-metastatic low-grade adrenal cortical 
carcinoma confined to the adrenal gland, adoption of indi-
vidualized therapeutic algorithms aligned with molecular 
and histopathologic risk stratification tools, and histologi-
cal confirmation of functional adrenal cortical disease in 
the context of multifocal adrenal cortical proliferations [2]. 
In this review, we aim to detail the current histological and 
molecular panorama of these lesions—with a specific con-
notation to the practicing endocrine pathologist.

Morphologic and Genomic Correlates 
of Primary Aldosteronism

Primary aldosteronism is the most common cause of second-
ary hypertension which can manifest with hypokalemia or 
normokalemia as well as non-specific symptoms including 
headache, fatigue, muscle weakness, nocturia, polyuria, and 
polydipsia [1, 2]. The diagnosis of primary aldosteronism 
requires laboratory confirmation of increased plasma aldoster-
one levels along with high plasma aldosterone-to-renin ratio 
subsequent to aldosterone suppression test [1, 2]. The autono-
mous or inappropriate aldosterone excess in primary aldoster-
onism can originate from unilateral or bilateral adrenal corti-
cal disease. Bilateral aldosterone-excess is most commonly 
the result of aldosterone-producing adrenal cortical hyper-
plasia [3], which requires a lifelong anti-mineralocorticoid 
therapy, although bilateral adenomas are not that infrequent. 
Since incidental nonfunctional adrenal cortical nodules are 
frequent in the general population and not all radiologically 
identified adrenal lesions cause aldosterone excess in patients 
with primary aldosteronism [4–6], the appropriate lateraliza-
tion of the aldosterone excess (versus potential bilateral dis-
ease) has been an important clinical task in the management 
of patients with primary aldosteronism. Several preoperative 
techniques (e.g., adrenal venous sampling with or without 
cosyntropin stimulation) are increasingly used to help distin-
guish the source of aldosterone-excess [7–10].

Since the first description of primary aldosteronism by Dr. 
Jerome W. Conn in 1955 [11, 12], the field has evolved tre-
mendously to become an area of interest for multidisciplinary 
teams of endocrine oncology specialists including but not 
limited to endocrine pathologists and endocrinologists. The 
first well-documented patient by Dr. Conn was a 34-year-old 
female that underwent right adrenalectomy for a 4.0-cm clear 
cell (lipid-rich) adrenal cortical adenoma [13]. The traditional 
morphological correlates of primary aldosteronism include 
bilateral aldosterone-producing adrenal cortical hyperpla-
sia (most common, accounting for up to 60–70% of primary 
aldosteronism [3]), unilateral adrenal cortical adenoma, and  

exceptional examples of adrenal cortical carcinoma) [1, 2, 14, 
15]. Very rare examples of aldosterone-producing adenomas 
with oncocytic change have also been reported [16]. However, 
most conventional adenomas leading to Conn syndrome have 
a characteristic golden-yellow color due to enrichment of lipid-
rich zona fasciculata (ZF)-type clear cells in the tumor; how-
ever, zona reticularis (ZR)- and zona glomerulosa (ZG)-like 
compact cells can be exclusively noted in some aldosterone-
producing adenomas [17]. In addition, some tumors can feature 
mixed ZF- and ZG/ZR-like cells [17]. The overall morphologi-
cal heterogeneity is now better reflected in molecular genotype-
phenotype correlations of primary aldosteronism [17].

Advances in genomics of aldosterone-producing adrenal 
cortical proliferations, and the use of steroidogenic enzymes, 
especially the use of CYP11B2 (aldosterone synthase) and 
CYP11B1 (an enzyme in ZF that helps produce cortisol and 
corticosterone) immunohistochemistry in adrenalectomy 
specimens from patients with primary aldosteronism, dem-
onstrated a level of morphological heterogeneity that one 
may fail to appreciate functional sites when relying only on 
H&E-stained conventional histological assessment [4, 6, 
18–22]. The absence of CYP11B2 expression in paradoxical 
zona glomerulosa layer hyperplasia adjacent to an aldoster-
one-producing clear-cell-rich adenoma [19], the occurrence 
of CYP11B2-positive aldosterone-producing cell clusters 
(APCCs) or aldosterone-producing micronodules (APMs) 
without an adrenal mass, or multiple APCCs in association 
with a non-functional adenoma, and/or multifocal adrenal cor-
tical nodular disease have challenged diagnosticians during 
the assessment of surgical specimens of patients with primary 
aldosteronism [2, 19, 21, 23–26].

Recently, a much-needed international histopathology 
nomenclature consensus study for reporting histological 
findings in patients with unilateral primary aldosteronism 
(HISTALDO) was introduced to address this important chal-
lenge (Fig. 1) [19]. The HISTALDO classification system 
combined histomorphology findings with CYP11B2 immu-
nohistochemistry to refine a spectrum of clinically relevant 
six diagnostic entities as follows:

	 (i)	 Aldosterone-Producing Carcinoma (APACC)
		    APACC is defined an aldosterone-producing adre-

nal cortical neoplasm that is diagnosed malignant 
using universal diagnostic criteria including mul-
tiparameter scoring schemes/algorithms.

	 (ii)	 Aldosterone-Producing Adenoma (APA)
		    APA is defined as a solitary CY11B2-immunopositive 

benign adrenal cortical neoplasm that measures ≥ 1.0 cm 
and is composed either of zona fasciculata-like lipid-rich 
clear cells or zona reticularis- and/or zona glomerulosa-
like compact cells, or variable amount of clear and com-
pact cells.
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	 (iii)	 Aldosterone-Producing Nodule (APN)
		    APN is defined as a morphologically obviously 

visible sub-centimeter adrenal cortical nodular dis-
ease that shows positive reactivity for CYP11B2. 
Immunohistochemistry for CYP11B2 often shows a 
stronger staining intensity at the periphery of APN.

	 (iv)	 Aldosterone-Producing Micronodule (APM; formerly 
known as APCCs)

		    APM is a CYP11B2-immunopositive adrenal corti-
cal proliferation composed of zona glomerulosa cells. 
APMs are cytologically indistinguishable from cells of 
the adjacent zona glomerulosa layer, and often feature 
the same gradient CYP11B2 staining pattern as APN.

	 (v)	 Multiple Aldosterone-Producing Nodules (MAPN) 
or multiple aldosterone-producing micronodules 
(MAPM)

		    CYP11B2-immunopositive MAPN and MAPM 
are seen at the periphery of the adrenal cortex with 
regions of normal zona glomerulosa layer. Primary 
aldosteronism can synchronously feature both MAPN 
and MAPM.

	 (vi)	 Aldosterone-Producing Diffuse Hyperplasia (APDH)                                                                                                                                      
This diagnostic category is applied to CYP11B2-pos-
itive broad or continuous zona glomerulosa hyperpla-
sia accounting for more than 50% of zona glomeru-
losa layer.

Fig. 1   Graphic depiction of the HISTALDO classification model. Aldos-
terone producing adrenal cortical carcinoma (APACC) and adenoma 
(APA) are solitary lesions clearly visible by both routine hematoxylin-
eosin (H&E) and immunohistochemical (IHC) staining for CYP11B2 
(aldosterone synthase). Smaller solitary lesions (sub-centimeter) visible by 
H&E and IHC are denoted aldosterone producing nodules (APNs), while 
the counterpart that may be hard to distinguish using H&E but always vis-
ualized on IHC are entitled aldosterone producing micronodules (APMs) 

(formerly known as aldosterone producing cell clusters). When multifocal, 
these entities are termed “multiple APN” (MAPN) and “multiple APM” 
(MAPM), respectively—corresponding to the older term “micronodular 
hyperplasia.” Finally, aldosterone producing diffuse hyperplasia is charac-
terized by a continuous CYP11B2 staining along the zona glomerulosa. 
Image created with www.BioRe​nder.com
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Unilateral primary aldosteronism with solitary APA or 
APN were referred to as exhibiting classical histology, 
whereas those with APDH, MAPN, and/or MAPM were 
termed as non-classical histology by the HISTALDO clas-
sification (Fig. 2) [19]. The classical and non-classical his-
tology had distinct molecular findings (see genotype-phe-
notype correlations), but more importantly, this approach 
correlated with a reproducible reporting of histological 
findings that correlated with lack of postoperative bio-
chemical benefit in 4.5% of patients with classical his-
tology compared with almost 42% of patients with non-
classical histology [19].

Molecular Pathogenesis of Primary Aldosteronism: 
A Disease of Ion Channels

Understanding cellular mechanisms involved in normal 
physiology shed light into the molecular pathogenies of 

primary aldosteronism (Fig. 3). In normal physiology, 
renin-angiotensin system and extra-cellular potassium ion 
(K+) levels regulate aldosterone synthesis [1]. The rest-
ing state of zona glomerulosa cells and the constitutively 
active K+ channels mediate the extra-cellular transport 
of K+, thereby keeping the cell in a hyperpolarized state. 
The latter in turn keeps voltage-dependent calcium (Ca2+) 
channels closed. When AT2 binds its receptor, a confor-
mational change results in the closure of potassium chan-
nels and leads to the accumulation of intracytoplasmic K+ 
and depolarization of the zona glomerulosa cell membrane 
potential. This in turn will open voltage-dependent Ca2+ 
channels. The influx of Ca2+ in turn activates the cell cycle 
and CYP11B2 gene transcription that encodes CYP11B2 
(aldosterone synthase) [1].

Autonomous or inappropriate aldosterone secretion is 
due to increased transcription of CYP11B2 (aldosterone 
synthase) and is also correlated with CYP11B2 hypometh-
ylation in APAs [27, 28]. Increased intracellular Ca2+ (as 
discussed in normal physiology) and the activation of the 
calcium-calmodulin dependent protein kinase pathway 
are the genomic hallmark of primary aldosteronism [1, 2, 
29]. For this reason, the pathogenesis of benign aldoster-
one-producing adrenal cortical disease (e.g., APA, APM/
APCC, APN) is typically linked to somatic mutations in 
several ion channels (Fig. 3) including the potassium chan-
nel mutation-KCNJ5 (encodes G-protein activated inward 
rectifier potassium channel 4; GIRK4) [30, 31], sodium/
potassium ATPase mutation-ATP1A1 (encodes alpha-1 
subunit of the sodium/potassium ATPase) [31–33], calcium 
ATPase mutation-ATP2B3 (encodes the plasma cell mem-
brane calcium ATPase isoform; PMCA3) [31, 32], voltage-
dependent calcium channel subunit mutations including the 
high-voltage activated L-type subunit-CACNA1D (encodes 
Cav1.3) [33–35] and the low-voltage activated T-type sub-
unit-CACNA1H (encodes Cav3.2) [35, 36], and the recently 
described voltage-gated chloride channel mutation-CLCN2 
(encodes CIC-2) [37].

In general, somatic ion channel-related mutations were 
reported to account for around 50–60% of sporadic APAs [38, 
39]; however, subsequent precise approaches using CYP11B2-
positivity as a rigid inclusion criterion for the confirmation of 
the source of aldosterone excess identified ion channels-related 
aldosterone-driver mutations in 90% of APAs in Americans 
[40, 41] and 96% of APAs in Japanese [35].

Unlike most APAs, the lack of ion channels-related muta-
tions in aldosterone-producing ACCs (APACCs) suggests 
alternative molecular mechanisms that regulate CYP11B2 
transcription in the setting of malignancy [42].

Additional noteworthy somatic alterations that have been 
identified in APAs include CTNNB1 mutations which occur 
in up to 5% of sporadic APAs [43, 44]. While the Wnt/
beta-catenin pathway is required during the development of 

Fig. 2   Histological and immunohistochemical attributes of aldosterone 
producing adrenal cortical lesions. Top row depicts a 40-mm large adre-
nal cortical adenoma with diffuse CYP11B2 immunoreactivity at × 200 
magnification. Middle row illustrates a 9-mm aldosterone producing 
adrenal cortical microadenoma (or aldosterone producing adrenal cor-
tical nodule measuring less than 1.0 cm; APN) visible by both routine 
H&E (hematoxylin-eosin) and CYP11B2 immunohistochemistry at × 40 
magnification. There were no other culprit lesions in this adrenal. Bottom 
row portrays a 3-mm aldosterone producing adrenal cortical micronodule 
(APM) only clearly demonstrable using immunohistochemistry
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adrenal glands, aberrant activation of this pathway due to 
somatic CTNNB1 mutations is a well-characterized event in 
a subset of ACCs [45, 46] as well as in benign adrenal cor-
tical neoplasms, including adrenal cortical adenomas with 
mild autonomous cortisol secretion (subclinical Cushing 
syndrome) and non-functional adrenal cortical adenomas 
[27, 47].

CTNNB1 and previously discussed ion channel-related 
mutations are mutually exclusive in APAs. Activation of 
the Wnt/beta-catenin pathway, however, has been noted 

in up to 70% of APAs [48]. While some researchers have 
restricted the role of CTNNB1 to cortical tumorigen-
esis (rather than aldosterone synthesis) in general, high 
CYP11B2 (mRNA and protein) expression in CTNNB1-
mutant APAs [44] would support a cross-talk between 
the Wnt/beta-catenin and calcium calmodulin–dependent 
kinase pathways. Berthon et al. was the first to link aldos-
terone secretion in the context of aberrant beta-catenin 
expression to overexpression of angiotensin II type 1 
receptor (AT1R), CYP21, and CYP11B2 [48]. In mice, 

Fig. 3   Schematic representation of mutated ion channels in aldosterone-
producing adrenal cortical adenoma. The left aspect depicts the resting 
state of an adrenal zona glomerulosa cell in the absence of angiotensin 2 
(AT2) stimulus. Potassium channels are constitutively active, mediating 
the extracellular transportation of potassium ions (K+), thereby keeping 
the cell in a hyperpolarized state. This in turn keeps voltage-gated cal-
cium (Ca2+) channels closed. Middle aspect illustrates the physiological 
response to AT2. When binding the angiotensin 2 receptor (AT2-R), a 
conformational change will stimulate the K+ channels to close, leading 
to the intracellular accumulation of K+. This in turn will lead to depo-
larization of the membrane potential, and the opening of voltage-gated 
Ca2+ channels. The influx of Ca2+ in turn will mediate transduction-

mediated activation of the cell cycle as well as transcription of target 
genes, of which CYP11B2 (aldosterone synthase) is one. The right 
aspect demonstrates how various gene mutations simulate the physi-
ological activation of the AT2-R pathway; for example, mutations of the 
K+ transporter KCNJ5 leading to an aberrant intracellular accumulation 
of Ca2+, as well as mutations of the sodium/potassium ATPase ATP1A1 
resulting in the inhibited extracellular transportation of sodium (Na+). 
Similarly, mutations in the Ca2+ ATPase ATP2B3 lead to decreased 
extracellular conveyance of Ca2+, and CACNA1 subunit mutations will 
lead to an increased Ca2+ influx. Image created with www.BioRe​nder.
com
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the activation of Wnt/beta-catenin pathway resulted in dis-
rupted adrenal cortical zonation with altered aldosterone 
synthesis [49, 50]. Furthermore, significantly high levels 
of gonadal receptors including gonadotropin-releasing 
hormone receptor and luteinizing hormone-chorionic gon-
adotropin receptor expression in -CTNNB1mutant APAs 
in 3 females (2 pregnant and 1 post-menopausal) were 
also recorded [51]. Nevertheless, the underlying complex 
molecular mechanisms regulating the cross-talk between 
the CYP11B2 transcription and Wnt/beta-catenin pathways 
activation requires further work.

Germline Variants in Primary Aldosteronism

Although most patients with primary aldosteronism are 
associated with sporadic disease due to somatic genomic 
alterations, a very small fraction of patients with primary 
aldosteronism can manifest with germline pathogenic vari-
ants (autosomal dominant) including CYP11B1/CYP11B2 
chimeric fusions (Familial Hyperaldosteronism type I; also 
known as glucocorticoid-remediable primary aldosteronism) 
[52], CLCN2 (Familial Hyperaldosteronism type II) [53], 
KCNJ5 (Familial Hyperaldosteronism type III) [54, 55], 
CACNA1H (Familial hyperaldosteronism type IV; results in 
early onset familial or de novo hypertension) [56, 57], and 
CACNA1D (early onset primary aldosteronism with seizure 
and neurological abnormalities; also known as PASNA syn-
drome) [34, 58].

The discovery of germline Armadillo Repeat Contain-
ing 5 (ARMC5) variants in association with KCNJ5-driven 
sporadic APAs [59, 60], rare occurrence of germline phos-
phodiesterase (PDE2A and PDE3B) variants [61], and ger-
mline ATP2B4 variants in some patients [62] has expanded 
the spectrum of germline variants of primary aldosteron-
ism. These findings also underscore germline susceptibil-
ity may be well underestimated for patients with primary 
aldosteronism.

Genotype‑Phenotype Correlations in Sporadic 
Forms of Primary Aldosteronism

Molecular studies of primary aldosteronism have helped 
develop genotype-phenotype correlations with respect to 
tumor characteristics (e.g., cytomorphology, size, and focal-
ity), degree of autonomous aldosterone secretion, patient 
demographics (age, gender, and ethnic background), higher 
risk of recurrence of postoperative hypertension, and expres-
sion of steroidogenic enzymes (ZG-related biomarkers: 
CYP11B2, ZF-related biomarkers: CYP11B1 and CYP17) 
in various aldosterone-producing adrenal cortical lesions (e.g., 
APAs, APM/APCCs, and APN) [17, 24, 33, 63–65].

Among all ion channel-related mutations, KCNJ5 was the 
most frequent mutation with an overall prevalence of 43% 

(ranging from 35% in Europe/Australia/USA to 63% in East 
Asia) in a meta-analysis of 1636 patients [39]. In addition, 
somatic KCNJ5 mutations were reported in 71.2% of APAs 
in a Korean series [66]. Interestingly, CACNA1D mutations 
(with the rate of 42%) surpassed the frequency of KCNJ5 
mutations (with the rate 34%) in blacks with CYP11B2-
expressing APAs [40].

In general, KCNJ5-related primary aldosteronism is com-
mon in females with pronounced and earlier age of disease-
onset and is likely to manifest with a solitary or dominant 
APA composed predominantly of ZF-like clear cells [33, 
39, 64, 65]. KCNJ5-related phenotype is on a par with the 
original description of APA (4.0-cm clear-cell-rich APA in 
a young female) by Dr. J. Conn [11, 12]. KCNJ5-wild type 
disease is more frequent in males (often later age of disease-
onset) and is likely to manifest with a smaller tumor size 
(often less than 1.0 cm) and/or multifocal disease including 
MAPM/APCCs and/or MAPNs, and frequent compact cell 
cytomorphology [17, 33]. These observations are also in 
line with the fact that the classical histology designation of 
the HISTALDO classification is enriched in KCJN5-mutant 
aldosterone-producing lesions when compared with the non-
classical histology group [19].

Molecular heterogeneity, which is characterized by the 
occurrence of various ion channels-related somatic drivers 
(both KCNJ5 and KNCJ5-wild type somatic alterations) in 
multinodular asynchronous aldosterone-producing prolif-
erations, can occur within the same adrenal gland [24, 67]. 
In addition, somatic CACNA1H mutations were restricted 
to the CYP11B2-expressing cellular component within the 
adenoma substance, whereas the remaining CYP11B2-neg-
ative cellular component of the adenoma lacked CACNA1H 
mutations [36]. The latter not only supports intra-tumoral 
clonal heterogeneity with respect to aldosterone synthesis 
but also supports the hypothesis that the pathophysiologic 
functionality of aldosterone excess may be independent of 
tumorigenesis. In fact, this observation is of significance 
given the high rate of Wnt/beta-catenin pathway activation 
(despite the low frequency of CTNNB1 mutations) in pri-
mary aldosteronism.

From a steroidogenic enzyme expression perspective, 
all aldosterone-producing lesions show variable expression 
for CYP11B2 [37, 63, 68, 69]. ACAs harboring ATP1A1, 
ATP2B3, and CACNA1D mutations often feature higher lev-
els of mRNA transcripts for CYP11B2 when compared with 
KCNJ5-dependent primary aldosteronism [17, 33, 37, 63, 
64, 69]. KCNJ5-driven APAs show abundant CYP17A1 and 
CYP11B1 mRNA transcripts among all APAs [37]. These 
findings help explain variations in cytomorphology and 
immunohistochemical staining patterns for steroidogenic 
enzymes [63, 68, 69]. In addition, KCNJ5 mutations have 
been implicated in the pathogenesis of synchronous aldos-
terone- and cortisol-secreting adrenal cortical neoplasms 
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[70–72]. The latter may also be explained with ZF-like 
steroidogenic enzyme profiling in these tumors. CLCN2-
mutant APAs are composed of compact cells that show 
high CYP17A1 and CY11B1 expression as seen in KCNJ5-
related APAs [37].

Despite its rarity, CTNNB1-related primary aldosteronism 
seems to be more frequent in females that manifest with a 
later age of disease-onset, heterogenous cytomorphology, and 
nuclear beta-catenin expression, as well as a higher risk of 
postoperative disease recurrence [43, 44].

Aldosterone-driver mutation status also showed corre-
lation with the adrenal vein sampling (AVS) lateralization 
index after cosyntropin stimulation in patients with pri-
mary aldosteronism [8]. For instance, individuals harboring 
KCNJ5-mutant adrenal cortical lesion(s) were reported to 
have descending lateralization index, whereas those harbor-
ing  ATP1A1 and ATP2B3 were associated with an increased 
AVS index value [8], although this has to be confirmed by 
another study.

Morphologic and Genomic Correlates 
of Adrenal Cushing Syndrome

Endogenous Cushing syndrome is caused by autonomous 
and elevated cortisol secretion. Not all patients with endog-
enous cortisol excess manifest with florid clinical and 
biochemical findings; thus, a subset of patients may show 
evidence of mild autonomous cortisol secretion which can 
result in subclinical Cushing syndrome. Static and dynamic 
endocrine function tests and imaging findings are required 
in the confirmation of hypercortisolism and the source of 
cortisol excess [1, 17, 73]. The major cause of endogenous 
cortisol excess is due to a pituitary ACTH-dependent bilat-
eral diffuse adrenal cortical hyperplasia [73]. Together, 
ACTH-dependent (pituitary and ectopic ACTH excess) and 
ACTH-independent (primary adrenal cortisol excess) Cush-
ing syndrome encompasses a wide-spectrum of morphologi-
cal entities ranging from primary bilateral nodular adrenal 
cortical disease to adrenal cortical neoplasms [1, 17, 73].

Cortisol-secreting adrenal cortical neoplasms are most 
often unilateral. From a morphological perspective, cortisol-
producing adrenal cortical adenomas are distinguished from 
carcinomas using the universally accepted multi-parameter 
scoring systems along with immunohistochemical and 
molecular biomarkers [2, 68, 74]. Cortisol-producing ade-
nomas are often enriched in ZF-like clear cells but variable 
amount of compact cells and/or pigment deposition can 
also occur [1, 17, 73]. The presence of cortical atrophy in 
the non-tumorous adrenal cortex is also a pathognomonic 
feature of autonomous cortisol secretion in the absence of 
exogenous cortisol administration [75].

Primary bilateral nodular adrenal cortical disease is often 
divided into two distinct morphologic entities including (i) 
Primary bilateral micronodular adrenal cortical disease 
(nodules measure less than 1.0 cm, often 0.1–0.4 cm) and 
(ii) Primary bilateral macronodular adrenal cortical dis-
ease (nodules often exceed 1.0 cm) (Fig. 4) [1, 17, 73]. In 
modern endocrine pathology practices, the historical term 
of bilateral nodular adrenal cortical hyperplasia is no longer 
appreciated since both micronodular and macronodular 
types of this disorder often consist of genetically modified 
adrenal cortical cells [2]. While the appropriate terminol-
ogy has been widely adopted for the micronodular form of 
this disorder (e.g., primary pigmented micronodular adrenal 
cortical disease), the term “bilateral macronodular adrenal 
cortical disease” is now being increasingly used by endo-
crine pathologists instead of a frequently used misnomer of 
primary bilateral macronodular adrenal cortical hyperplasia 
(PBMAH) [2].

Primary bilateral micronodular adrenal cortical disease 
encompasses primary pigmented nodular adrenal cortical 
disease (PPNAD) and micronodular adrenal cortical dis-
ease (MAD) (Fig. 4). The MAD lacks obvious pigmenta-
tion in micronodules. Micronodules are composed of com-
pact adrenal cortical cells, and they are frequently located 
in the intersection of deep ZF and ZR [1, 17, 73]. Unlike 
MADs, internodular adrenal cortex is often atrophic in the 
setting of PPNADs [1, 17, 73]. The prototypical macronodu-
lar form of macronodular adrenal cortical hyperplasia, so-
called “PBMAH,” is associated with bilateral adrenal gland 
enlargement due to multiple benign macronodular adrenal 
cortical nodules that are enriched in ZF-like cells [73].

Studies on molecular pathogenesis of cortisol-producing 
adrenal cortical nodules have significantly improved our 
understanding of adrenal cortical tumorigenesis and also 
shed light to mechanisms responsible for autonomous cor-
tisol secretion. The next section will provide a summary for 
the molecular pathogenesis of endogenous adrenal Cushing 
syndrome.

Molecular Pathogenesis of Adrenal Cushing 
Syndrome

Understanding adrenal cortical cellular mechanisms 
involved in normal physiological response to ACTH shed 
light into the molecular pathogenies of Cushing syndrome 
(Fig. 5). In the ZF layer, cortisol is secreted in response to 
ACTH stimulus. In normal physiology, upon ACTH binding 
to the 7-transmembrane G-protein coupled melanocortin 2 
receptor (MC2R), the G-protein stimulatory alpha subunit 
activates membrane-bound adenylyl cyclase (AC), which 
in turn catalyzes the conversion of cAMP from ATP, a 
turnover process that is also down-regulated by phospho-
diesterase (PDE). When intracellular cAMP levels rise, the 
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regulatory subunits of PKA (PKA-R) are inhibited, thereby 
lifting repression of the catalytic subunits of PKA (PKA-
C). The free PKA-C will phosphorylate the PKA substrates 
in various cellular compartiments. The free PKA-C enters 
the nucleus and activates the transcription factor cAMP 
response element-binding protein (CREB), leading to 
transcription of target genes promoting proliferation and 
cortisol-production [1, 17].

Autonomous or inappropriate cortisol secretion in 
most adrenal cortical neoplasms and bilateral nodular 
adrenal cortical disease (e.g., PPNAD, MAD, a subset of 
PBMAH) is related to constitutive activation of the cAMP/
PKA signaling pathway [1, 17, 76]. Common mechanisms 
involved in aberrant cAMP/PKA signaling pathway acti-
vation include (i) aberrant expression of G-protein cou-
pled receptors (GPCRs); (ii) activating mutations in the 
MC2R, GNAS, and PRKACA​ genes, encoding MC2R, the 
G-protein stimulatory alpha subunit, and PKA-C, respec-
tively; (iii) inactivating mutations in PRKAR1A, encoding 

the type I alpha regulatory subunit of PKA (PKA-R); and 
(iv) inactivating mutations in PDE superfamily members 
PDE8B and PDE11A encoding PDE (Fig. 5) [1, 17, 76].

Bilateral micronodular adrenal cortical disease is often 
associated with germline pathogenic variants in the PKA 
signaling pathway [2, 17, 77–80]. Around 80% of PPNADs 
harbor pathogenic PRKAR1A variants [78]. PRKAR1A 
wild-type PPNADs are linked to genomic alterations of the 
CNC2 gene locus [81]. PPNAD is frequently seen in asso-
ciation with Carney Complex (referred to c-PPNAD) [1]. 
In the absence of family history or Carney Complex-related 
manifestations, the term “isolated PPNAD” (i-PPNAD) 
is applied by some experts [1]. Germline PDE variants 
(PDE11A and PDE8B) [80, 82, 83] or germline PRKACA​ 
duplication [80, 84] were identified in PRKAR1A-wild type 
i-PPNADs and MADs. Moreover, a recent study showed a 
missense ARMC5 variant in PPNAD [27]. Furthermore, a 
current study expanded our knowledge on germline corre-
lates of PKA signaling pathway by demonstrating germline 

Fig. 4   Schematic overview of cortisol-secreting adrenal cortical lesions. 
While unilateral cortisol-producing lesions consist of adrenal cortical 
carcinoma and adenoma, bilateral disease is characterized by either dif-
fuse hyperplasia due to ACTH-secretion (most often Cushing’s disease), 
or micronodular (< 1  cm) or macronodular (> 1  cm) adrenal cortical 
disease. The former is subdivided into primary pigmented micronodu-
lar adrenal cortical disease (PPNAD) and micronodular adrenal cortical 
disease (MAD). PPNAD is frequently associated with Carney complex, 

but can also be seen in non-syndromic forms. MAD lacks the classic 
pigmentation seen in PPNAD. Macronodular adrenal cortical disease 
is also entitled primary bilateral macronodular adrenal hyperplasia 
(PBMAH), but the latter terminology is a misnomer as the nodules of 
this entity is neoplastic rather than true hyperplastic. Image created with 
www.BioRe​nder.com
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PRKACB variants that may cause PPNAD-like manifesta-
tions [85]. Some adrenal cortical adenomas arising in the 
background of PPNAD show somatic CTNNB1 mutations 
[86]; moreover, altered microRNA regulation, especially in 
the context of PRKAR1A-related PPNAD is shown to affect 
the Wnt/beta-catenin signaling pathway [87].

Since its initial description by Kirschner et  al. in 
1964 [88], primary bilateral macronodular adrenal 
cortical disease has been an area of interest given its 
complex pathogenesis that has been explained by several 
mechanisms including (i) germline pathogenic ARMC5 
variants (around 25–55% of PBMAH in various series) 
[89–91]; (ii) germline susceptibility due to MEN1, FH, 

APC, PDE11A, and PDE8B variants [17, 92–98]; (iii) 
postzygotic somatic GNAS mosaicism in the context 
of McCune Albright syndrome [2, 99]; (iv) aberrant 
G-protein coupled receptor expression [100, 101]; (v) 
ectopic hormone receptor expression or dysregulation of 
membrane receptors [101–103]; (vi) paracrine regulatory 
effect of aberrant intra-adrenal ACTH synthesis and 
secretion by adrenal cortical cells [104, 105]; and (vii) 
increased PRKAR2B using real-time PCR and protein 
expression levels [106]. A recent study identified 
a specific group of ARMC5-wild type disease with 
miRNA142 expression [27]; this finding was in support 

Fig. 5   Aberrant protein kinase A (PKA) signaling in cortisol-producing 
adrenal cortical adenoma. The left aspect demonstrates the physiologi-
cal response to ACTH stimulus in a zona fasciculata cell of the adrenal 
cortex. Upon binding the G-protein coupled melanocortin 2 recep-
tor (MC2R), the G stimulatory alpha subunit will activate membrane-
bound adenylyl cyclase (AC), which in turn catalyzes the conversion of 
cAMP from ATP, a turnover process also regulated by phosphodiester-
ase (PDE). When levels of cAMP rise, the regulatory subunits of PKA 
(PKA-R) are inhibited, thereby lifting repression of the catalytic subunits 
of PKA (entitled PKA-C). PKA-C will enter the nucleus activate the 
cAMP response element-binding protein, leading to transcription of tar-

get genes promoting proliferation and cortisol-production. Right aspect 
of the image represents aberrant molecular PKA signaling in cortisol-
producing adrenal cortical adenoma. For instance, aberrant expression of 
G protein coupled receptors (GPCRs) might activate the PKA pathway, 
which can also be achieved by activating mutations in the MC2R, GNAS, 
and PRKACA​ genes; encoding MC2R; the G stimulatory alpha subunit; 
and PKA-C, respectively. Moreover, inactivating mutations in  superfam-
ily members PDE8B and PDE11A encoding PDE, as well as PRKAR1A, 
encoding the inhibitory PKA-R subunit, will have similar effects. Image 
created with www.BioRe​nder.com
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of one of suggested pathogenetic mechanisms via ectopic 
GIP receptors in adrenals with PBMAH [107].

Somatic PRKACA​ mutations are the most common 
alterations identified in around 40% of adrenal cortical 
adenomas with overt Cushing syndrome [70, 108–111] 
(Fig. 5). Other relatively infrequent somatic alterations 
include allelic loses or inactivating somatic mutations in 
PRKAR1A [112], activating mutations in GNAS [70] and 
PRKACB [113].

The Wnt/beta-catenin pathway activation due to CTNNB1 
mutations occurs in around 25% of cortisol-producing adrenal 
cortical adenomas [27, 70, 114]. While virtually all mutations 

in the PKA signaling pathways are mutually exclusive, rare 
examples of synchronous GNAS- and CTNNB1-harboring 
cortisol-producing adrenal cortical adenomas were also 
identified [70]. In addition, rare examples of aldosterone- 
and cortisol co-secreting adrenal cortical neoplasms due to 
somatic KCNJ5 mutations [70–72] expand our knowledge 
even further regarding pathogenic alterations of adrenal 
Cushing syndrome.

The heterogeneous spectrum of benign cortisol-producing 
clonal adrenal cortical proliferations was reflected in 3 dis-
tinct integrated genomic groups in a recent pan-genomic 
study (Fig. 6) [27]. These groups are summarized as follows:

Fig. 6   Integrated genomics of benign adrenocortical lesions. 
Transcriptome analyses reveal distinct mRNA profiles for aldosterone-
producing adrenocortical adenoma, cortisol-producing adrenocortical 
lesions (mix of adrenal cortical adenoma, ACTH-dependent 
hyperplasia in Cushing’s disease, and primary pigmented nodular 
adrenal cortical disease (PPNAD)), primary macronodular adrenal 
cortical disease, and non-producing/subclinical cortisol-producing 
adenomas. While aldosterone-producing adenomas exhibited strong 
CYP11B2 expression (encoding aldosterone synthase), the joint group 
of cortisol-producing lesions displayed a steroidogenic mRNA profile 
reminiscent of the C1A adrenal cortical carcinoma expressional profile 
[45, 190]. Primary macronodular adrenal cortical disease (primary 
macronodular adrenal hyperplasia) expressed genes in accordance 
with an ovarian phenotype (here exemplified by FOXL2), whereas 

non-producing/subclinical cortisol-producing adenomas displayed an 
mRNA profile similar to the C1B adrenal cortical carcinoma cluster. 
Cortisol-producing lesions were further collectively characterized 
by protein kinase A (PKA) activation, a coupling to the DLK1-
MEG3 miRNA cluster, and when additionally profiled for miRNA 
signatures—divided into a group of adrenal cortical adenomas (mi5 
signature) and multifocal lesions (ACTH-dependent hyperplastic 
lesions and PPNAD; mi4 signature). Primary macronodular adrenal 
cortical disease was characterized by inactivating ARMC5 mutations, a 
MIR100 miRNA cluster profile, and global promoter hypermethylation, 
while non-producing or subclinical adenomas displayed Wnt pathway 
aberrances (CTNNB1 mutations and ZNRF3 mutations/deletions), 
frequent gain of chromosome 9q, and a global hypomethylation status. 
Image created with www.BioRe​nder.com
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	 (i)	 PPNADs and adrenal cortical adenomas with overt 
Cushing syndrome are linked to an active cAMP/
PKA signaling pathway:

		    In this group, tumors exhibited higher expres-
sion of the DLK1-MEG3 miRNA cluster. Moreover, 
adenomas were distinguished from PPNADs given 
their differential segregation into a specific miRNA 
signature.

	 (ii)	 Adrenal cortical adenomas with mild autonomous 
cortisol secretion are linked to an active Wnt/beta-
catenin signaling pathway:

		    Among somatic copy number alterations, chro-
mosome 17q losses (including the PRKAR1A locus) 
were more frequent in the group of lesions with overt 
Cushing syndrome, compared to tumors with active 
Wnt/beta-catenin signaling pathway due to CTNNB1 
and ZNRF3 mutations. These lesions were enriched 
for gain of chromosome 9q (including the Nuclear 
Receptor Subfamily 5 Group A Member 1 NR5A1 
locus encoding SF1). These tumors also featured 
lower methylation of CpG islands. Adenomas with 
mild autonomous cortisol secretion were also segre-
gated together with non-functional adrenal cortical 
adenomas in this genomic group.

	 (iii)	 ARMC5-driven primary bilateral macronodular 
adrenal cortical disease is linked to an ovarian gene 
expression signature

An ovarian gene expression signature (FOXL2, CYP19A1, 
PTHLH), increased expression of the MIR100 cluster and 
global hypermethylation of CpG islands were distinct fea-
tures of this homogenous group of cortisol-producing adre-
nal cortical lesions.

Genotype‑Phenotype Correlations in Benign Lesions 
of Adrenal Cushing Syndrome

Cortisol-producing adenomas with PRKACA​ and PRKAR1A 
alterations were often associated with a smaller tumor size [17, 
112, 115], and PRKACA​-related tumors were more frequently 
reported in younger patients with overt Cushing syndrome 
[17, 108]. Several lines of evidence showed that CTNNB1-
driven adenomas were preferably large, non-functional tumors 
as well as lesions with mild autonomous cortisol secretion 
[47]. These observations were also validated in a recent study 
that compared steroidogenic biomarker expression profile in 
PRKACA​-, GNAS- and CTNNB1-mutant cortisol-producing 
adrenal cortical adenomas [116]. In terms of steroidogenic 
biomarker expression profile, PRKACA​-mutant adrenal cor-
tical adenomas displayed increased immunohistochemical 
reactivity for CYP11B1, CYP17A1, and 3βHSD compared 
with PRKACA​-wild type (GNAS and CTNNB1 mutant) adeno-
mas [116]. The same study also reported for the first time that 

cytomorphological heterogeneity was reflected in steroidogenic 
biomarker expression profile as the compact cell component 
of cortisol-producing adenomas had the highest expression. In 
addition, PRKACA​- and GNAS-related adenomas were found to 
be more senescent and hormonally active compared with wild-
type cortisol-producing adrenal cortical adenomas.

Initially considered a diagnostic feature of c-PPNAD [117], 
paradoxical dexamethasone-induced increase in urinary corti-
sol levels also occurs in rare PRKAR1A-related adrenal corti-
cal adenomas [112]; this phenomenon is largely explained 
via a glucocorticoid receptor-related effect on PKA catalytic 
subunits [117]. The CNC2-locus-related c-PPNADs disease 
was more frequently diagnosed later in life compared with 
those with germline PRKAR1A variants [118]. A recent study 
showed that ARMC5 polymorphic variants may interfere with 
the occurrence and severity of adrenal Cushing syndrome in 
patients with PRKAR1A-driven PPNADs [119]. Moreover, 
while most patients with c-PPNAD are associated with benign 
adrenal cortical nodular proliferations, rare examples of well-
documented adrenal cortical carcinomas were reported in 
association with this disorder [120, 121].

Germline ARMC5 alterations are responsible for the most 
common form familial primary bilateral macronodular adre-
nal cortical disease (PBMAH) [89]. In addition to its extensive 
genetic variance [122] and the occurrence of distinct second-
ary mutations in individual nodules of PBMAH [89], ARMC5-
induced molecular mechanisms that regulate steroidogenesis, 
apoptosis and cellular proliferation have been an area of interest 
[123]. The general statement that ARMC5-driven disease affects 
proliferation as well as functionality may also reflect the genetic 
landscape of this particular association. Espiard et al. showed 
that patients with ARMC5-mutant PBMAH were more fre-
quently associated with larger and more nodular adrenals as well 
as more pronounced Cushing syndrome (characterized by higher 
levels of midnight cortisol, urinary free cortisol and cortisol after 
dexamethasone suppression test) than those with ARMC5-wild 
type disease [90]. For instance, despite being classified as a 
benign process, paradoxically increased genomic instability of 
ARMC5-related macronodular adrenal cortical disease can be 
attributable to global hypermethylation of CpG islands identified 
in the most recent pan-genomic study [27].

Morphologic and Genomic Correlates 
of Adrenal Cortical Carcinoma

Although much rarer than its benign counterpart tumors 
of the adrenal cortex, adrenal cortical carcinoma (ACC) 
is the most lethal malignancy derived from this organ and 
responsible for the majority of deaths in patients with 
primary adrenal neoplasia. The incidence is estimated 
to 0.7–2 cases per million population annually in the 
USA, and the age-span is wide, ranging from early 
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childhood (syndromic ACC; 5–10% of cases) to older 
ages (mostly sporadic ACC) [124, 125]. Female patients 
are overrepresented, and the majority of patients are 
detected through symptoms related to hypersecretion of 
various adrenal cortical hormones, most usually cortisol 
and androgens, rarely aldosterone [126]. Among the 
other half of patients, the ACC is hormonally silent, and 
clinical signs of disease might be delayed until further 
tumor growth causes localized symptoms—alternatively, 
the tumor is found en passant during radiological 
investigations for unrelated reasons. The prognosis is 
poor if the tumor is locally advanced or spread to distant 
sites upon diagnosis, and the overall 5-year survival rate 
is 30% [126]. However, in lower stage ACCs localized 
to the adrenal, the vast majority of patients live five year 
or longer following adrenalectomy, although recurrence 
rates are high [127]. In this aspect, complete surgical 
resection with negative margins is an important prognostic 
factor [126]. If locally advanced or spread to distant sites, 
administration of the adrenolytic agent mitotane is usually 
recommended [128–130].

Histologically, ACCs are circumscribed by a fibrous 
capsule, and usually growing in large nests intermingled 
with solid and trabecular areas [124]. Cells are usually 
eosinophilic or vacuolated (lipid-rich), but subsets of 
cases will present with oncocytic, myxoid or sarcomatoid 

features [131–135]. The usual hallmarks of malignant 
tumors are present, such as nuclear pleomorphism, 
increased mitotic counts, tumor necrosis, and invasive 
behavior (capsular or vascular invasion, extension into 
the periadrenal fat) (Fig. 7) [124, 136]. From an immu-
nohistochemical standpoint, ACCs were early-on known 
to be vimentin positive while most often negative for 
cytokeratins and epithelial membrane antigen (EMA), 
allowing an expression-based separation from renal cell 
carcinomas—which is not always possible using mor-
phological assessment alone [137]. Building on this, 
the current differential diagnostics is usually focused 
on excluding a non-adrenal cortical origin (most often 
pheochromocytoma and metastatic lesions), and for this 
reason a panel consisting of SF1, melan A (clone A103), 
calretinin, inhibin alpha, and chromogranin A could be 
considered (Fig. 8). Among these, SF1 is regarded as the 
best universal diagnostic biomarker of adrenal cortical 
differentiation [68]. While the combination of synapto-
physin immunoreactivity and pan-cytokeratin negativity 
alone would argue in favor of ACC as opposed to many 
metastatic carcinomas, this expressional pattern is also 
true for pheochromocytoma [138, 139]. Chromogranin 
A expression strongly supports a diagnosis of pheochro-
mocytoma over a cortical neoplasm [68].

Fig. 7   Histological attributes of adrenal cortical carcinoma (ACC). 
All photomicrographs are routine hematoxylin-eosin staining magni-
fied ×  200 if not otherwise stated. a Overall architecture of an ACC. 
The tumor cells are lipid-rich or eosinophilic and arranged in large 
nests and solid areas. Magnification × 100. b Same tumor, with conflu-
ent tumor necrosis. c ACC displaying venous angioinvasion character-
ized by intravascular tumor cells admixed with thrombus. d Capsular 

invasion and extra-adrenal extension into the surrounding adipose tis-
sue are sometimes noted. Magnification ×  100. e Aggravated nuclear 
pleomorphism with occasional multinucleated, bizarre cells in an onco-
cytic ACC. Note the presence of an intranuclear inclusion body. Mag-
nification × 400. f Myxoid features can be present in some cases
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Histological Evaluation of Malignant 
Behavior

The main diagnostic predicament for endocrine patholo-
gists in this context remains the distinction between adre-
nal cortical adenoma and ACC [140]. To stratify the risk 
of malignancy in adrenal cortical neoplasms, the current 
WHO classification of endocrine tumors [124] endorses 
the application of the multi-parameter schemes including 
the Weiss criteria for adult, non-oncocytic adrenal cortical 
tumors [141], the Lin-Weiss-Bisceglia criteria for oncocytic 
tumors [142], and the Wieneke classification for pediatric 
cases [143]. The Weiss criteria focus on identifying ACCs 
by an accumulated score provided by the identification of 
nuclear pleomorphism, elevated mitotic count, atypical 
mitoses, reduced number of clear cells, diffuse architecture, 
presence of necrosis, venous or sinusoidal invasion, and 
capsular invasion [141]. Three or more of these criteria in a 
given adrenal cortical tumor would signify a significant risk 
of malignant behavior, and the algorithm has been repro-
duced and also modified in large, independent series [144, 
145]. As always in endocrine pathology whenever malig-
nancy is wholly or partially dictated by the tumoral relation-
ship to blood vessels and capsule, extensive gross sampling 
of the tumor is required—which is sometimes burdensome 
given the impressive sizes of malignant adrenal cortical neo-
plasms. In fact, the identification of venous angioinvasion 

characterized by tumor cells invading through a vessel wall 
and admixed with thrombus is not only regarded a diagnostic 
feature of ACC, but it is also an important prognostic factor 
in patients with ACC [74].

As oncocytic tumors per definition are eosinophilic and 
often display confluent growth and prominent nuclear atypia, 
this “head-start” of three points by the Weiss criteria would 
make any oncocytic adrenal cortical tumor potentially malig-
nant—which of course is not the case. To counter this, the 
Lin-Weiss-Bisceglia criteria were put forward as an alternate 
algorithm tailor-made for pinpointing oncocytic ACC [142]. 
In this aspect, one “major” criterion is needed (increased 
mitotic rate, atypical mitoses, or venous invasion), while 
the presence of one or more of minor criteria would clas-
sify as an adrenal cortical tumor with uncertain malignant 
potential (aggravated size/weight, necrosis, and sinusoidal 
or capsular invasion).

Pediatric ACCs have proven difficult to tackle from a his-
tological viewpoint, not least the risk of histologically over-
stating the risk of malignancy when applying conventional 
criteria normally used for adult patients [143]. As of this, a 
separate scoring system proposed by Wieneke et al. combine 
nine macroscropic and microscopic features of pediatric 
adrenal cortical neoplasms associated to clinically malignant 
cases. This model has since been reproduced by other groups 
and could potentially also benefit from the inclusion of P53, 
IGF2, and Ki-67 immunostainings [146–148].

Fig. 8   Typical immunohistochemical expression profile in adrenal cor-
tical carcinoma (ACC). All photomicrographs are magnified ×  200. 
ACCs are regularly uniformly positive for synaptophysin and SF1 and 

usually exhibit some grade of calretinin and melan A expression. P53 
immunostainings are frequently diffusely positive, and the Ki-67 prolif-
eration index is often higher than 5%
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More recent proposed multiparameter schemes include 
the reticulin algorithm and the Helsinki scoring systems, 
which have also been promising in the distinction of ACC 
[136, 149–151]. While the reticulin algorithm builds on the 
inclusion of reticulin staining to identify loss of nested archi-
tecture as a parameter together with additional histological 
features (necrosis, mitotic rate and vascular invasion), the 
Helsinki scoring system relies of Ki-67 immunohistochem-
istry along with the identification of necrosis and mitotic 
activity [149–151].

Immunohistochemistry to Aid in Clinical 
Routine Practice

While the histological criteria above are useful to diag-
nose ACC in most patients, there is a consensus that not 
all malignant adrenal cortical neoplasms are correctly 
identified through routine histology alone [136]. This is 
not least exemplified by borderline cases with uncertain 
malignant potential, which is a term reserved for adrenal 
cortical tumors fulfilling some criteria for ACC, although 
not yet reaching the proposed cut-offs [124]. For this rea-
son, endocrine pathologists have turned their attention to 
immunohistochemistry as a cheap and reproducible method 
to highlight cases at risk of future dissemination. In adult 
patients, histochemical and immunohistochemical markers 
that have proven useful in the distinction between ACCs and 
benign adrenal cortical nodules include the reticulin stain 
[149], the Ki-67 proliferation labeling index [151, 152], P53 
[153–156], and IGF2 [74]. In general, intense P53 nuclear 
immunostaining helps identify a subset of ACCs that are 
often associated with more obvious histological features of 
malignancy; therefore, an altered reticulin network in asso-
ciation with an increased Ki-67 count (often above 5%) and 
paranuclear IGF2 expression is often regarded more useful 
in the distinction of ACCs from adrenal cortical adenomas 
in adults [74] (Figs. 8 and 9).

Given the fact that most predictive algorithms are based 
on establishing a mitotic index in order to highlight malig-
nant cases, it may come as little surprise that researches 
have been trying to benefit from analyzing the prolif-
erative potential of ACCs. Besides Ki-67, phospohistone 
(PHH) immunostainings may help to highlight mitoses, 
and BUB1B, HURP, and NEK2 are additional markers of 
the mitotic machinery that may help identifying ACCs [74, 
157]. Partly mirroring the development of risk assessment 
of pheochromocytoma and paraganglioma [158], the com-
bination of immunohistochemistry and histology has proved 
particularly valuable to develop histological predictive mod-
els also for ACCs. As discussed earlier, the so-called Hel-
sinki algorithm combine histological parameters and a Ki-67 
labeling index as a model to pinpoint ACCs with metastatic 

potential—thereby providing a small but necessary step for 
cohesive, multimodal risk assessment of adrenal cortical 
tumors [150, 151]. Evaluation of the Ki-67 (MIB1) labe-
ling index should be performed on the tumor region with 
the highest mitotic density preferably using an automated 
image analysis nuclear algorithm or manual counting; how-
ever, eyeballing is no longer recommended [136, 159, 160]. 
Even so, combinations of histology, immunohistochemis-
try, and next-generation multi-omics analyses are all prob-
ably needed in an integrated fashion to properly distinguish 
malignancy (Fig. 10).

The Genomic Landscape of Adrenal Cortical 
Carcinoma

Early Clues from Associated Tumor Syndromes

Prior to the advent of next-generation sequencing (NGS) 
techniques, recurrent somatic genetic events in ACC 
were mostly found due to targeted analyses of genes also 
responsible for syndromic forms of the disease (reviewed 
below). For example, germline mutations of the tumor 
suppressor gene TP53 predispose for the Li-Fraumeni syn-
drome, in which patients are at increased risk of develop-
ing ACCs, sarcomas, breast cancer, and various tumors 
of the central nervous system [161, 162]. TP53 encodes 
P53, a well-characterized tumor suppressor gene and a 
master regulator of cellular response to environmental 
stress and DNA damage (Fig. 11). Following the link-
age between germline TP53 mutations and Li-Fraumeni 
syndrome, somatic TP53 gene mutations were early on 
reported in subsets of sporadic ACC, while exceedingly 
rarely observed in ACAs [163]. TP53 was listed as the 
top mutated gene in ACC (18% of cases) according to the 

Fig. 9   IGF2 immunohistochemistry in adrenal cortical carcinoma 
(ACC). Paranuclear dot-like IGF2 immunoreactivity is a diagnostic 
feature of ACC and correlates with IGF2 overexpression. Scale bar 
is 70 µm
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Catalogue of Somatic Mutations in Cancer (COSMIC) 
database (accessed December 2020) (Table 1); however, 
if other genetic mechanisms besides mutations are consid-
ered, ZNRF3 is the most commonly altered gene in ACCs 
with an average 20% of cases displaying bilallelic inacti-
vation [45, 164].

Moreover, in several other syndromic diseases in which 
ACC is an established feature (Lynch syndrome [165, 166], 
familial adenomatous polyposis (FAP) [167], multiple 
endocrine neoplasia type 1 (MEN1) [168–170], and neu-
rofibromatosis type 1 (NF1)) [171, 172], the correspond-
ing genetic aberrancy was also found as somatic mutations 
in sporadic ACCs (MSH2, APC, MEN1, and NF1, respec-
tively) [164, 173]. In all, among the top 20 mutated genes 
on the somatic level in ACC, five (25%) are ACC syndromic 
genes (TP53, MSH2, APC, MEN1, and NF1)—thereby truly 

manifesting their importance as contributors in the develop-
ment of ACC (Table 1).

Additionally, loss of the maternal 11p15 allele (with 
synchronous duplication of the paternal allele) is a fre-
quent finding in ACCs [174–177]. This locus contains 
the imprinted H19 and IGF2 genes, which are exclusive 
expressed from maternal and paternal alleles, respectively 
[177]. The selective loss of the maternal allele and dupli-
cation of the paternal allele is therefore reflected in ACCs 
as evident down-regulation of H19 and overexpression 
of IGF2. The H19 gene encodes a long non-coding RNA 
with tumor suppressive properties, while IGF2 bears onco-
genic features—and this change in gene dosage therefore is 
thought to propel the development of ACC [175, 178]. Inter-
estingly, aberrant methylation patterns in imprinting regions 
at chromosome 11p15 as well as uniparental disomy (in this 

Fig. 10   Molecular attributes of adrenal cortical carcinoma (ACC) and 
adenoma (ACA). Mechanisms underlying the development of ACCs 
(depicted to the left, in red color) include over-expression of IGF2 and 
mutations in the Wnt and P53 signaling pathways. Cell cycle–related 
genes are often up-regulated, and chromosomal aberrations (usually 
deletions) are plentiful. ACCs are furthermore characterized by global 
hypmethylation, but increased promoter-specific hypermethylation, as 
opposed to ACAs (right, in blue color). ACAs in turn often lack Wnt and 

P53 pathway mutations, but instead exhibit mutations in genes encod-
ing various ion channels (KCNJ5, ATP1A1, ATP2B3, CACNA1D, and 
CACNA1H) and in genes regulating protein kinase A (PKA)-related path-
ways (PRKACA​ and PRKAR1A). The transcriptome is overrepresented 
in genes associated to steroidogenesis, and chromosomal aberrations are 
few. Image created with www.BioRe​nder.com
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case, two copies of the paternal allele is inherited) are the 
two main mechanisms underlying the Beckwith-Wiedemann 
syndrome (BWS) [179, 180]. BWS is a developmental dis-
order in which the afflicted also carries an increased risk of 
tumor formation, including ACCs.

Chromosomal Aberrations

Besides clues from hereditary syndromes, the gross 
genetic landscape of ACCs was early-on dissected using 
loss of heterozygosity (LOH) and comparative genomic 
hybridization (CGH) techniques. ACCs regularly display 
high-grade nuclear atypia, atypical mitoses, and aneu-
ploidy histologically, features mirrored on the molecular 
level by the identification of complex karyotype changes 

with widespread losses and gain of genetic material. 
Recurrent regions of gain include 9q34, encompassing 
NR5A1 encoding the nuclear transcription factor ster-
oidogenic factor 1 (SF1), and 5p15 (including the tel-
omerase reverse transcriptase (TERT) gene encoding the 
catalytic subunit of telomerase [46, 164, 181]. Gain of 
these loci lead to increased gene output, in turn instigat-
ing adrenal cortical cell proliferation (NR5A1) as well as 
immortalization due to elongation of telomeric repeats 
(TERT)—two mechanisms of importance for the develop-
ment of ACC [182, 183]. Loss of genetic material on the 
other hand was regularly noted at loci encoding impor-
tant tumor suppressors, such as MEN1, TP53, and RB1 
[184–186].

Fig. 11   Schematic representation of the Wnt and P53 pathways in resting 
states and in adrenal cortical carcinoma (ACC). In its idle state, the Wnt 
pathway main effector beta-catenin is sent for ubiquitin-mediated prote-
olysis by a tri-molecular complex (APC, GSK3-beta, and Axin), and the 
P53 protein is regulated negatively in a similar manner by MDM2 (left). 
ACCs recurrently demonstrate activating CTNNB1 mutations (illustrated 
by a green star), which allows beta-catenin to escape degradation and 
instead transport to the nucleus, where it will initiate transcription of Wnt 
target genes, in turn promoting proliferation. This can also be achieved 

by inactivating mutations or deletions of the negative Wnt regulators 
ZNRF3 and APC (illustrated by pink stars). Upon cellular stress (for 
example, extensive DNA damage), MDM2 mediated inhibition of P53 is 
lifted, leading to the activation of P53 which will promote DNA repair 
and apoptosis. However, in ACCs with inactivating TP53 gene mutations 
(pink star), this process is inhibited—leading to inhibited proliferation 
and accumulation of additional DNA damage. Image created with www.
BioRe​nder.com
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Global Transcriptome Profiling Studies

In addition to the identification of recurrently mutated genes 
discussed above, researchers turned their attention to global 
expressional analyses in order to pinpoint important molecular 
mechanisms driving the ACC development. These types of sub-
classifications often facilitate the potential separation of tumors 
into different prognostic clusters to highlight cases exhibiting 
the highest risk of disseminated disease. In one of the earliest 
efforts, Giordano and colleagues interrogated the expressional 
status of approximately 10,000 genes in a small cohort of ACCs 
and adrenal cortical adenomas using microarray technique, and 
verified 91 genes as differentially expressed between these 
groups [187]. Among the significantly up-regulated genes, 
IGF2, TOP2A, and Ki-67 emerged. Following this study, de 
Fraipont et al. corroborated the importance of IGF2 when ana-
lyzing the expression of 230 candidate genes in a somewhat 
larger tumor cohort [188]. Unsupervised hierarchical analyses 
revealed two distinct expressional clusters, the IGF2 cluster 
and the steroidogenesis cluster. Interestingly, ACCs tended to 
express high and low amounts respectively of genes associated 

to the IGF2 and steroidogenesis clusters, while adenomas on 
the opposite expressed low and high quantities, respectively, 
for the same clusters (Fig. 10). In this aspect, the previously 
suggested association of increased IGF2 expression in ACCs 
was validated, and the authors furthermore presented a 22-gene 
panel that allowed for an accurate separation of ACCs from 
adenomas, on par with results obtained from the Weiss algo-
rithm [188]. Other microarray studies have since reinforced the 
notion that ACCs have a distinct expressional profile which sets 
them apart from their benign counterparts, also verifying IGF2 
and/or TOP2A as significantly upregulated in malignant adrenal 
cortical tumors [157, 189–191]. Moreover, in one of the most 
comprehensive expressional profiling studies to date, ACCs with 
exceedingly poor prognosis was found to cluster together using 
an unsupervised hierarchical analysis [157]. Interestingly, this 
cluster (denoted “cluster 1”) was enriched for genes associated 
to chromosomal integrity and proliferation, suggesting a more 
chaotic genomic profile than cluster 2 ACCs [157]. This study 
thus exemplifies how expressional profiling might help to dis-
tinguish ACCs from adenomas, as well as to stratify the risk for 
adverse outcomes within the ACC group itself. The idea that 

Table 1   Top 20 somatically mutated genes in adrenal cortical carcinoma

TSG tumor suppressor gene
* As reported in adrenal cortical carcinoma or in unrelated tumor types
# With an average 20% of cases displaying bilallelic inactivation, ZNRF3 is the most commonly altered gene in ACCs; however, the table strictly 
provides mutational data from the COSMIC database

Gene ID No. of mutated 
cases

No. of cases 
tested

Frequency (%) Oncogene/TSG* Associated pathways/cellular function

TP53 121 657 18 TSG Response to cellular stress
CTNNB1 102 661 15 Oncogene Wnt pathway
NF1 21 336 6 TSG MAPK pathway
ATRX 16 335 5 TSG Chromatin remodeling
MEN1 19 484 4 TSG Transcriptional regulation
APC 17 532 3 TSG Wnt pathway
EGFR 14 546 3 Oncogene MAPK, AKT, JNK pathways
DAXX 14 412 3 TSG JNK pathway, apoptosis
RB1 11 416 3 TSG Cell cycle repression
NRAS 9 345 3 Oncogene MAPK, AKT pathways
NOTCH1 9 337 3 Both Notch signaling pathway
GNAS 9 331 3 Oncogene G protein coupled receptor
MED12 8 383 2 Oncogene Transcriptional regulation
BCOR 7 306 2 Both Notch signaling pathway
GRIN2A 7 306 2 Both NMDA receptor channel
ATM 6 336 2 Oncogene DNA repair (DSB)
KDM6A 5 308 2 TSG Epigenetic modifier
BRAF 5 475 1 Oncogene MAPK pathway
MSH2 5 336 1 TSG DNA repair (MMR)
SETD2 5 335 1 TSG Epigenetic modifier

118 Endocrine Pathology  (2021) 32:102–133

1 3



expressional sub-clustering of ACCs bears clinical relevance 
was even more reinforced by a separate study from France, 
revealing two main expressional clusters (C1 and C2) [190]. 
The C1 group contained almost all adrenal cortical tumors that 
exhibited high Weiss scores, relapses, and distant metastases 
(i.e., bona fide ACCs), whereas the C2 group was considered 
clinically benign [190]. Interestingly, the C1 group was enriched 
for genes responsible for the mitotic machinery and DNA repli-
cation, while the C2 group (adenomas) was overrepresented in 
terms of genes associated to immune response mechanisms. The 
malignant C1 group was further sub-divided into C1A and C1B, 
as C1A-related ACCs were strongly associated with poor prog-
nostic patient outcome than those clustered in C1B—thereby 
again verifying the notion that ACCs could be stratified into 
two prognostic groups based on expressional profiling [190]. 
Interestingly, C1A type ACCs have since been shown to harbor 
mutually exclusive TP53 or CTNNB1 gene mutations, thereby 
allowing for an important association between mutational pro-
files and expressional clustering (Fig. 11) [192].

To conclude this section, ACCs regularly overexpress 
IGF2, cell cycle-related genes as well as genes coupled to 
chromosomal integrity, while adenomas overexpress genes 
associated to steroidogenesis (Fig. 10). These findings also help 
endocrine pathologists validate the usefulness of IGF2 and cell 
cycle–related immunohistochemical biomarkers in the diagnosis 
of ACC [74]. Moreover, ACCs can be sub-classified into high 
and low risk cases based on their expressional output. The 
usefulness of P53 and beta-catenin immunohistochemistry in 
adrenalectomy specimens is also acknowledged to help stratify 
C1A-related disease [68, 74]. Nowadays, based on subsequent 
pan-genomic characterization using multi-omics platforms, we 
know that the clustering provided by the early transcriptome 
analyses reviewed above still stands as valid observations and 
constitute cornerstone studies in our efforts to characterize and 
profile ACCs.

Early Studies of Epigenetic Aberrancies

In various human tumors, other mechanisms besides 
mutations have been linked to expressional and translational 
regulation of gene output, not least epigenetic modifications 
as well as expression of specific micro-RNAs (miRs). 
Epigenetic aberrancies especially have gained ground as 
contributors of tumor development, and the most common 
underlying mechanism revolves around altered levels of 
methylation at specific cytosine residues (often entitled 
CpG sites) in promoter regions of genes commonly 
associated to cancer. As changes in methylation patterns 
of CpG sites may confer either increased or reduced gene 
output, promoter hypermethylationand hypomethylation 

are nowadays considered driver events in tumor formation. 
The first comprehensive description of the ACC methylome 
was published in 2012 by Fonseca et al., in which normal 
adrenal tissues, adenomas, and ACCs were assessed for 
global methylation levels across > 27,000 CpG sites [193]. 
The authors found a significant over-representation of CpG 
island hypermethylation in ACCs regarding genes coupled 
to transcription factor regulation, the cell cycle machinery, 
and apoptosis, including CDKN2A, GATA4, and DLEC1. 
These genes showed a significant downregulation of 
mRNA, while treatment of the H295R ACC cell line using 
a demethylation agent restored the expression. Expanding 
on this fact that epigenetic silencing of cancer-related genes 
might play a role in ACCs, a subsequent study from the 
National Institute of Health employed a global methylome 
array covering more than 485,000 CpG sites [194]. The 
authors observed that normal adrenal tissues compared with 
benign tissue samples had the least number of differences in 
methylation, and were predominantly hypermethylated, while 
primary and metastatic ACCs displayed the largest difference 
compared with normal adrenal samples, and were in general 
hypomethylated (Fig. 10). Moreover, gene-specific aberrant 
methylation in ACCs was found in genes involved in the IGF2 
signaling pathway as well as in pathways associated to lipid 
metabolism, which was also noted on the transcriptional level 
as altered mRNA levels of the corresponding gene products 
[194]. The potential for analyses of the global methylome as a 
diagnostic instrument for ACCs was even more substantiated 
when a French study identified specific methylation signatures 
(denoted “CpG island methylator phenotypes”; CIMPs) in 
ACCs [195]. When performing an unsupervised clustering, 
ACCs aggregated as according to the level of global CpG 
methylation, and were classified either as non-CIMP, CIMP-
low, or CIMP-high ACCs. Non-CIMP ACCs displayed similar 
levels of global methylation as adenomas, while CIMP-low 
and CIMP-high cases exhibited higher levels than benign 
tumors. Intriguingly, patients with CIMP ACCs displayed 
worse survival than patients with non-CIMP ACCs, and 
CIMP-high ACCs were even more pronounced in this aspect 
than CIMP-low cases [195]. In all, global methylome analyses 
seem to be able to pinpoint ACC cases with dismal prognosis, 
similar to what has been shown by global transcriptome 
analyses discussed earlier.

Dysregulation of micro‑RNAs

Micro-RNAs (miRNAs) are a class of non-coding, short, single-
stranded RNA molecules with the potential to regulate gene 
output through the translational inhibition of mRNAs. The role of 
miRNAs in cancer is expanding, and dysregulation of miRNAs  
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currently constitutes a common phenomenon in cancer development, 
including ACC [196]. For example, specific miRNAs found to 
be aberrantly expressed include the observed downregulation of 
miR-195 and upregulation of miR-483-5p—a feature that was 
also coupled to poorer disease-specific survival [197]. Moreover, 
circulating levels of these two miRNAs were linked to an increased 
risk of recurrence in ACC patients, furthermore validating the 
important roles of miR-195 and miR-483-5p.

Pan‑Genomic Characterization of Adrenal Cortical 
Carcinoma

The development of the NGS technique has vastly improved the 
ability to interrogate genomic sequences in tumor samples on 
a large scale. By modern methodology, researchers have been 
able to characterize various underlying genetic aberrancies in 
ACC, and the field is rapidly evolving. Recently, the mutational 
landscape of ACCs was deciphered by whole-exome sequenc-
ing (WES) analyses, and additional analyses of fusion genes, 
gene copy number, global methylation, and miRNA profiling 
have laid the foundation for a comprehensive molecular cov-
erage with clear-cut associations to tumor characteristics and 
patient outcome.

In 2014, Assié and co-workers published the first whole-
exome sequencing analysis of ACC and integrated the 
mutational landscape with data from analyses covering 
gene expression, copy number alterations, methylation, 
and miRNA profiling [164]. The most commonly observed 
somatic genetic event were mutations and/or deletions of the 
Wnt pathway members ZNRF3 and CTNNB1, followed by 
mutations in p53 pathway members TP53, CDK2NA, and 
RB1. Interestingly, these events were mutually exclusive to a 
large degree. Additional mutations in chromatin remodeling 
genes were also seen (DAXX, MEN1, ATRX), and recurrent 
gain of the TERT gene locus was also noted. Using miRNA 
profiling, ACCs were sub-divided into three groups (Mi1, 
Mi2, and Mi3). This clustering revealed differential 
expression of several miRNAs located at the DLK1-MEG3 
locus on chromosome 14q as a main contributor of this 
unsupervised clustering. The authors then combined these 
above-mentioned analyses with transcriptome and methylome 
analyses (in which ACCs were divided into the C1A and 
C1B expressional clusters and non-CIMP, CIMP-low, and 
CIMP-high groups, respectively), thereby presenting the first 
integrated, multi-omic characterization of ACC [164]. In this 
model, two main molecular groups were discerned based on 
their transcriptomic output, namely, C1A and C1B. C1A 
tumors displayed significant correlation to a high number 
of chromosomal alterations, associated to CIMP ACCs as 
opposed to non-CIMP ACCs, and clustered with the Mi3 
miRNA profiling group characterized by up-regulation of 
DLK-MEG3 locus related miRNAs. The C1A group was 
furthermore associated to increased mutational burden, as 

well as to mutations and deletions in Wnt and P53 signaling 
pathway members (ZNRF3, CTNNB1, TP53), while the 
C1B group was generally devoid of these genetic events. As 
expected, C1A patients exhibited worse clinical outcome 
than C1B patients. Even within the C1A group, outcomes 
were coupled to the CIMP profiles, in which CIMP-high 
ACC cases in the C1A group exhibited the worst survival. 
This study thus solidifies some 20 years of ACC research 
in which analyses of mutations, transcriptome, methylome, 
and miRNA patterns have helped us recognize that ACCs 
correspond to at least two distinct molecular entities with 
significantly different patient outcomes [164]. Shortly after 
this study was published, a collaborative effort from Yale and 
Karolinska verified the abundance of ZNRF3 gene deletions 
in ACC—thereby adding yet another Wnt pathway member 
to the list of recurrently altered genes in ACC [46]. From a 
molecular biology standpoint, ZNRF3 is a membrane-bound 
ubiquitin-protein ligase that mediates ubiquitination of the 
Wnt pathway activating receptor Frizzled, which will lead 
to a proteosomal degradation and hence negative regulation 
of the Wnt cascade [198]. The observed loss-of-function 
mutations and gene deletions demonstrated in ACCs thus 
suggest that ZNRF3 is a tumor suppressor (Fig. 11), and 
further strengthen the coupling between aberrant Wnt 
signaling and ACCs. As dysregulation of the Wnt network 
in turn seem to associate strongly to a specific molecular 
signature with poor clinical outcome, immunohistochemical 
analysis of the Wnt effector protein beta-catenin has emerged 
as a prognostic marker in ACC (Fig. 12) [199].

Following the groundbreaking work of Assié and colleagues, 
the Cancer Genome Atlas (TCGA) network published a genome-
wide project on ACC in 2016 [45]. A global cohort consisting of 

Fig. 12   Beta-catenin immunohistochemistry in adrenal cortical carcinoma 
(ACC). An active Wnt/beta-catenin pathway in ACCs can be highlighted 
using beta-catenin immunohistochemistry. Upon Wnt pathway activation, 
beta-catenin is translocated into the nucleus to initiate the activation of 
transcriptional programs leading to augmented proliferation. As Wnt acti-
vated ACCs usually exhibit worse clinical outcomes, nuclear beta-catenin 
immunoreactivity could therefore serve as a marker of poor prognosis. 
Scale bar is 80 µm
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91 ACCs were interrogated for DNA mutations, copy number 
alterations, methylation, and expression levels of mRNA and 
miRNAs. The authors identified several novel mutated genes of 
potential impact for ACC development, including PRKAR1A, 
RPL22, TERF2, and CCNE1. Genome-wide copy number 
analyses pinpointed deletions as much more common events 
than gains/amplifications, and furthermore identified three main 
CNA clusters; “quiet,” “noisy,” and “chromosomal,” occurring 
in 9%, 30%, and 61% of ACCs, respectively. “Quiet” ACCs 
were euploid with few arm-level CNAs, the “noisy” subset was 
characterized by many focal CNAs, and the “chromosomal” 
group consisted of ACCs with abundant whole-chromosomal 
deletions. The “noisy” group exhibited worse clinical outcome, 
suggesting that many focal, arm-level losses of genetic material 
are associated with more aggressive disease. Interestingly, 
within the “noisy” and “chromosomal groups,” ACCs could be 
sub-divided into two classes; those with and without whole-
genome doubling (WGD)—a hyper-diploid karyotype. WGD 
in turn associated to worse patient outcome, expressional cluster 
C1A, the CIMP-high profile,  TERT alterations, mutations 
in CTNNB1 and TP53, as well as specific expression of TERT 
and other telomere-regulating genes. In all, the authors proposed 
a three-cluster tier, entitled Cluster of Cluster (CoC) I–III, in 
addition to scattered cases in a fourth, unassigned group 
(Fig. 13) [45]. CoCI tumors exhibited the best prognosis, were 
overrepresented in ACCs with a C1B mRNA profile, a CIMP-
low phenotype and adhering to the “chromosomal” profile of 
CNAs. CoCII cases were intermediate in terms of prognosis 
and were predominantly associated to expression cluster C1A, 
a CIMP-intermediate profile, and seemed to have more cases 
with WGD than the CoCI group. Lastly, the CoCIII group were 
characterized by ACCs with poor survival, and associated to 
the C1A expressional cluster, a CIMP-high profile, “noisy” 
CNA profile with associated WGD, and mutations in TP53 or 
CTNNB1 (Fig. 13).

In all, these comprehensive studies have laid the foundation 
for a molecular approach to stratify the prognosis of ACCs, in 
which histology alone is insufficient—and might pinpoint novel 
aspects as to how to triage cases for adjuvant therapies, as sur-
gery and mitotane alone are insufficient to cure most patients of 
this often-lethal disease.

Molecular Tools for Prognostication 
of Adrenal Cortical Carcinomas

As molecular genetics is emerging as a powerful diag-
nostic and prognostic tool in surgical pathology, this 
will also have consequences for how we assess adrenal 

cortical neoplasms in the near future. Histological assess-
ment and immunohistochemistry are still gold-standard 
techniques in diagnosing ACC; the need for molecular 
analyses to guide the clinicians will probably increase 
given the rapid development of individualized treat-
ment options for cancer patients in general. For exam-
ple, metastatic ACCs that are unresponsive to mitotane 
could potentially benefit from NGS screening of under-
lying genetic aberrancies of possible therapeutic value. 
Moreover, this screening could in theory also aid in the 
identification of hereditary syndromes. For example, the 
detection of a TP53 mutation in ACC tissue should man-
date additional genetic analyses also in germline DNA. 
The chance of detecting germline TP53 alterations in 
ACC patients decreases with age, with approximately 
50% of children diagnosed with ACC harboring germline 
TP53 mutations, compared with less than 10% of adults 
diagnosed with ACC [124].

Even though the integrated OMIC analyses discussed 
above have provided us with an increased understand-
ing of the molecular profiles distinguishing ACCs from 
adenomas (Fig. 10) as well as to pinpoint ACCs with 
exceptionally poor clinical outcomes (Fig. 13), surgi-
cal pathology laboratories will still look for simplified 
molecular schemes to aid in these matters. In fact, the 
TCGA consortium suggested a focused methylation sig-
nature consisting of 68 probes that correctly sorted ACCs 
into the CoCI-III prognostic groups discussed above 
[45]. Although this methylation panel in theory could 
be employed for clinical FFPE material, interpretation 
of methylation levels of numerous genes might be bur-
densome for clinical purposes. In terms of single-gene 
markers, G0/G1Switch2 (G0S2) gene hypermethylation 
has been reported as an indicator of the CIMP-high group 
of ACCs [200]. The G0S2 methylation status correlated 
strongly with fatal ACCs and could therefore constitute 
a beneficial marker to single out ACCs with exceptional 
poor prognosis. Moreover, the identification of aberrant 
signaling in telomerase-related pathways in ACCs with 
poor prognosis (especially TERT gene expression, gene 
copy gains, promoter mutations, and aberrant methyla-
tion) might be a way forward to pinpoint cases at risk of 
worse clinical outcomes [46, 183, 201, 202]. Interest-
ingly, telomere length itself, which in turn is coupled to 
the activity of TERT, might serve as a prognostic marker 
for ACCs [45]. However, as mutational compositions may 
vary due to spatial heterogeneity in ACCs, the benefits 
of using single-gene markers must be weighed against 
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the risk of false negative results due to a heterogeneous 
tumor exhibiting sub-clonal mutations [203].

Germline Susceptibility for Adrenal Cortical 
Neoplasia

As mentioned in earlier sections, many clues regarding 
aberrant genetic mechanisms propelling the development 

of adrenal cortical neoplasia come from careful inves-
tigations of genes associated to various tumor syn-
dromes in which adrenal lesions constitute an estab-
lished feature. These hereditary conditions in which 
adrenal cortical tumors are overrepresented compared 
with the general population are detailed in Table  2 
and include the Li-Fraumeni syndrome, the Beckwith-
Wiedemann syndrome, the MEN1 syndrome, the NF1 

Fig. 13   Generalized multi-OMICs profiles of adrenal cortical carci-
noma (ACC). Via pan-genomic characterization of the ACC muta-
tional, chromosomal, expressional, and epigenetic landscapes, three 
main clusters have emerged, entitled Cluster of Clusters I–III (CoCI–
III). CoCI ACCs exhibit the best prognosis of the three and are regu-
larly associated to lower TNM stages. These tumors are characterized 
by a low frequency of mutations in Wnt and P53 signaling pathway 
genes and associate to the mRNA expressional cluster C1B enriched 
for genes regulating immune response mechanisms. CoCI ACCs fur-
thermore exhibit low levels of gene-specific methylation, thereby char-
acterized as “CpG island methylator phenotype-low” (CIMP-low). 

Amplifications and whole-chromosome deletions are commonly seen, 
but whole-genome doubling (WGD) is rare. While CoCII ACCs are 
considered an intermediate group of tumors in terms of prognosis and 
genetic aberrancies, CoCIII ACCs exhibit the worst prognosis and the 
most advanced genetic imbalances, characterized by frequent mutations 
in Wnt and P53 pathway gene members, expression of genes primar-
ily associated to mitotic regulation (cluster C1A), and a CIMP-high 
profile. Chromosomal aberrations are frequent and scattered across 
the genome (“noisy”), and WGD is evident in the majority of CoCIII 
ACCs. Image created with www.BioRe​nder.com
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syndrome, the Lynch syndrome, the FAP syndrome, and 
Carney complex as well as familial forms of primary 
hyperaldosteronism.

Approximately 10% of ACC patients will harbor an 
underlying germline mutation in an ACC susceptibility 
gene [204]. For patients with ACCs, the most common 
syndromic manifestation is Li-Fraumeni syndrome 
and might be evident in 50–80% of children with 
ACC, as well as in 3–5% of adults [124]. Moreover, 
rare ACCs might be associated to patients with Lynch 
syndrome, an autosomal-dominant hereditary cancer 
predisposition syndrome caused by inactivating 
constitutional mutations in mismatch repair genes 
MSH2, MSH6, MLH1, and PSM2. In ACCs arising 
in  the  Lynch syndrome set t ing ,  absent  MMR 
protein immunoreact ivi ty might  be noted,  and 
immunohistochemistry targeting MSH2, MSH6, MLH1, 
and PMS2 could therefore be a rather cost-effective way 
to triage cases for genetic counseling (Fig. 14) [204, 
205]. Small subsets of ACC patients have also been 
shown to be MEN1 syndrome carriers, in which the 
afflicted often display primary hyperparathyroidism as 

well as neuroendocrine neoplasia of the pituitary and 
pancreas [124].

Interestingly, an association between ACC and 
germline mutations in the Succinate Dehydrogenase 
Complex  Subun i t  A  (SDHA)  and  Succ ina te 
Dehydrogenase Complex Subunit C (SDHC) genes 
has also been reported. As these genes are inactivated 
on the constitutional level in two different familial 
pa ragang l ioma-pheochromocy toma  syndromes 
(paraganglioma syndrome type 5 and 3, respectively), the 
authors speculate that ACCs may be rare manifestations 
of these entities [124, 206].

As a rather significant subset of adult patients 
with ACC might carry germline alterations of any of 
these genes above, genetic counseling and mutational 
screening for syndromic forms could be recommended 
[204]. Moreover, as comprehensive genetic screening 
of somatic DNA acquired from ACCs will be a likely 
cornerstone of future diagnostic work-up in pathology 
laboratories, there will probably be an increased volume 
of ACC patients with MMR-related pathogenesis due 
MSH2, MSH6, PMS2 and MLH1, as well as TP53 and 

Table 2   Hereditary syndromes associated to adrenal cortical neoplasia

ACC​ adrenal cortical carcinoma,  ACA​ adrenal cortical adenoma, FAP familial adenomatous polyposis coli, BWS Beckwith-Wiedemann syn-
drome, NF1 neurofibromatosis type 1, FHA familial hyperaldosteronism, PASNA early onset primary aldosteronism with seizure and neurologi-
cal abnormalities

Syndrome Susceptibility gene/s Prevalence (%) in 
patients with ACC​

Associated pathways/cellular function

Adrenal cortical carcinoma (ACC)
  Li-Fraumeni TP53 3–5% (adults) 50–80% 

(children)
Response to cellular stress

  Lynch MSH2, MSH6, MLH1, PMS2 3% (adults) Mismatch repair (MMR) response
  MEN1 MEN1 2% (adults) Transcriptional regulation
  FAP APC < 1% Wnt pathway regulator
  BWS H19, IGF2 < 1% Multiple (H19), MAPK, and mTOR pathways (IGF2)
  Carney complex PRKAR1A < 1% Protein kinase A pathway
  NF1 NF1 < 1% MAPK pathway

Adrenal cortical adenoma (ACA)
  Li-Fraumeni TP53 < 1% Response to cellular stress
  MEN1 MEN1 < 1% Transcriptional regulation
  FAP APC < 1% Wnt pathway regulator
  BWS H19, IGF2 < 1% Multiple (H19), MAPK, and mTOR pathways (IGF2)
  Carney complex PRKAR1A < 1% Protein kinase A pathway regulator
  FHA type I CYP11B1, CYP11B2 < 1% Steroid hydroxylase enzymes
  FHA type II CLCN2 < 1% Ion channels regulating membrane potential
  FHA type III KCNJ5 < 1% Ion channels regulating membrane potential
  FHA type IV CACNA1H < 1% Ion channels regulating membrane potential
  PASNA CACNA1D < 1% Ion channels regulating membrane potential
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MEN1 gene mutations that need to be excluded or 
confirmed on the germline level as well.

Conclusion

Modern molecular analyses of adrenal cortical neoplasia have 
skyrocketed our understanding of these tumors. The notion that 
aldosterone- and cortisol-producing adrenal cortical adenomas 
are driven by ion channel mutations and aberrant PKA 
signaling, respectively, are pivotal advances that helped the 
scientific community understand how downstream alterations 
in the AT2 and ACTH pathways of the zona glomerulosa and 
fasciculat, respectively, lead to tumor formation. Moreover, this 
knowledge might also open up for hypothetical, non-surgical 
therapeutic strategies for this patient category in instances when 
surgery is deemed too risky. Furthermore, the in-depth genomic 
characterization of ACC has identified high-risk subsets with 
exceedingly poor prognosis, suggesting that molecular triaging 
might be of clinical value where conventional histology is 
insufficient. In the near future, comprehensive molecular 
diagnostics will most likely be considered as a natural part of 

the funded pathologist work-up of adrenal cortical neoplasia, 
in which clinical, histological, and genetic analyses are merged 
into a comprehensive final endocrine pathologist’s report—
giving the treating clinician the proper prognostic information 
needed to individualize the risk assessment, adjuvant treatment 
options and patient follow-up.
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