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Abstract
This review addresses the impact of molecular alterations on the diagnosis and prognosis of differentiated thyroid carcinoma 
(DTC), including papillary, follicular, and well-differentiated carcinoma NOS, as well as oncocytic neoplasms. The molecular 
characterization of DTC is based upon the well-established dichotomy of BRAF-like and RAS-like designations, together 
with a remaining third group, less homogeneous, composed of non-BRAF-/non-RAS-like tumors. The role of BRAF V600E 
mutation in risk stratification is discussed in the clinico-pathological context, namely, staging and invasive features of classic 
papillary thyroid carcinoma (PTC) and histopathological variants carrying an excellent prognosis (microPTC) or a guarded 
prognosis, including the aggressive variants tall cell and hobnail cell PTCs. In follicular patterned tumors, namely, follicular 
thyroid carcinoma (FTC), with or without oncocytic features, the most prevalent molecular alteration are RAS mutations that 
do not carry prognostic significance. The only genetic alteration that has been proven to play a role in risk stratification of 
PTC and FTC is TERT promoter (TERTp) mutation.
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Introduction

Thyroid cancer is the most frequent endocrine neoplasm, the 
tenth most prevalent cancer in both genders and the fifth in 
women [1], but it has very low disease-specific mortality. It 
is usually a treatable cancer with good/very good survival. 
Nevertheless, there are questions concerning prediction of disease 
persistence and recurrence. Up to 95% of malignant lesions 

of the thyroid originate in follicular cells and are designated 
differentiated thyroid carcinoma (DTC); about 85% of these are 
papillary thyroid carcinoma (PTC), and 10% are follicular thyroid 
carcinoma (FTC). DTCs have much higher survival rates than 
poorly differentiated and anaplastic thyroid carcinoma (PDTC 
and ATC, respectively); nevertheless, it is estimated that 10–15% 
of DTCs recur, persist, and/or metastasize to distant sites. Those 
are the ones that can cause death of DTC patients.
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Several stratification systems have been developed to 
date, in an attempt to predict the behavior of patients with 
thyroid cancer [2]. Stratification systems have used clinico-
pathological indicators, such as Age, Grade, Extent, and Size 
in the AGES system; distant Metastasis, Age, Completeness 
of resection, local Invasion, and tumor Size in the MACIS 
score; and Age, Metastases, Extent, and Size in the AMES 
system. In some of these systems, molecular data were 
added, as is the case of the DAMES system that includes 
DNA ploidy, besides Age, Metastases, Extent, and Size. 
None of the aforementioned systems was robust enough to 
be widely accepted and incorporated into clinical practice 
worldwide. The most accepted system is the staging system 
for differentiated and anaplastic thyroid cancer (AJCC/TNM, 
8th edition) [3]; it is based on survival evaluation, despite 
the fact that survival is not the best indicator in a cancer 
with good/excellent survival figures, like DTC. Alternative 
scoring systems are needed, addressing not only survival 
but also recurrent/persistent disease, which is the main 
morbidity in patients with DTC.

It has been generally hoped that genetic characterization 
of these tumors will provide a better way to predict the 
outcome of thyroid cancer patients [4]. The first genetic 
alteration thought to be specifically associated with PTC 
was RET/PTC rearrangement, but it quickly became clear 
that this biomarker does not have prognostic value. We 
and others [5, 6] found that RET/PTC rearranged PTCs 
represented a subset of slow growing, less aggressive thyroid 
neoplasms. BRAF mutation was identified as another driver 
event in PTC carcinogenesis [7, 8], but the real value of 
BRAF mutation in predicting patient outcome is still 
controversial [9–11].

The genotype and molecular characterization of thyroid 
carcinomas are expected to improve several aspects of 
thyroid cancer patient management (Fig. 1). However, it 

is not realistic to assume that genetic features can replace 
robust prognostic features. Clinico-pathological features 
play a pivotal role in the prognosis of thyroid cancer, 
namely, size of tumor, pattern of growth (encapsulated 
or infiltrative), and/or presence of vascular invasion. In 
several studies these parameters are not taken into account 
in a systematic way, leading to variability in the clinico-
pathological associations with molecular biomarkers 
and patient outcome (disease recurrence/persistence 
or mortality). In this review, we address the molecular 
risk stratification of DTC together with the gross and 
histopathologic features, dividing DTC into BRAF V600E-
like, RAS-like, and non-BRAF-/ non-RAS-like tumors.

Molecular Classification of Differentiated 
Thyroid Carcinomas

With the advent of next-generation sequencing (NGS), the full 
genome of thyroid cancers was investigated, and a molecular 
classification of PTC was proposed [12]. The large-scale 
study of The Cancer Genome Atlas (TCGA) identified a 
71-gene signature that divided PTCs into BRAF V600E-like 
and RAS-like tumors. BRAF V600E-like PTCs (that cluster 
together BRAF V600E with RET/PTC rearranged tumors) 
exhibit lower thyroid differentiation scores and represent 
predominantly classical PTCs with papillary architecture 
and including those with tall cell histology (tall cell PTC, 
TCPTC). On the other side of the spectrum, RAS-like PTCs 
are highly differentiated tumors enriched in follicular-
patterned tumors (follicular variant PTCs, FVPTC) and 
usually displaying lower risk of recurrence. RAS-like PTCs 
are characterized by NRAS, HRAS, KRAS, BRAF non-V600E 
(namely BRAF K601E), and EIF1AX point mutations or 

Fig. 1  The genotype and 
molecular characterization of 
thyroid carcinomas
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rearrangements of PPARγ, FGFR2, and THADA genes. The 
two clusters are also distinct regarding their epigenomic and 
proteomic profiles [12].

In a subsequent study, Yoo et al. [13] expanded the 
molecular characterization of thyroid tumors focusing 
on follicular-patterned lesions: follicular adenoma (FA), 
FTC, and FVPTC. Besides corroborating the existence 
of BRAF V600E-like and RAS-like profiles, Yoo et al. 
identified a third molecular subtype, the non-BRAF-/non-
RAS (NBNR group) with different tumor histotypes [13]. 
The latter cluster is enriched in FA and micro-invasive 
FTC (miFTC) and has been associated with DICER1, 
EIF1AX, IDH1, PTEN, SOS1, SPOP, and PAX8–PPARγ 
alterations. The authors also found a molecular signature 
related to mitochondrial biogenesis in oncocytic follicular 
thyroid tumors (ESRRA  and PPARGC1A). In this study, 
the transcriptome of miFTC and encapsulated FVPTC 
was indistinguishable from that of FA, reinforcing the 
closeness of the subtypes; no clear association with 
clinico-pathological associations was found.

These NGS studies clarified the pathogenesis, at the 
molecular level, of thyroid carcinomas and reduced the 
fraction of cases with unknown oncogenic driver alterations 
to less than 4% [12, 13]. Furthermore, the results strength 
the “old” morphologic separation of thyroid carcinomas into 
papillary patterned lesions and follicular patterned lesions; 
however, the reclassification into three molecular groups did 
not provide clues for better risk stratification at the clinical 
level.

On histological grounds, using pattern of growth, 
differentiation, and invasion, we can identify lesions with 
very low potential such as the non-invasive follicular tumor 

with papillary-like nuclei (NIFTP) and so-called tumor of 
undetermined malignant potential tumors (UMP). Histology 
also allows the identification of aggressive variants that 
present at high stage or with signs of loss of differentiation. 
The most frequent challenge involves the “common” well-
differentiated thyroid carcinomas that have uncertain risk 
of recurrence and progression. For those cases, one needs 
molecular stratification biomarkers (Fig. 2).

Molecular Risk Stratification of Papillary 
Thyroid Carcinomas (BRAF‑Like)

BRAF-like thyroid carcinomas correspond mainly to classic 
variant PTC (CVPTC), including histopathological variants of 
PTC associated with excellent/very good prognosis (papillary 
microcarcinoma-PMC) and those with guarded prognosis, 
the aggressive variants of PTC. The challenge of improving 
molecular risk stratification is discussed in the following 
settings: TNM, PMC, and aggressive variants of PTC.

TNM—Classic Papillary Thyroid Carcinoma

It is known that the intrinsic risk of poor outcomes is not 
equal in all PTCs at AJCC TNM stage I, and it is sometimes 
difficult to decide the appropriate extent of surgical 
treatment [14]. It has been suggested that the inclusion of 
tumor mutational status might improve the discrimination 
of the existing scoring systems [15] (Table 1).

BRAF V600E mutation is the most prevalent (29–69%) 
point mutation identified in PTC [16, 17]. There is a strong 

Fig. 2  Molecular risk stratifica-
tion of thyroid carcinomas

46 Endocrine Pathology  (2021) 32:44–62

1 3



association between the genotype, BRAF V600E mutation, 
and the PTC phenotype (classical PTC or any of the PTC 
variants, exception made for the FVPTC) [18]. Since BRAF 
V600E mutation prevalence in PTC can be as high as 70%, 
whereas a negative outcome is seen in only 10–15% of 
PTCs, the value of BRAF V600E mutation in prognosis is 
controversial [17]. Several authors have reported that BRAF 
V600E mutation was strongly associated with recurrence 
[19–21]. Xing et  al. verified BRAF V600E mutation 
association with recurrence even in low-risk stage I or II 
disease and independent of other clinico-pathological risk 
factors [21] (Table  1); however, in a subsequent meta-
analysis, the same group recognized that the risk was rather 
based on tumor classification with best prognosis in FVPTC, 
the worst in TCPTC, and intermediate in classical PTC 
[11]. In a different a meta-analysis, Vuong et al. described 
that BRAF mutation association with recurrence was only 
evident in short- and medium-term follow-up and was lost 
in long-term follow-up [22].

Patients with BRAF V600E-mutated PTCs are older 
than those with wild-type BRAF [23]. This association is 
interpreted by some authors as a synergistic interaction 
affecting PTC recurrence [21, 24], while others suggest that 
BRAF V600E mutation provides a less efficient tumorigenic 
stimulus leading to a longer and more indolent course [23].

BRAF mutation has been associated with the presence of 
LNM [19, 24, 25] (Table 1), and in general, there is a high 
concordance between the genotype of primary tumors and 
LNM [26]. It seems that the process of local metastasis does 
not implicate additional molecular alterations, indicating that 
BRAF V600E may play a role in the process of local spread 
[26]. Indeed, BRAF mutation was not robustly associated 
with the presence of distant metastases [27] and some studies 
even described a decreased frequency of distant metastases in 
BRAF V600E-mutated PTC [26] (Table 1). The association 
of BRAF mutation and PTC at advanced clinical stage (AJCC 
TNM stage III/IV) has been described [24, 25, 27]. It is also 
considered that risk stratification improves when BRAF 

V600E status is considered in conventional staging systems 
such as AMES, MACIS, TNM, and ATA Risk [28]. However, 
the predictive value of BRAF V600E is limited when 
histologic features are available to refine risk stratification 
[23]. The association of BRAF mutations with PTC-specific 
mortality is still debatable. BRAF mutation has been 
associated with disease-specific mortality in some studies 
[20, 21, 27], but it was evidenced that this association was 
dependent on several concurrent clinico-pathological features 
[20, 27]. Other authors did not find an association between 
BRAF mutation and increased risk of disease-specific 
mortality [22, 24]. To ascertain the real impact of BRAF 
mutation on prognosis, it is necessary to consider associated 
clinico-pathological features and other concomitant genetic 
alterations. The controversy likely reflects the limited data 
examined in some published studies [22].

The impact of TERTp mutation on the prognosis of PTC 
is more consistently established (Table 1). The frequency of 
TERTp mutation is low in PTC (11.3–12.3%) [10, 29], and 
its frequency increases significantly in poorly differentiated 
and undifferentiated carcinomas (up to 50%). The presence 
of TERTp mutation is correlated with the presence of distant 
metastases in PTC [30]. In a study that compared PTC with 
distant metastases to PTC without distant metastases, the 
frequency of TERTp mutations was 3.5-fold higher in the 
group with distant metastases [30]. TERTp-only mutation 
is the most frequent genetic alteration in distant metastases 
[26] and appears to be a key event in the process of distant 
dissemination, nominating TERTp mutation as a strong 
predictor of aggressiveness and metastasis of thyroid 
carcinoma [30]. TERTp mutations are associated with 
older age at diagnosis [18, 30]; thus, this mutation may be 
a major molecular mediator of the relationship between age 
and mortality in thyroid carcinoma [31]. TERTp mutations 
status improves prognostication for patients already stratified 
by conventional staging systems [19] and can be used as an 
independent and reliable marker for risk stratification and 
predicting outcomes [22, 32]. In PTCs, TERTp mutations 

Table 1  Summary of associations between selected genetic alterations and clinico-pathological features in papillary thyroid cancer

Series Gene(s) Clinical associations Reference

PTC (n = 955) BRAF Recurrence in larger BRAF V600E mutation–positive tumors was especially high
Nearly zero mortality and extremely low recurrences of BRAF V600E mutation–

negative stage I PTC

[14]

PTC (n = 356) BRAF BRAF V600E mutation is an independent predictor of time to PTC recurrence [36]
PTC(n = 2099) BRAF BRAF V600E mutation associated with recurrence [21]
PTC(n = 180)
FTC (n = 15)
PDTC + ATC(n = 7)

BRAF
TERTp
TERTp/BRAF

BRAF V600E mutation associated with LNM
TERTp mutations associated with distant metastases

[25]

PTC (n = 121) BRAF
TERTp
TERTp/BRAF

BRAF V600E mutation not predictive of aggressive behavior
TERTp mutations associated with older age at diagnosis
TERTp mutations associated with distant metastases

[30]
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are an independent and reliable molecular marker to predict 
persistence/recurrence and disease-specific mortality [18, 
19, 22, 33] and this finding was independent of age and 
gender [34].

Coexistence of BRAF V600E and TERTp promoter 
mutations is a frequent event, and their interaction is a 
matter of debate. Some authors described a synergistic and 
independent role of coexisting BRAF V600E and TERTp 
mutations in PTC specific mortality [32, 35]. A strong 
independent and incremental role of this mutation duet in 
PTC specific mortality that remained strongly significant 
after multivariate adjustment for all the conventional clinico-
pathological features has been reported [32]. It has been 
suggested that coexistence of BRAF V600E and TERTp 
mutations in PTC increases expression of TERT, likely 
providing oncogenic and tumor survival advantages that 
identify the small group of PTC patients with the highest 
mortality risk [32]. Other authors endorse that although 
the coexistence of BRAF V600E and TERTp mutations 
may be a stronger predictor of disease-specific mortality, 
the major factor driving mortality in those patients is the 
TERTp mutational status [30, 31]. A significant association 
of TERTp mutations and PTC specific mortality that was not 
affected by the presence of BRAF V600E mutation has been 
stressed in other studies [30, 31].

The phenotype of RAS-mutated PTC is more likely to 
be FVPTC with a low recurrence risk [24]. Differentiated 
thyroid cancer will most likely lack aggressiveness when 
harboring RAS mutations alone [22]. However, coexisting 
RAS and TERTp mutations may also confer increased 
aggressiveness in thyroid cancer, as shown in some studies 
[22, 32].

Classic PTC and TCPTC were the most common 
histologic subtypes associated with RET/PTC mutation 
[24]. RET/PTC mutation can also occur in cases of oncocytic 
variant of PTC [23]. Comparing with BRAF-mutated PTC, 
RET/PTC-positive patients had a high incidence of lateral 
LNM (35%) and distant metastasis (8%) at presentation, but 
the majority were disease free at last follow-up [24].

In relation to other molecular alterations identified 
through genomic studies in PTC (CHEK2, PTEN, PI3K, and 
others), the lower prevalence of the alterations precludes the 
establishment of robust associations with risk at this time. 
Some exceptions, associated with particular genes (EIF1AX, 
TP53, or DICER1) will be referred below.

Histopathology—Extremely Low 
Malignancy‑microPTC

The term papillary microcarcinoma (PMC) defines any 
PTC measuring ≤ 1 cm [37]. PMC accounts for about half 
of all PTC diagnoses [38, 39] with an incidence of up to 

33.8% and 35.6% in surgical specimens and autopsy series, 
respectively [40–46]. Although there is no solid biological 
basis indicating 10 mm in size as the boundary between 
extremely low and low risk PMCs [7], this definition 
has been found useful in operational terms to properly 
manage a significant percentage of PTCs. Asymptomatic 
(incidental) PMCs discovered during scans with different 
imaging techniques or after thyroidectomy performed for 
other reasons than PMC, have an excellent prognosis with 
nearly no risk of recurrence or death [47–49]. Incidentally 
discovered, PMCs are more commonly found in patients with 
chronic lymphocytic thyroiditis than multinodular goiter or 
Graves’ disease [42]. In contrast, clinically recognized (non-
incidental) PMC is not different from conventional PTC in 
terms of lymph node metastases at presentation and/or loco-
regional recurrences [49–51].

Numerous PMCs have been studied in an attempt to 
obtain prognostic markers (including molecular data) that 
able to identify the small subset of PMCs with potential 
aggressive behavior. The prevalence of RAS (KRAS, NRAS, 
and HRAS) mutations in PMCs is usually less than 5% 
[27, 52]; these mutations are associated with PMCs with 
a follicular growth pattern, as is the case with benign and 
malignant clinical tumors of follicular cells, and do not 
modify the management of these patients [53, 54].

In well-differentiated thyroid carcinomas, TERTp 
mutation is the best molecular marker of aggressiveness [55, 
56]. Mutations in TERTp (3%) were exclusive to a series 
of 40 patients with PMC and lateral neck nodal metastases 
(pN1b), without evidence of mutations in the 71 patients with 
documented absence of nodal disease (pN0) [57]. TERTp 
mutations were not found in 15 PMCs that showed disease 
progression on active surveillance or in 10 PMCs without 
progression [58]. In another study, TERTp mutations were 
found in 4.7% of the 431 miPTCs analyzed, but no association 
between TERTp mutations and aggressive features or clinical 
outcome was found [53]. Consistent with all these data 
and the excellent prognosis of PMCs, no [57–61] or very 
low percentage [52, 62] of TERTp mutations have been 
detected in PMCs, indicating no [52, 53, 58] or a limited 
role in risk stratification in PMCs [62]. It remains unknown 
if the coexistence of BRAF and TERTp mutations could be 
associated with PMCs with a poor clinical outcome [63].

In a review of PMCs, the prevalence of BRAF V600E 
mutation was 57.4% [27]. Some studies have reported 
significant associations between BRAF V600E mutation 
and other indicators of poor prognosis such as male gender, 
older age, higher stage, larger size, and tumor recurrence 
[18], but in most of the publications, the association is not 
independent of numerous other clinico-pathological features 
of aggressiveness [64]. Therefore, it has been suggested that 
given the excellent prognosis of PMC, it is not realistic to 
suggest that PMCs with a BRAF mutation should be treated 
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more aggressively [7]. Consequently, a combined molecular-
pathologic score risk stratification model including BRAF 
status and three histopathologic features (superficial tumor 
location, intraglandular tumor spread/multifocality, and tumor 
fibrosis) was a better predictor of extrathyroidal spread of 
PMC than either mutation or histopathologic findings alone 
[65]. TCPMC is usually associated with aggressive features 
at presentation and with BRAF V600E mutation, and it 
should be distinguished from other PMCs [66]. Interestingly, 
a morphologic and molecular (BRAF, KRAS, HRAS, NRAS, 
and PIK3CA) study of 3 PMCs with fatal outcome suggested 
that morphology of the metastatic deposits, including tall cell 
features, poorly differentiated areas, and high-grade cytologic 
features, could be more useful than molecular data to predict 
the behavior of PMCs [67].

In a study of PTCs in the young population of 
Fukushima, among classic PTC and FVPTC detected on 
ultrasonographic screening of almost 300,000 individuals, 
the BRAF V600E mutation was significantly associated with 
smaller size of PMCs than tumors without this mutation 
[68]. These findings provide evidence that additional factors 
are probably important for tumor progression in pediatric 
PTCs. Morphological features such as the subcapsular 
location or the surface location of the PMC in the thyroid 
gland [69], tall cell morphology, extrathyroidal extension, 
and/or angioinvasion have recently been confirmed as 
predictive factors of lymph node metastasis in patients with 
PMC [70].

Summing up, genetic data in general, and BRAF V600E 
mutation in particular, do not provide a molecular risk 
stratification for PMCs. The possibility of using clinico-
pathological and molecular data in order to identify a subset 
of PMCs that would fit the concept of papillary microtumor 
(PMT) is beyond the scope of this review [37, 71].

Histopathology—Aggressive variants of PTC

The group of PTC variants carrying a guarded prognosis 
encompasses diffuse sclerosing, diffuse/multinodular 
follicular variant, tall cell, columnar cell, and hobnail 
variants of PTC [39].

The main difference regarding the diffuse involvement of 
thyroid gland by a PTC concerns the association of diffuse 
sclerosing variant of PTC with BRAF-like features [72] 
and the association of diffuse/multinodular FVPTC with 
RAS-like features. The prognosis of these two variants is 
associated with usual clinico-pathological factors (Age, 
Gender, Staging, Lympho-vascular invasiveness) and, as 
far as we know, there is no evidence for molecular features 
in risk stratification. Regarding lympho-vascular invasion 
we recognize, nowadays the importance of the distinction 

of lymphatic from venous angioinvasion since it confers 
distinct biological meaning. Unfortunately, in the past years, 
the two parameters were not separated, and therefore, we 
kept the designation lympho-vascular invasion through the 
text and the tables.

In diffuse/multinodular FVPTC, one may occasionally 
find BRAF K601E mutation, as it may be detected in a small 
number of “common” FVPTCs [73]. The presence of the 
mutation does not have any prognostic significance.

Besides finding BRAF K601E in FVPTC, complex fusions 
of BRAF have been detected in some cases of solid variant 
[74, 75]. Again, this finding does not have prognostic value, 
although one has to realize that few cases have been diagnosed 
and followed-up to date. In most instances, the demonstration 
of rearrangements such as the BRAF fusions may be 
diagnostically important but the prognostic impact is not clear 
[76, 77]. The same applies to the detection of a number of 
other rearrangements including RET/PTC1, RET/PTC3, ETV6/
NTRK3 PAX8/PPARγ, ROS1, and ALK [72, 76, 78–80].

In contrast, tall cell and columnar cell variant PTCs do 
not involve the whole thyroid nor even usually a whole lobe, 
but the most important prognostic factors remain clinico-
pathological parameters (Tables  2 and 3). Concerning 

Table 2  Summary of the major clinico-pathological and molecular 
characteristics of tall cell variant of PTC*, **, ***

n.r. not reported 
*Cases of tall cell variant of PTC with foci of columnar cell com-
ponent [127], as well as PTC combining tall/columnar features and 
hobnail features [91] have been reported
**Tall cell variant of PTC is prone to dedifferentiation. This variant 
of PTC is often the well-differentiated component within PDTC and 
ATC [121, 128]
***PTC comprising only 10% or 30% of tall cells might be associ-
ated with a poor clinical outcome [129, 130]
****BRAF V600E mutation was > 92% in cases of the tall cell vari-
ant of PTC measuring < 1 cm [66, 113]
§ Distinction of lymphatic from venous invasion has not been made

Frequency Reference

Multifocality 45.7–50% [113–115]
Lympho-vascular  invasion§ 37.5% [115]
Necrosis n.r.
Extrathyroidal extension 53.6–87% [113–118]
Lymph node metastases 39.6–71% [113–115, 117–119]
Distant metastases (lung, bone, 

etc.)
6.2–8.6% [114, 115, 117]

Mortality 6.8–8.3% [114, 117]
Overexpression of p53 61% [120]
BRAF V600E mutation**** 80–100% [113, 121–125]
TERTp (C228T) mutation 26.3–43% [10, 106, 124, 125]
RET/PTC1 rearrangement (0/39)0% [126]
RET/PTC3 rearrangement (14/39)35.8% [126]
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the putative prognostic importance of molecular data 
on aggressive variants of PTC one has to realize that in 
encapsulated, non-invasive carcinomas composed of tall 
cells, columnar cells, and perhaps, also hobnail cells, the 
prognosis is extremely low risk regardless of the molecular 
features [76, 81–83]. Besides acknowledging that BRAF 
V600E mutations are frequently detected in tall cell and 
columnar variants, it remains to be demonstrated that such 

mutation alone plays a significant role in risk stratification 
(Tables 2 and 3).

The hobnail variant of PTC (HVPTC) is a subtype of 
PTC defined by more than 30% of cells with hobnail features 
[39, 84]. This rare variant, which comprises about 0.3 to 
2.7% of all PTCs [84–88], is associated with aggressive 
clinical behavior [84,89–93] (Fig. 3). Micropapillary and  
discohesive features in ≥ 20% of a PTC is associated with 
greater tumor recurrence and mortality [94, 95], and hobnail 
features, micropapillary pattern, and/or loss of cohesiveness/
polarity in PTC are independent predictive factors for 
lymph node metastasis [96, 97]. Tumors with 10% hobnail/
micropapillary features already predict aggressive behavior 
[90]. HVPTC has also been referred to as micropapillary 
variant [86, 91], but because the hobnail pattern is more 
consistent as a feature of aggressiveness, HVPTC is the 
preferred designation [93, [97, 98]. Oncocytic (oxyphilic) 
cells have been described in some cases of HVPTC 
[89], and the concomitant presence of tall cells, another 
feature associated with aggressiveness [39], has also been 
detected in cases of HVPTC [91, 92, 99]. This variant 
must be distinguished from the classic PTC with ischemic/
degenerative atypia that simulates HV but has an indolent 
clinical behavior [99].

Compared with classic PTC, HVPTC has more high-risk 
pathological features, is radioactive iodine refractory, and  
has a higher mortality rate [84, 86, 100, 101]. Multifocality has  
been reported in about 35% of HVPTCs [87, 88, 101–103].  
The presence of lympho-vascular invasion has been 
described in 62% of cases [85, 87, 88, 90–93, 101, 103–107],  
necrosis in 15.5% of cases [85, 87, 90, 91, 93, 102, 103, 
105], and extrathyroidal extension in 50% of cases [85, 88, 
90, 93, 99, 102–105, 107]. Lymph node metastases, which 
correlate with lymphatic invasion but do not alter mortality, 

Table 3  Summary of the major clinico-pathological and molecular 
characteristics of columnar cell variant of PTC*

n.r. not reported 
*Cases of PTC with mixed columnar cell and tall cell features have 
been described [136–138]
**Encapsulated tumors or intrathyroidal tumors had an excellent 
behavior [81–83]
§ Distinction of lymphatic from venous invasion has not been made

Frequency Reference

Multifocality 48.7% [131]
Lympho-vascular  invasion§ n.r.
Necrosis 22.2% [81]
Extrathyroidal extension 53.1% [81, 131]
Lymph node metastases 45.1% [81, 131]
Distant metastases (lung, bone, spinal 

cord, liver, brain, etc.)
4.3% [81, 82, 131, 132]

Mortality** 6.5% [81, 82, 131, 132]
CDX2 immunostaining (diffuse or 

focal)
33.3% [133, 134]

Overexpression of p53 (typically 
weak)

60% [81]

BRAF V600E mutation 36.3–50% [10, 81, 134, 135]
TERTp (C228T) mutation (0/3) 0% [135]
RET/PTC1 rearrangement (0/3) 0% [135]

Fig. 3  Association of hobnail 
variant of PTC (HVPTC) with 
aggressive clinical behav-
ior (Inset, positivity for p53)
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have been reported 65.5% of cases [85, 87, 88, 90–93, 99, 
101–104, 106, 107], in contrast, distant metastases to lung, 
bone, liver, brain, soft tissue, and/or nasopharynx, which 
reflect angioinvasion, have been reported in 23.2% of 
cases [85, 87, 88, 90–93, 99, 101, 102, 104, 106]. From 11 
publications with appropriate follow-up, 10.5% of patients 
died of the disease [85, 87, 88, 91, 92, 99, 101–104, 106].

HVPTC is immunohistochemically characterized by its 
positivity for thyroglobulin and TTF1 [84]. Cyclin-D1 [85, 
91], and common patched overexpression of p53 has been 
detected in more than 75% of cases [84, 85, 90–92, 103, 
108]. The Ki-67 index ranged from 2 to 40% [90–92, 108, 
109]. BRAF V600E is the most common mutation (> 70%) 
in HVPTC [85, 87, 88, 91, 92, 99, 101–103, 108, 110, 
111], having also been detected in the encapsulated cases 
of HVPTC [104]. Because BRAF V600E is also present in 
classic PTC (even in PMC), it does not seem sufficient to 
explain the clinical aggressive behavior of HVPTC. On the 
other hand, mutation of TP53, which is the most frequently 
mutated gene in ATC, has been detected in 55.6% of a series 
of 18 cases of HVPTC, with seven of these cases harbor-
ing simultaneous BRAF V600E and TP53 mutations [108]. 
Other studies have also detected the simultaneous presence 
of BRAF and TP53 mutations, and even of TP53 and BRAF 
and TERTp mutations in HVPTC [88]. Hobnail pattern has 
been interpreted as evidence of high-grade transformation 
due to its greater association with poorly differentiated thy-
roid carcinoma (22%) compared with PTC (1.3%) [102]. 
Furthermore, synchronous [112] as well as metachronous 
transformation with progression to ATC has been reported 
in HVPTC [91].

TERTp (C228T) mutation was reported in 44.4% of a 
series of 18 HVPTC [108]. Concurrent BRAF V600E and 
TERTp mutations have been reported in one p53-positive 
HVPTC with progression to ATC [91]; concurrent TERTp, 
BRAF V600E, and TP53 mutations have also been detected 

in one HVPTC coexisting with ATC [112]. All these data 
support the important role of TERTp and/or TP53 mutations 
in both aggressiveness and tumor progression. PIK3CA 
(27.8%), CTNNB1 (16.7%), EGFR (11.1%), AKT1 (5%), 
and NOTCH1 (5.5%) mutations [108], as well as GNAS 
(31%) mutations [88], have also been reported in HVPTC. 
An increased risk of mortality has been reported in patients 
with HVPTC harboring concomitant BRAF mutation with 
TP53, TERTp, and/or PIK3CA mutations [88, 108].

RET/PTC1 rearrangements, which typically occur in 
small, slow growing PTCs [5], have only been detected in 
7.6% (3/39) of HVPTC [87, 88, 92, 104, 111]. Neither RET/
PTC1 nor RET/PTC3 rearrangements were detected in 4 
HVPTCs that were negative for the BRAF V600E mutation 
[91, 108]. Neither NRAS, HRAS, KRAS, CDKN2A, nor 
PTEN mutations have been reported, nor were PAX8/PPARγ 
or ALK fusions in HVPTC [85, 88, 91, 101, 104, 108]. The 
major clinico-pathological and molecular characteristics of 
HVPTC are summarized in Table 4.

Molecular Risk Stratification in Follicular 
Patterned Lesions (RAS‑Like)

The classification of follicular-patterned thyroid lesions 
has undergone major disruption recently due to changes 
in criteria and terminology, leading to changes in the 
prevalence of PTC and FTC [139]. From the simple dualistic 
diagnosis of FTC vs PTC, to the FTC vs PTC vs FVPTC, 
now we confront FTC vs PTC vs FVPTC vs NIFTP (Fig. 4). 
These changes clearly affect the relative prevalence of the 
tandem histology-genetic alterations in the various series on 
record as well as the putative prognostic indications.

In the classification of thyroid tumors, there was an initial 
dichotomy in which morphology (presence of papillae or 
follicles) was the distinctive feature; at that time, there 

Table 4  Summary of the 
major clinico-pathological and 
molecular characteristics of 
hobnail variant of PTC

§Distinction of lymphaticfrom venous invasion has not been made

Frequency Reference

Multifocality 35% [87, 88, 101–103]
Lympho-vascular  invasion§ 62% [85, 87, 88, 90–93, 101, 103–107]
Necrosis 15.5% [85, 87, 90, 91, 93, 102, 103, 105]
Extrathyroidal extension 50% [85, 88, 90, 93, 99, 102–105, 107]
Lymph node metastases 65.5% [85, 87, 88, 90–93, 99, 101–104, 106, 107]
Distant metastases (lung, bone, liver, 

brain, soft tissue, nasopharynx, etc.)
23.2% [85, 87, 88, 90–93, 99, 101, 102, 104, 106]

Mortality 10.5% [85, 87, 88, 91, 92, 99, 101–104, 106]
Overexpression of p53 75% [84, 85, 90–92, 103, 108]
BRAF V600E mutation 70% [85, 87, 88, 91, 92, 99, 101–103, 108, 110, 

111]
TERTp (C228T) mutation 44.4% [108]
RET/PTC1 rearrangement 7.6% [87, 88, 92, 104, 111]
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was a predominance of FTC. In 1960, Lindsay [140] 
recognized the peculiar nuclear characteristics as the main 
distinctive feature of PTC. Later on, Chen and Rosai [141] 
identified thyroid carcinomas with PTC nuclei and follicular 
morphology and coined the term FVPTC. The application 
of these new criteria resulted in a predominance of PTC 
diagnosis and the demise of FTC [142]. The evidence 
that architectural and nuclear features were not enough to 
explain the diverse biological behaviors of these entities led 
to the return of invasive behavior as a pivotal factor in the 
differential diagnosis of follicular-patterned tumors. The 
entity designated as NIFTP was then introduced in order to 
avoid the over-diagnosis and overtreatment of the indolent 
and low grade non-invasive encapsulated FVPTC [143].

The genetic characterization of follicular lesions 
contributed also to progress in the classification of 
“follicular patterned thyroid tumors.” The genotyping of 
a growing number of FVPTCs reveals that these lesions 
have a genetic profile closer to FTC than to PTC. Higher 
frequency of RAS mutations and PAX8/PPARγ were found 
in these tumors, rather than the BRAF V600E mutation 
prevalent in classic PTC (Fig. 5). The NGS studies with 
multidimensional genomic and transcriptomic data 
also support the idea that a pathologic clarification of 
follicular-patterned thyroid lesions would lead to more 
precise surgical and medical therapy, especially with the 
introduction of targeted therapies in the management of 
thyroid cancer.

Fig. 4  Changes in the preva-
lence of PTC and FTC

Fig. 5  The genetic charac-
terization of follicular lesions 
contributed to progress in the 
classification of “follicular pat-
terned thyroid tumors”
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Adjustments are being made in the definition of NIFTP, 
namely, concerning histological aspects (degree of solid 
growth pattern and presence of oncocytic cells) and the 
presence/absence of genetic alterations. Initially, the 
criteria for NIFTP did not exclude cases harboring genetic 
alterations. It was advanced that NIFTP were enriched 
in RAS mutations and rarely harbored BRAF V600E 
mutation, but several studies reported NIFTP tumors with 
BRAF V600E mutation that displayed disease recurrence 
or lymph node involvement. Taking this into account and 
in order to avoid PTC misdiagnosis, the revised diagnostic 
criteria of NIFTP exclude the presence of mutations 
typical of classic PTC such as BRAF V600E or other 
BRAF V600E-like mutations (e.g., RET/PTC fusions) or 
other high-risk mutations (TERTp, TP53). In this setting 
the presence of these mutations is used as an exclusion 
criterion and triggers an exhaustive search for invasive 
features and papillary architecture in cases looking like 
NIFTP.

Due to persistence of diagnostic problems in NIFTP 
and FVPTC, we decided to focus on the molecular risk 
stratification in FTC (Table 5), a diagnosis that has been 
maintained relatively stable. RAS mutations have been 
consistently associated with follicular-patterned lesions; 
they can be present in benign and malignant lesions (FTA 
and FTC); therefore, they are not helpful in distinguishing 
benign from malignant tumors, but, as a general trend, 
RAS mutation rates are higher in FTC (40–50%) than in 
FTA (30–40%) displaying substantial overlapping in both 
conditions.

RAS mutations in FTC can affect all three RAS genes. 
NRAS 61 is the most frequent alteration found. Subtype-
specific analysis of RAS mutation (HRAS, NRAS, KRAS) 
does not demonstrated significant differences in mutation 
rates between benign and malignant tumors. In some 
studies, an association between the presence of NRAS 
mutations and the presence of distant metastases and poor 
patient prognosis has been reported (Table 5) [144, 145]. 
Since most of these studies only look for RAS mutations, 
it remains unclear if other mutations can co-exist leading 
to a higher risk for such tumors. One of those high-risk 
mutations is the occasional existence of TERTp mutations. 
TERTp mutations are present in all types of malignant 
thyroid tumors as discussed previously, and their presence 
has been reported in 15–30% cases of FTC. The presence 
of TERTp mutations is consistently associated with age, 
distant metastases, advanced TNM stage, persistence/
recurrence, and disease-specific mortality [84, 146–148].

Other genes were recently reported in follicular-
patterned lesions. EZH1 mutations were first reported 
in the TCGA study [12]; other studies confirm these 
mutations in benign and malignant follicular-patterned 
lesions; EZH1 mutations are rarely present in RAS-mutated 

tumors and appear to be associated with low grade tumors, 
FTA or minimally invasive FTC [148].

PAX8/PPARγ rearrangement has been described in FTA, 
in FTC and in FVPTC, thus clearly pointing to the fact that 
it plays a role in follicular morphology but not associated 
with clinico-pathological features or patient outcome.

Mitochondrion‑Rich Tumors–Hürthle Cell 
Carcinoma

The mutational profile of HCCs seems to be different from 
that of other types of well-differentiated thyroid cancer 
such as PTC and FTC [149–151]. There are virtually no 
BRAF V600E mutations (with the exception of oncocytic 
classical PTCs), and the frequency of RAS mutations is 
much lower than that of non-oncocytic FTC (~ 45% in 
FTCs vs. ~ 10% in HCCs) [150, 151]. EZH1 mutations 
are relatively frequent in benign and malignant oncocytic 
tumors (20% of Hürthle cell adenoma and 10% of Hürthle 
cell carcinoma). On the other hand, mutations in TERT 
promoter are frequent (~ 30%), being more common in 
widely invasive HCC than in minimally invasive HCC (32 
vs. 10%, respectively) [150, 151].

Admittedly, the most characteristic genetic alteration 
of oncocytic tumors are mutations in mtDNA, and 
consistently, these mtDNA mutations are specifically 
enriched in disruptive mutations in genes encoding 
components of complex I [149–151]. However, not all 
oncocytic tumors present these mutations, nor are those 
associated with worse or better prognosis. Regarding 
changes in microRNAs, oncocytic tumors also seem to 
be different from conventional follicular tumors (FTCs) 
[152]. In particular, the miR-885-5p was found to be 
strongly up-regulated (> 40-fold) in oncocytic FTCs but 
not in conventional FTCs and, although without prognostic 
significance, it appears to be a good diagnostic marker for 
HCC.

Interestingly, in studies where a thorough analysis of the 
genetics of tumors is carried out, widespread chromosomal 
losses are a hallmark feature of HCC, being associated 
with a poorer prognosis, suggesting that widespread 
chromosomal losses contributed to more aggressive 
disease [149–151, 153].

Molecular Risk Stratification in Other 
Thyroid Lesions (Non‑BRAF/Non‑RAS)

The less frequent follicular-derived tumors in the group 
non-BRAF-/non-RAS-like neoplasms are often difficult 
to classify in terms of nuclear features, and they may 
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include sporadic thyroid tumors as well as tumors arising 
in the setting of germline molecular alterations. The 
prismatic example of the latter is the cribriform-morular 
thyroid carcinoma, previously considered a variant of 
PTC [144]. This tumor is classically associated with 
familial adenomatous polyposis and activating germline 
APC mutations in the WNT/ β-catenin pathway but 
may also occur in the sporadic setting. In cribriform-
morular carcinoma, the β-catenin intracellular levels 
increase and when they accumulate in the nuclei, they 
tend to induce the expression of genes involved in cell 
proliferation and loss of differentiation. Nuclear and 
cytoplasmic staining for β-catenin is the hallmark of this 
tumor type. Consistent with Knudson’s two-hit model, 
additional APC somatic mutations have been found in 
about 50% of thyroid carcinomas associated with familial 
adenomatous polyposis [148]. In the sporadic cribriform-
morular thyroid carcinoma, somatic APC gene mutations 
or combinations of somatic mutations in phenotypically 
equivalent genes such as CTNNB1 and AXIN1 are involved 
in the constitutive activation of the WTN/β-catenin 
pathway [148].

Another example of this non-BRAF-/non-RAS-like 
group of tumors that also encompasses a familial setting 
is the DICER1 syndrome [155]. The DICER1 syndrome 
is an autosomal dominant condition arising from loss of 
functioning germline variants of the DICER1 gene. The 
DICER1 syndrome is characterized by the development 
of pleuropulmonary blastoma, cystic nephroma, 
Ser toli-Leydig tumors, botryoid-type embryonal 
rhabdomyosarcoma of the cervix, and tumors occurring 
in other locations, including thyroid. The expression of 
the thyroid disease in the setting of DICER1 germline 
mutations can vary from a benign multinodular goiter to 
thyroid carcinoma. The thyroid carcinomas diagnosed in 
patients with DICER1 syndrome are not easy to classify. 
They include cases reported as PTC, cases reported as 

FTC and cases that were classified as well differentiated 
carcinoma, not otherwise specified (WDC, NOS), in 
which the nuclear classification is more difficult [156]. 
The presence of DICER1 somatic mutations have 
also been reported in the sporadic setting, namely, in 
poorly differentiated thyroid carcinomas of childhood 
and adolescence [157] and in a recently described 
aggressive tumor, the so-called thyroblastoma [158]. 
The thyroblastoma of the thyroid is an exceedingly rare 
malignant teratoid tumor that affects predominantly young 
patients and has a unique triphasic phenotype characterized 
by solid nests of small primitive monomorphic cells 
embedded in a cellular immature stroma and primitive 
teratoid epithelial tubules. The so-called malignant thyroid 
teratomas that affect predominantly adults and elderly, 
according to the few published cases, can also harbor 
DICER1 mutation [159]. This small cell, very aggressive 
thyroblastoma of the thyroid that occurs predominantly 
in young patients must be distinguished from the small 
cell carcinomas of the thyroid with Ewing family tumor 
elements (CEFTE) that frequently harbor a favorable 
prognosis [160]. CEFTEs are rare tumors that are typically 
associated with PTC foci and disclose EWSR1/FLI1 
rearrangements. The EWSR1 rearrangement is a frequent 
event in PTC, mainly in the classic type [161], favoring 
the origin of CEFTE from PTC (Fig. 6). Nevertheless, the 
EWSR1 rearrangements appear to have no association with 
the clinical or biological behavior of PTC.

Another molecular alteration recently described aids in the 
differential diagnosis between PTC and hyalinizing trabecular 
tumor, two tumors with similar nuclear morphological 
alterations, including clearing, grooving and pseudoinclusions. 
The PAX8/GLIS3 and the PAX8/GLIS1 rearrangements were 
identified in hyalinizing trabecular tumors and were not 
detected in PTCs [162] representing a potential diagnostic tool 
to prevent overtreatment of patients with hyalinizing trabecular 
tumor, that present usually an excellent prognosis, although we 

Fig. 6  Molecular studies may 
be needed to separate two rare 
small cell neoplasms of the 
thyroid: carcinoma of the thy-
roid with Ewing family tumor 
elements (CEFTE) (A) from 
the teratoid malignant thyroid 
tumor, so-called thyroblastoma 
(B).
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must consider the existence of exceptional cases of hyalinizing 
trabecular tumors with metastases [163].

Another rare tumor that may occur in the thyroid that is 
also characterized by a typical rearrangement is the mam-
mary analog secretory carcinoma (MASC). MASC is a sali-
vary-gland like tumor that resembles secretory carcinoma of 
the breast, expresses S100 protein and GATA3, and harbors 
a balanced chromosomal translocation t(12;15)(p13;q25) 
that leads to the gene fusion ETV6-NTRK3 [164].

Summing up, there is no evidence supporting molecular 
risk stratification in non-BRAF-/non-RAS-like cases of DTC 
regardless of being sporadic or familial, although we must 
recognize that some are rare forms of thyroid carcinoma with 
only a few cases reported.

Integrating Molecular Risk Into 
Clinico‑Pathological and Dynamic Risk 
Stratification

From the clinical standpoint, risk stratification in thyroid cancer 
has evolved in recent years to a dynamic process [165]. Even 
though response to therapy has always been considered in the 
follow-up of patients to reassess risk, the proposal to classify 
response to therapy into four categories and to continuously 
reassess risk was introduced in clinical practice and is now 
recommended in most recent guidelines [166,167]. Risk 

stratification is now an active process that begins when a 
suspicious thyroid nodule is found and continues until last 
follow-up; during this time, dynamic risk stratification will 
mainly drive the initial treatment approach and predict the risk 
of recurrence, disease-specific mortality, and the most likely 
response to initial therapy.

After surgery and facing a confirmed diagnosis of DTC, 
risk stratification involves predicting the risk of recurrence and 
the risk of disease-specific mortality. The former is usually 
evaluated with the ATA risk system [166] (Table 6) and the 
latter with UICC/AJCC staging system [3]. Considering the low 
risk of mortality of most patients with DTC, two key issues will 
drive the decision to alter the initial treatment approach with 
completion thyroidectomy (if lobectomy has been performed) 
and radioiodine: the ATA risk of recurrence category and 
postsurgical thyroglobulin values, in combination with imaging 
studies in selected cases [168]. More aggressive treatment, 
namely, radioiodine, should be considered in intermediate-risk 
patients and is recommended in high-risk patients. In the 2015 
guidelines, the ATA has integrated for the first-time molecular 
alterations in its prognostic staging system for recurrence [166]. 
It was emphasized that appropriate molecular risk stratification 
requires the integration of the genetic factor into the clinical 
context, proposing a risk continuum based on the combination 
of clinico-pathological and molecular features. Additional 
clinical value was for BRAF mutation (in combination with 
several other factors) and TERTp mutations. Of note, apart 

Table 6  Categories of initial risk stratification as described in the 
ATA guidelines (complete features and summary with main fea-
tures) and the concept of «risk continuum» taking into consideration 

clinico-pathological and molecular features of tumors (Adapted from 
Haugen BR, et al. [166])

Category Complete Features Summary Risk continuum
Low risk Papillary thyroid carcinoma (PTC) with:

• Clinical N0 or ≤5 pN1 micromet.
• Complete resection (R0)
• No aggressive histology
• No vascular invasion*
• Intrathyroidal encapsulated FVPTC
• Intrathyroidal FTC with no or minimal (<4 foci) vascular invasion
• Intrathyroidal microPTC, unifocal or multifocal, including BRAF

mutated (if known)***

• Intrathyroidal DTC 
• ≤5 lymph node 

micrometastases

� FTC, extensive vascular invasion (≈ 30-55%)
� pT4a gross ETE (≈ 30-40%)
� pN1 with extranodal extension, >3LN involved (≈ 40%)
� PTC, > 1 cm, TERTp mutated ± BRAF mutated (>40%)
� pN1, any LN > 3 cm (≈ 30%)
� PTC, extrathyroidal, BRAF mutated (≈ 10-40%)
� PTC, vascular invasion (≈ 15-30)
� Clinical N1 (≈ 20%)
� pN1, >5 LN involved (≈ 20%)
� Intrathyroidal PTC, <4 cm, BRAF mutated (≈ 10%)
� pT3 minor ETE (≈ 3-8%)
� pN1, all LN <0.2 cm (≈5%)
� pN1, ≤ 5 LN involved (≈5%)
� Intrathyroidal PTC, 2-4 cm (≈5%)
� Multifocal PTMC (≈ 4-6%)
� pN1 without extranodal extension, ≤ 3 LN involved (2%)
� Minimally invasive FTC (≈ 2-3%)
� Intrathyroidal, < 4 cm, BRAF wild type (≈ 1-2%)
� Intrathyroidal unifocal PTMC, BRAF mutated (≈ 1-2%)
� Intrathyroidal, encapsulated, FVPTC (≈ 1-2%)
� Unifocal PTMC (≈ 1.2%)

Intermediate 
risk

• Microscopic extrathyroidal extension
• Aggressive histology (e.g., tall cell, hobnail variant, columnar cell 

carcinoma)
• PTC with vascular invasion*
• Clinical N1 or >5 pN1 with lymph nodes <3 cm **
• Multifocal papillary microcarcinoma with ETE and BRAF V600E 

mutation (if known)***

� Aggressive histology
� Minor extrathyroidal 

extension
� Vascular invasion (PTC)*
� >5 involved lymph nodes 

(0.2-3.0 cm)**

High Risk • Macroscopic extrathyroidal extension
• Incomplete tumor resection (R1-R2)
• Distant metastases
• Postoperative Tg suggestive of distant metastases
• Pathologic N1 with lymph node >3 cm**
• Follicular thyroid cancer with extensive vascular invasion (> 4 foci)

� Gross extrathyroidal 
extension

� R1-2
� Distant metastases
� Lymph node > 3 cm**

The legends regarding the asterisks were made by the authors
* It is necessary to separate invasion of lymphatic vessels from invasion of blood vessels because they play different prognostic roles
** Besides the size of the lymph node with metastases, it is important to realize that extra lymphatic invasion is prognostic important
*** It is necessary to clarify the meaning of this statement—In case one has ETE without BRAF mutation, we consider the prognosis is guarded, 
whereas if the BRAF is mutated and no ETE, we tend to keep in the low risk, but these assumptions remain disputable
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from mPTC, the single presence of TERTp mutations seems 
to be associated with an intermediate or high risk of recurrence 
and with higher disease-specific mortality [33, 34, 169170]. 
The role of combined mutations (TERTp, BRAF or RAS) in risk 
stratification is an issue under debate [9, 10].

After the initial treatment approach, patients are classified 
according to their response to therapy into four classes: 
excellent response, with no clinical, biochemical, or structural 
evidence of disease; biochemical incomplete response, with 
persistent abnormal thyroglobulin values or rising anti-
thyroglobulin antibody levels in the absence of localizable 
disease; structural incomplete response, with persistent or 
newly identified local or distant disease; and indeterminate 
response, when non-specific biochemical or structural findings 
are present [166]. We think there is now evidence enough to 
purpose the value of TERTp mutations in refining dynamic 
risk stratification in prognostic groups for DTC. This evidence 
has also shown better prediction of outcomes when TERTp 
mutations were incorporated into the different categories of 
response to therapy [171]. Regarding BRAF, no added benefit 
was found in predicting response to therapy [172].

In conclusion, there are two genetic alterations that can 
now be used to improve risk stratification: BRAF V600E and 
TERTp mutations. If BRAF V600E, integrated in the specific 
clinico-pathological context, may be helpful in initial risk 
stratification for the risk of recurrence, the prognostic value 
of TERTp mutations has been repeatedly demonstrated 
in different clinico-pathological contexts, for different 
outcomes and in different time points during follow-up.

Conclusion

The diagnostic and prognostic meaning of molecular 
data depend on its integration in the clinico-pathological 
context of DTC. The detection of RAS mutation does not 
allow the diagnosis of FTC or another malignant tumor. 
RAS mutations do not have prognostic significance per se 
although it is known that RAS mutations are associated with 
poor prognosis in the setting of poorly differentiated thyroid 
carcinomas, thus demonstrating the crucial role played by 
histopathology and staging [173]. The same applies to 
the detection of BRAF V600E mutation in the prognostic 
evaluation of thyroid tumors.

The most important prognostic factors in DTC are related 
to the size of the tumors as well as other TNM factors together 
with the presence of signs of extrathyroidal and blood vessel 
invasion. At present, TERTp mutation is the only molecular 
feature contributing significantly to risk stratification in DTC.
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