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Abstract
In the gastro-entero-pancreatic (GEP) tract, neuroendocrine neoplasms (NENs) include well differentiated 
neuroendocrine tumors (NETs) and high-grade NE carcinomas (NECs), which are thought to make up separate 
and mutually exclusive tumor entities. Little is known, however, as to whether there may be any pathogenetic link 
between them. Clustering analysis of a 10-gene panel generated from a previously reported next-generation sequencing 
analysis on 48  GEP-NENs with clinical annotations was used in the study. Unsupervised cluster analysis showed three 
histology-independent clusters, namely, C1, C2, and C3, which accounted for 44% of patients but the entire array 
of mutations. All but two NECs fell into the clusters, yet with different prevalence rates (p < 0.0001). A model was 
devised according to which NETs were likely to evolve into NECs upon progression of C3 into C1 and C2, despite 
different morphology. The median Ki-67 labeling index was 5% in C3 showing better prognosis and 50% in C1 and 
C2 experiencing worse prognosis, with an impressive intra-tumor heterogeneity of diversely proliferating tumor areas. 
This study suggests that a subset of large cell NECs in the gastroenteropancreatic tract may evolve from pre-existing 
well-differentiated NETs.
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APC  APC regulator of WNT signaling pathway
ATM  ATM serine/threonine kinase
ATRX  ATRX Chromatin Remodeler
BRAF  B-Raf proto-oncogene, serine/threonine kinase
CTNNB1  Catenin beta 1
DAXX  Death Domain Associated Protein
IDH1  Isocitrate dehydrogenase [NADP(+)] 1
KRAS  KRAS proto-oncogene, GTPase

PIK3CA  Phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit alpha

PTEN  Phosphatase and tensin homolog
RB1  RB transcriptional corepressor 1
TP53  Tumor protein p53

Others
DNA  Deoxyribonucleic acid
GEP  Gastroenteropancreatic
IHC  Immunohistochemistry
LCNEC  Large cell neuroendocrine carcinoma
NE  Neuroendocrine
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NET  Neuroendocrine tumor
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Introduction

In the gastro-entero-pancreatic (GEP) tract, neuroendocrine 
neoplasms (NENs) include well-differentiated NE tumors 
(WD-NETs) and NE carcinomas (NECs) [1, 2]. These 
tumors are graded according to a three-tier scheme based 
on morphology, mitotic count, and Ki-67 labeling index 
(henceforth, simply Ki-67), whereby NET-G1 and NET-G2 
correspond to WD-NETs and NECs to G3 [3, 4]. However, 
a new category of NET-G3 has recently been devised in the 
GEP tract inside the category of NECs, by integrating WD 
morphology, criteria for G3 (> 20 mitoses per 2  mm2 and 
Ki-67 ≥ 20%), upregulation of neuroendocrine markers [5, 
6], somatostatin receptors (STTRs) [7, 8] and retinoblastoma 
[8] along with p53 downregulation [7, 8], and occurrence of 
Death Domain Associated Protein (DAXX) and/or ATRX 
Chromatin Remodeler (ATRX) mutations (at least in the 
pancreas) along with the lack of the relevant proteins [8–17]. 
This additional category is deemed to intermediately behave 
between NET-G2 and NECs [5, 6, 17–20]. Although NETs 
and NECs are actually considered separate and distinct 
tumor entities [1, 2, 21], we have recently proposed a new 
pathogenetic hypothesis according to which NECs in resection 
specimens of lung and thymus NENs of either small or large 
cells could reflect secondary development from pre-existing 
carcinoids [22–25]. Whether such a challenging hypothesis 
can be supported even in the GEP tract according to the 
natural history of disease, this is still an unclarified issue.

We herein describe a reappraisal of the mutational profile 
of a published cohort of 48 GEP-NEN patients [26] aimed 
to evaluate whether G3 NENs and NETs in the GEP tract 
may have any developmental relationship. Our findings 
preliminarily support the hypothesis that a subset of large cell 
NECs in the gastroenteropancreatic tract may evolve from pre-
existing well-differentiated NETs after crucial gene alterations 
have been acquired for tumor progression.

Materials and Methods

Patients and Tumors

This study deals with a clinically well-annotated cohort 
of 48 GEP-NENs (25 males and 23 females) from 13 
pancreatic and 35 extra-pancreatic digestive sites, which 
had previously been investigated by means of targeted 
next-generation sequencing (NGS) analysis [26]. Out of 63 
originally reported NE malignancies, 15 tumors developing 
outside the GEP tract (breast, lung, and head and neck) 
or presenting as unknown tumor primaries were excluded 
from the analysis. Anatomical sites other than the pancreas 
comprised the esophagus (one case), stomach (two cases), 

small intestine (18 cases), colon-rectum (12 cases), and 
gallbladder (two cases). Ethnicity was distributed according 
to 42 Caucasian, five African American, and one Asian 
patient, whereas smoking habit was present in 22/48 (46%) 
patients (this information was missing in one patient). 
Alcohol consumption was documented in 46/48 (96%) 
patients, with 20 (42%) of whom being active consumers. 
The patient cohort comprised 12 (25%) G1, 20 (42%) G2, 
and 16 (33%) G3 tumors, which were classified according 
to World Health Organization (WHO) classifications [1, 
2] and ENETS guidelines (at https ://www.enets .org/enets 
_guide lines .html). In particular, no typical case of NET-G3 
could be documented upon morphology in the subgroup 
of NEC patients, who belonged to the histologic subtype 
with large cell according to 2017 WHO and 2019 WHO 
classifications (large cell neuroendocrine carcinoma, 
LCNEC) [1, 2]. No cases of small cell NECs were present. 
Twenty-nine out of 48 (60%) tumors had been surgically 
removed (11 NETs G1, 11 NETs G2, and seven NECs), 
with no neoadjuvant treatment being administered. Thirty-
four (71%) patients were staged IV, with the remaining 14 
(29%) being staged I–III according to the current TNM 
staging system, 8th edition [1, 2]. Eastern Cooperative 
Oncology Group (ECOG) performance status ranked score 
0 in 28 (58%) patients, score 1 in 18 (38%) patients, and 
score 2 in the remaining two (4%). Paraffin material had 
been selected for immunohistochemistry (IHC) assessment 
of Ki-67 and molecular investigations.

Study Design

This is a cancer mutational profile analysis to explore an 
innovative concept of secondary NECs in the GEP tract 
evolving from pre-existing WD-NETs through sequential gene 
mutations, as previously hypothesized in the lung [23, 25, 27] 
and the thymus [22, 24]. To this purpose, our previous NGS 
study on GEP-NENs, either primary or metastasis, conducted at 
Fox Chase Cancer Centre (Philadelphia, USA), was reappraised 
by clustering analysis [26]. All NENs were sporadic, affected 
adult patients (≥ 18 years), and included NET-G1, NET-G2, 
and NEC. All the ten recurrently altered genes from a panel of 
50 oncogenes and tumor suppressor genes frequently involved 
in human cancers by targeted NGS were used as an investigative 
signature in the study [26]. This 10-gene panel included APC 
(APC regulator of WNT signaling pathway), ATM (ATM 
serine/threonine kinase), BRAF (B-Raf proto-oncogene, serine/
threonine kinase), CTNNB1 (catenin beta 1), IDH1 (isocitrate 
dehydrogenase [NADP(+)] 1), KRAS (KRAS proto-oncogene, 
GTPase), PIK3CA (phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit alpha), PTEN (phosphatase and 
tensin homolog), RB1 (RB transcriptional corepressor 1), and 
TP53 (tumor protein p53), which underwent clustering analysis.
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Statistical Analysis

Hierarchical clustering analysis was performed as elsewhere 
detailed [23, 28]. Briefly, we used Spearman rank correlation 
as similarity metric and Centroid linkage as clustering method 
in Cluster 3.0 and Java TreeView software environment (http://
bonsa i.hgc.jp/~mdeho on/softw are/clust er/softw are.htm). 
The three main branches (N = 3) of hierarchical clustering 
were selected to construct clusters. Bar and radar plots were 
prepared using Excel 2020 (Microsoft Office). Continuous and 
categorical variables were compared by Kruskal-Wallis test 
and Fisher’s exact test, respectively, using the SAS software, 
version 9.4 (SAS Institute, Inc., Cary, NC). Kaplan-Meier plots 
and log-rank test for overall survival were performed using 
JMP 12 (SAS). Cox univariate and multivariable analyses were 

performed using the SAS software, version 9.4 (SAS Institute, 
Inc., Cary, NC). All p values were two-sided, and p < 0.05 
were considered as significant.

Results

Hierarchical Clustering Analysis Reveals Distinct 
Groups of Tumors

Supervised cluster analysis of the 10 gene panel in 21 out of 
48 (44%) tumor samples with mutations ordered according 
to tumor grade revealed that mutations in TP53/KRAS/RB1/
PTEN genes co-occurred more frequently in G2 and G3 
tumors (Fig. 1a). Overall, NET-G1 had the lowest mutation 

Fig. 1  a–d Unsupervised and supervised cluster analyses. a One-way 
hierarchical cluster analysis of the 10-gene mutations profile in 21 
NEN (with mutations). Samples were ordered based on tumor grade. 
Colors are as per the legend. b Unsupervised two-way hierarchical 
cluster analysis of the 10-gene mutations profile in 21 NEN. Data on 
Ki-67, gender, and smoking are presented as well. Colors are as per 
the legend. In light gray four NECs (three in C1 and one in C2) are 

reported, where RB1 assessment was not available. c Kaplan-Meier 
survival plots of the entire cohort of NAN (48 samples) stratified 
based on cluster identity (on the left) or on tumor grading (on the 
right). P values were calculated by the log-rank test. d Radar plot 
of the prevalence of genetic alterations in the clusters identified: 
numbers identify the percentages of the relevant gene mutations
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burden (one out of 12 cases, 8.3%), NET-G2 an intermediate 
value (six out of 20 cases, 30%), and NECs the highest one 
(15 out of 16 cases, 93.7%) (Supplemental Table 1). All NECs 
featured large cell neuroendocrine carcinoma. Expectedly, 
grade-related survival curves showed the best and the worst 
prognosis for NET-G1 and NECs, respectively, while G2 
run an intermediate clinical course (Fig. 1c). There were no 

differences in survival between resected and unresected NECs. 
The whole set of molecular and clinicopathologic data of our 
cohort of 48 patients is presented in Supplemental Table 1.

Unsupervised cluster analysis by means of the same 10 
gene panel pushed three distinct clusters to emerge, namely, 
C1, C2, and C3 (Fig. 1b). The remaining unclustered tumors 
(i.e., with no panel-related mutations) were descriptively 

Table 1  Clinicopathologic data according to clustering

Percentages could not add up 100 because of rounding
a Kruskal-Wallis test
b Fisher’s exact test

All
N = 48

Cluster

C1
N = 8 (16.7%)

C2
N = 9 (18.8%)

C3
N = 4 (8.3%)

“Others”
N = 27 (56.3%)

p value

Age at diagnosis [years]
  Median (Q1; Q3) 60 (55.5; 65) 59.5 (57; 64) 58 (51; 68) 64.5 (61.5; 66) 60 (55; 64) 0.66a

  Min–max 33–84 46–78 48–84 59–67 33–78
Sex

  Male 25 (52.1%) 4 (50.0%) 5 (55.6%) 1 (25.0%) 15 (55.6%) 0.79b

  Female 23 (47.9%) 4 (50.0%) 4 (44.4%) 3 (75.0%) 12 (44.4%)
Ethnicity

  White 42 (87.5%) 6 (75.0%) 9 (100.0%) 4 (100.0%) 23 (85.2%) 0.65b

  Black 5 (10.4%) 2 (25.0%) 0 0 3 (11.1%)
  Asian 1 (2.1%) 0 0 0 1 (3.7%)

Smoking status
  Smoker 22 (45.8%) 5 (62.5%) 3 (33.3%) 2 (50.0%) 12 (44.4%) 0.24b

  Non-smoker 25 (52.1%) 3 (37.5%) 6 (66.7%) 1 (25.0%) 15 (55.6%)
  NA 1 (2.1%) 0 0 1 (25.0%) 0

Alcohol
  Yes 20 (41.7%) 3 (37.5%) 4 (44.4%) 2 (50.0%) 11 (40.7%) 0.30b

  No 26 (54.2%) 4 (50.0%) 5 (55.6%) 1 (25.0%) 16 (59.3%)
  NA 2 (4.2%) 1 (12.5%) 0 1 (25.0%) 0

Site
  Esophagus 1 (2.1%) 1 (12.5%) 0 0 0 0.0018b

  Stomach 2 (4.2%) 1 (12.5%) 0 0 1 (3.7%)
  Pancreas 13 (27.1%) 1 (12.5%) 3 (33.3%) 2 (50.0%) 7 (25.9%)
  Small intestine 18 (37.5%) 2 (25.0%) 0 1 (25.0%) 15 (55.6%)
  Colon-rectum 12 (25.0%) 2 (25.0%) 6 (66.7%) 0 4 (14.8%)
  Gall bladder 2 (4.2%) 1 (12.5%) 0 1 (25.0%) 0

Stage
  I–III 14 (29.2%) 3 (37.5%) 1 (11.1%) 1 (25.0%) 9 (33.3%) 0.65b

  IV 34 (70.8%) 5 (62.5%) 8 (88.9%) 3 (75.0%) 18 (66.7%)
Grade

  G1 12 (25.0%) 0 0 1 (25.0%) 11 (40.7%) 0.0001b

  G2 20 (41.7%) 2 (25.0%) 2 (22.2%) 2 (50.0%) 14 (51.9%)
  G3 16 (33.3%) 6 (75.0%) 7 (77.8%) 1 (25.0%) 2 (7.4%)

Performance status—PS
  0 28 (58.3%) 3 (37.5%) 4 (44.4%) 3 (75.0%) 18 (66.7%) 0.16b

  1 18 (37.5%) 5 (62.5%) 3 (33.3%) 1 (25.0%) 9 (33.3%)
  2 2 (4.2%) 0 2 (22.2%) 0 0
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labeled as “others” (Table 1). The clusters C1, C2, and C3 
comprised eight, nine, and four patients, respectively, and 
showed different distribution of mutations: the cluster C1 
included mutations in TP53 (six cases), PIK3CA (three 
cases), and BRAF (two cases); the cluster C2 mutations in 
KRAS (nine cases), TP53 (seven cases), RB1 (three cases), 
and APC/CTNNB1/PTEN (one case for each); and the cluster 
C3 mutations in CTNNB1 (three cases) and ATM/IDH1 (one 
case for each) (Fig. 1b and d).

To further investigate the relationship existing among C1, 
C2, and C3, we considered the prevalence of mutations in 
each cluster (Fig. 2). While no cluster shared all the same 
mutations, TP53 were observed in C1 and C2; CTNNB1 in 
C2 and C3; and APC, ATM, BRAF, IDH1, KRAS, PIK3CA, 
PTEN, and RB1 across clusters with different prevalence 
rates among them (Figs.  2 and 3). Interestingly, the 
median Ki-67 value ranked 5% (range 1–70%), 50% (range 
3.2–95%), and 50% (range 3.2–95%) in clusters C3, C2, and 
C1, respectively (Fig. 3; Supplemental Table 1).

All but one C2-associated NEC had Ki-67 ranging from 50 to 
95% and none of them showed well-differentiated morphology 
(Supplemental Table 1). In all NEC samples, which belonged 
to the LCNEC subtype, Ki-67 was heterogeneously distributed 
inside tumors, showing diversely proliferating tumor areas 
intermingled with each other (Fig. 4).

Univariate and Multivariable Survival Analyses

Survival curves showed that C3 had the best prognosis, 
whereas C1 and C2 exhibited the lowest probability of survival 
with no significant difference between them, in keeping with 
their tumor composition (p = 0.69) (Fig. 1c). As a matter 
of fact, each cluster remarkably exhibited an unexpected 
admixture of NETs and NECs, with all but two NECs being 
distributed among cluster C1 (six out of eight cases, with two 
NET-G2), cluster C2 (seven out of nine cases, with two NET-
G2), and cluster C3 (one out of four cases, with one NET-G1 
and two NET-G2) (p < 0.0001) (Table 1; Fig. 3). Unmutated 
tumors according to this 10-gene panel (i.e., the group 
“others”) totaled 27 cases, mostly NETs (25/27 cases, 93%), 
particularly NET-G2 (14 cases), with only two NECs being 
on record (Fig. 3). No differences were documented across 
population as far as age at diagnosis, sex, ethnicity, smoking 
status, alcohol consumption, tumor stage, and performance 
status were concerned, although a preferential localization of 
cluster C2 and the “others” group was seen in the colon-rectum 
and small intestine, respectively (p = 0.0018; Table 1).

Cox univariate analysis showed that tumor site (stomach 
vs. small intestine), grade, stage IV, and clusters C1 and 
C2 impaired survival, while cluster C3 did not present any 
event (Table 2). Multivariable analysis confirmed that only 
clusters affected survival independently (Table 2).

Discussion

We herein challenge the current pathogenesis of GEP-NENs 
by favoring the hypothesis that a subset of large cell NECs 
in the gastroenteropancreatic tract is likely to evolve from 
pre-existing well-differentiated NETs. In this context, an 
intra-tumor heterogeneous distribution of Ki-67 as depicted 
in Fig. 4 could reflect the existence of diversely proliferating 
cell clones in these secondary NECs as previously indicated 
in the lung and the thymus [22, 23, 25]. Our study showed 
that 14 out of 16 (87%) NECs tightly joined NETs (NET-
G2 but also NET-G1) to realize three distinct and separate 
clusters, namely, C1, C2, and C3 (Fig. 1; Table 1), which 
accounted for 44% of patients according to the relevant 
10-gene signature. These clusters revealed genetic lesions 
which were shared by NETs and NECs (Fig.  3), thus 
supporting a compelling hypothesis on an evolution of 
NETs to some NECs. Remarkably, the group of “other” 
tumors devoid of any mutation with our gene panel mostly 
included NET-G1 (11 cases) and NET-G2 (14 cases) and 
predominantly grew in small intestine (15 cases) over the 
pancreas and colon (Table 1; Fig. 3; Supplemental Table 1). 
Of note, small intestine is known to harbor a minor fraction 
of mutational driver events (putative drivers in CDKN1 and 
APC would be documentable in only 10% of instances or 
less) [29, 30].

We would like to speculate that according to our 
hypothesis, NETs clustered in C3, which proliferated by 
5% Ki-67, would have a potential to transform into NECs 
(Table 1). As a matter of fact, cluster C3 harbored CTNNB1 
mutation as dominant alteration, which has been linked 
to epithelial-mesenchymal transition upon beta-catenin 
nuclearization and tumor progression in GEP tract [31] 
NENs. Of the other two genes in the cluster, ATM (a master 
controller of cell cycle checkpoint signaling in response to 
DNA damage and genome stability) is an independent risk 
factors for recurrence in pancreatic NENs [32], and IDH1 
(involved in metabolic cytoplasmic NADPH production) 
has been associated with higher histologic grade, 
lymphovascular invasion, and recurrence rate in rectal and 
gastric GEP-NENs [33]. Of note, ATM and IDH1 mutations, 
which were found in two long surviving metastatic NETs 
of the pancreas (NET G1 and NET G2, respectively; 
Supplemental Table  1), could be associated with the 
occurrence and development of these tumors as documented 
in low-grade glioma and secondary glioblastoma [34, 35]. 
Cluster C2, beyond CTNNB1 mutation, presented with 
additional master genes repeatedly altered in high-grade 
NENs at different anatomical sites (including the GEP 
tract), such as APC, KRAS, PTEN, RB1, and TP53. In 
particular, cluster C2 was repository of all KRAS mutations 
[36, 37], which are common to NECs of the lung [23, 27, 
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38–40] and the uterine cervix [41]. Even cluster C1 shared 
with cluster C2 TP53 mutations in most instances (75%), 
along with PIK3CA (37%) and BRAF (25%) mutations, 
both of which are frequently documented in gastrointestinal 
NECs as driver mechanisms [42–44]. Of note, repetitive 
pathogenic/likely pathogenic TP53 mutations were found 
in more aggressive rectal NETs, supporting the hypothesis 
of a risk evolution [33].

The relevance of clustering to clinics (and hence of 
gene alterations) even more emerged from the analysis of 
survival curves, with the best prognosis in C3 and the worst 

in C1 and C2 (the median Ki-67 ranked 5% in C3 and 50% 
in C1 and C2) (Fig. 1). These survival trends of clustered 
NECs were likely to mirror the close relationship among 
cell differentiation, proliferative activity, and biological 
aggressiveness in NENs of the GEP tract [16, 17, 45–48]. 
Noteworthy, cluster C1 (and marginally C2) was also an 
independent factor of survival on multivariable analysis, 
thus suggesting a role for gene alteration burden in dictating 
tumor morphology and clinical behavior.

The heterogeneity in GEP NEC distribution across 
clusters could reflect major differences in their natural 

Fig. 2  Distribution of genetic 
alterations according to clusters 
(C1 → C3). Bar plots indicate 
frequency (Y-axis) of alterations 
found in each cluster (shown on 
X-axis) highlighted by different 
colors. Simple asterisks indicate 
significant p values; double 
asterisks indicate marginal p 
values (calculated by Fisher 
test)

Fig. 3  Relationship between clusters and tumor composition 
(C1 → C3). Pie charts indicate the distribution of different tumor types 
in the clusters, which are positioned according to the clustering tree 
shown on the left of picture with the corresponding gene alterations 
(the numbers in brackets correspond to mutation burden). APC 
(APC regulator of WNT signaling pathway), ATM (ATM serine/

threonine kinase), BRAF (B-Raf proto-oncogene, serine/threonine 
kinase), CTNNB1 (catenin beta 1), IDH1 (isocitrate dehydrogenase 
[NADP(+)] 1), KRAS (KRAS proto-oncogene, GTPase), PIK3CA 
(phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit 
alpha), PTEN (phosphatase and tensin homolog), RB1 (RB 
transcriptional corepressor 1), and TP53 (tumor protein p53)
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history [15, 23, 25], which in turn might reflect endogenous 
and/or exogenous risk factors as a function of the primary 
anatomical sites (e.g., prior/familial history of non-NE 
cancer or smoking in the small intestine [49] or urinary 
bladder [50], smoking in the colon and uterine cervix [51, 
52], and non-recent onset diabetes [53] in the pancreas). 
Indeed, in our hand, KRAS-mutated C2 cases developed in 
the colon and the pancreas. Therefore, endogenous and/or 
exogenous risk factors might give rise to different genetic/
epigenetic alterations at the onset of tumor development 
according to the different anatomical site (so important for 
the clinical behavior of GEP NENs), whereby imprinting 

preclinical phase, clinical outcome, and morphologic 
appearance [23, 25, 54].

In our series, we did not encounter morphologic NET-
G3 and the range of Ki67 in NECs clustering C1 (50–95%) 
and C2 (30–95%), the survival curves and the prevalence 
of TP53 mutations (TP53 is inactivated in most NECs 
anywhere [1, 2]) were all in keeping with the diagnosis 
of NECs. However, less proliferating tumor areas as 
depicted in Fig. 4 could meet some morphological traits 
of NET-G3, whose diagnostic recognition may have been 
blurred at the level of an individual patient’s cancer by 
using morphology or immunohistochemistry as supervised 
defining criteria [8, 55–57]. Moreover, one case clustering 
C2, mutated in TP53 and featuring NEC, fell into the 
same proliferation category as NET-G3 (mitoses > 20; 
20% < Ki-67 < 50%), but was joined two other NETs 
bearing TP53 or RB1 mutation (RB1 is inactivated in 
most NECs anywhere) [1, 2] (Supplemental Table  1). 
In our study, unsupervised clustering analysis (Figs. 1 
and 3) revealed a clear admixture of NETs and NECs, 
which in turn showed admixture of well differentiated 
NETs with high-grade components (Fig. 4), thus letting 
us hypothesize an evolution of some NECs with large 
cell morphology from pre-existing NETs (Fig. 3). This 
admixture of diversely escalating tumor components in 
cell proliferation was paralleled by a heterogeneous intra-
tumor distribution of Ki-67 (Fig. 4), which could help to 
recognize these secondarily evolving NECs, as previously 
observed [6, 22, 23].

Despite limitations of our study principally due to its 
retrospective character, limited number of tumors, and the 
small number of genes under evaluation, which precluded 
an independent validation, a strength point was however 
represented by unsupervised clustering analysis centered on 
molecular alterations rather than the more traditional supervised 
analysis based on tumor categorization that may be challenging 
especially at the level of an individual patient’s cancer.

Conclusions

We herein introduce the concept of secondary large cell 
NEC in the GEP-NENs which is likely to incorporate an 
underrecognized perspective mirroring risk factors and 
the natural history of disease. This is in keeping with other 
models of NE neoplasms arising elsewhere, in which gene 
alterations are the best modelers of tumor fate.

Supplementary Information The online version contains supplemen-
tary material available at https ://doi.org/10.1007/s1202 2-020-09659 -6.
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