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Abstract
The application of immunohistochemistry to the diagnosis of thyroid lesions has increased as new biomarkers have emerged. In
this review, we discuss the biomarkers that are critical for accurate diagnosis, prognosis, and management. Immunohistochemical
markers are used to confirm that an unusual tumor in the thyroid is indeed of thyroid origin, either of follicular epithelial or C-cell
differentiation; the various mimics include nonthyroidal lesions such as parathyroid tumors, paragangliomas, thymic neoplasms,
and metastatic malignancies. Tumors of thyroid follicular epithelial cells can be further subclassified using a number of immu-
nohistochemical biomarkers that can distinguish follicular-derived from C-cell lesions and others that support malignancy in
borderline cases. The use of mutation-specific antibodies can distinguish papillary carcinomas harboring a BRAFV600E mutation
from RAS-like neoplasms. Immunostains have been developed to further identify molecular alterations underlying tumor
development, including some rearrangements. Altered expression of several biomarkers that are known to be epigenetically
modified in thyroid cancer can be used to assist in predicting more aggressive behavior such as a propensity to develop
locoregional lymphatic spread. Immunohistochemistry can assist in identifying lymphatic and vascular invasion. Biomarkers
can be applied to determine dedifferentiation and to further classify poorly differentiated and anaplastic carcinomas. The rare
tumors associated with genetic predisposition to endocrine neoplasia can also be identified using some immunohistochemical
stains. The application of these ancillary tools allows more accurate diagnosis and better understanding of pathogenesis while
improving prediction and prognosis for patients with thyroid neoplasms.
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Introduction

The role of immunohistochemistry in thyroid pathology in-
cludes multiple aspects of diagnosis as well as biomarkers that
serve to provide information about prognosis, prediction, and
genetic predisposition.

In some instances, immunohistochemistry is required to
prove the differentiation of a thyroid tumor; this entails iden-
tifying biomarkers of thyroid follicular cells or parafollicular
C cells, or in contrast, proving differentiation as a distinct

lesion, such as a parathyroid cell proliferation, a lesion derived
from intrathyroidal thymic or salivary gland remnants, a stro-
mal or lymphoid lesion, or metastatic malignancy.

Some biomarkers are useful to correctly classify a thyroid
tumor of known cellular origin. With advances in molecular
biology and changes in our understanding of follicular and
papillary lesions derived from follicular epithelium,
immunoprofiling can be used to distinguish benign from bor-
derline or malignant lesions. Follicular epithelial-derived tu-
mors with solid and trabecular growth pattern can also be
appropriately classified based on loss of markers of differen-
tiation and adhesion. The progress in these areas is yielding
valuable information to correctly classify these tumors.

One of the major challenges in thyroid pathology is the
ability to correctly identify tumors that are likely to behave
aggressively and to distinguish them from tumors that will
remain indolent. Many morphologic and functional features
that can help to predict behavior have been described and
several can be identified with immunohistochemistry [1, 2].

Finally, as the genetic basis of endocrine neoplasia is be-
coming clear, we have tools that can help the pathologist to
identify patients who are candidates for genetic testing, an
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important aspect of diagnostic pathology that plays a critical
role in prevention of disease for the patient and their family
members.

In this review, we summarize the most important immuno-
histochemical biomarkers that can be used to address pitfalls
in thyroid pathology [3]. In the interest of brevity, not all
biomarkers will be reviewed. Discussion of stromal and lym-
phoid lesions of the thyroid is beyond the scope of this paper.

Confirmation of Cellular Origin of a Thyroid
Lesion

Tumors in the thyroid can be derived from follicular epithelial
cells, but they also can arise from parafollicular C cells and
from other tissues in and around the thyroid, including para-
thyroid glands, thymus, and the various stromal elements. It is
therefore important to have tools to ensure the correct classi-
fication of lesions. Here, we review the various thyroid-
specific immunohistochemical biomarkers and those that
identify other relevant lesions in the thyroid region.

Thyroid Transcription Factors

The discovery of thyroid transcription factors (TTFs) has made
it possible to advance our understanding of thyroid biology.
The parenchymal cells of the thyroid gland concurrently ex-
press four genes that encode the following TTF proteins: Nkx-
2.1 encoded by NKX2-1, also known as thyroid transcription
factor-1 (TTF-1) and homeobox protein, FOXE1 (also known
as thyroid transcription factor-2 (TTF-2) and forkhead box
protein, encoded by FOXE1), paired box protein PAX8
(encoded by paired box gene 8 (PAX8)), and homeobox pro-
tein Hhex (encoded by HHEX) [4–9]. These four transcription
factors are expressed in thyroid follicular cells and selectively
in other tissues. In the thyroid gland, TTFs modulate the de-
velopment of the thyroid gland and also modulate the expres-
sion of thyroglobulin, thyroid peroxidase (TPO), the thyroid
stimulating hormone receptor (TSHr), and the thyroid sodium/
iodide cotransporter [6, 7, 9, 10]. Therefore, alterations in the
functionality of the TTFs due to adverse genetic events such as
mutations and epigenetic modifications can lead to thyroid
dysgenesis and even development of tumors [4, 5, 11, 12].

TTFs are also expressed in other tissues throughout the
body. The NKX2-1/TTF-1 is expressed in the fourth branchial
pouch, ultimobranchial body, lung, trachea, posterior pituitary,
hypothalamus, medial ganglionic eminence, C cells, and even
parathyroid cells [13–15]. The FOXE1/TTF-2 is expressed in
tissues derived from the pharyngeal arches and pharyngeal
wall (tongue, palate, and esophagus), testis, epidermis, and
hair follicles; additional expression is also noted in human
thymus, brain, heart, placenta, lung, skeletal muscle, and kid-
ney [16]. PAX8 expression is found in the kidney, endocervix,

endometrium, ovary, fallopian tube, seminal vesicle, pancre-
atic islet cells, and lymphoid cells [17–20]. HHEX expression
can be seen in the liver and hematopoietic cells in addition to
thyroid follicular cells [4, 9, 15, 21–26].

Thyroid Transcription Factor-1

In the thyroid gland, immunohistochemistry identifies TTF-1
as diffusely expressed in the nuclei of normal thyroid follicu-
lar cells and para-follicular cells. Thus, it is not surprising that
TTF-1 shows diffuse expression in follicular cell-derived neo-
plasms such as follicular adenoma, well-differentiated follic-
ular carcinomas (papillary and follicular), poorly differentiat-
ed carcinomas, and foci of C-cell hyperplasia and nearly all
medullary thyroid carcinomas [7, 8, 27–29]. TTF-1 expres-
sion, usually focal, is retained in 5 to 15% of anaplastic carci-
nomas [30]. TTF-1 expression has also been reported in
mucoepidermoid carcinomas of the thyroid gland and, in rare
cases, of sclerosing mucoepidermoid carcinoma with eosino-
philia [31–33]. TTF-1 is useful, except in cases of metastatic
lung tumors (pulmonary adenocarcinoma, well-differentiated
pulmonary neuroendocrine tumor) as well as in poorly differ-
entiated neuroendocrine carcinoma of various sites, in cases
where a metastatic tumor is considered in the differential di-
agnosis of a thyroid nodule, especially when secondary tu-
mors present as a dominant thyroid nodule or metastasize to
a primary thyroid neoplasm (Btumor to tumor metastasis^)
[5, 11, 12, 34, 35]. Thyroglobulin immunoreactivity is fre-
quently used to confirm follicular cell origin. However, one
should be aware of the limitations of this biomarker as thyro-
globulin can sometimes be negative in some thyroid follicular
epithelial proliferations or diffusion-type staining can cause
diagnostic challenge for diagnosticians (Fig. 1). Therefore,
the use of TTF-1 and monoclonal PAX8 is advised. When
distinguishing metastatic neuroendocrine tumors to the thy-
roid from primary thyroid neoplasms, calcitonin immuno-
staining may also be of limited value as it is expressed in
nonthyroidal neuroendocrine tumors, especially those of pul-
monary origin. Such instances will require comparison with
patient’s primary tumor, careful determination of serum calci-
tonin levels (much elevated in medullary thyroid carcinoma as
compared to other neuroendocrine tumors), immunostains for
carcinoembryonic antigen (preferably monoclonal), and mo-
lecular genetics. When distinguishing metastatic carcinomas
to the thyroid gland, it is also important to know that CDX-2 is
expressed in columnar cell variant of papillary thyroid carci-
noma [1] (Fig. 2).

TTF-1 expression in some lesions can also depend on the
clone of antibody used for immunohistochemistry. For in-
stance, the 8G7G3/1 clone has been reported to be either neg-
ative or variably/weakly positive in ultimobranchial body
remnants of the thyroid gland known as solid cell nests
[36–40]. However, a recent study demonstrated that the
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SPT24 clone of TTF-1 is diffusely and strongly expressed in
ultimobranchial body remnants of the thyroid gland [41]
(Fig. 3). The same study expanded the immunohistochemical
profile of ultimobranchial body remnants by demonstrating
positivity for GATA-3 and negativity for monoclonal
carcinoembryonic antigen (CEA) in these structures that can
simulate follicular epithelial proliferations in some cases [41].

TTF-1 expression in nonpulmonary neuroendocrine carci-
noma has been described and can be encountered in high-
grade tumors ar i s ing f rom the ovary, GI t rac t ,
pancreaticobiliary tract, and breast [11, 42, 43].

At present, the determination of thyroid follicular cell ori-
gin in cases of metastatic tumors is not only limited to
formalin-fixed paraffin-embedded histopathology specimens;
it can also be performed in cytologic preparations, such as
cytospins, cell blocks, and smears. Studies have cautioned that
the immunoreactivity of an antibody maybe compromised in
cytologic specimens, especially those fixed in alcohol-based
fixative. Therefore, the use of a TTF-1 antibody in cytologic
specimens should only be employed after careful analytical
validation [44].

Paired Box Gene 8

In the thyroid gland, strong and diffuse expression of PAX8 is
observed in thyroid follicular epithelium and its associated
neoplasms [16, 45]; weak and focal expression has also been
reported in cases of medullary thyroid carcinoma (41 to 75%
of cases showing weak immunostaining). Nonthyroidal tu-
mors that stain positive with PAX8 antibodies include renal
tumors, ovarian neoplasms of Müllerian origin, and
endometrioid carcinoma and seminoma [46]. Interestingly,

diffuse to weak immunostaining has also been reported in rare
cases of parathyroid lesions and nonneoplastic thymic tissue.
In the experience of some authors of this paper (OM, SLA),
PAX8 reactivity in some sites is identified with polyclonal
antisera [47]; in contrast, the use of monoclonal antisera yields
negative reactivity in parathyroid gland and thymus, suggest-
ing that the reported reactivity may be nonspecific.

It has been shown that PAX8 expression is often retained in
cases of anaplastic thyroid carcinoma and is helpful in cases
with limited to no expression of TTF-1 and cytokeratins
(Fig. 4), especially those which lack an associated component
of well-differentiated thyroid carcinoma [2, 43, 48]. Bishop
et al. have shown that PAX8 immunostaining is also helpful in
distinguishing between anaplastic thyroid carcinoma showing
squamous differentiation and squamous cell carcinoma of the
head and neck, as it is negative in the latter [48].

Thyroid Transcription Factor-2 (FOXE1)

The literature is limited on the expression of TTF-2 in thyroid
and nonthyroidal lesions. It is diffusely and strongly expressed
in all follicular-cell-derived well-differentiated and poorly dif-
ferentiated carcinomas. It has been reported to be weakly and
focally expressed in a few cases of anaplastic carcinoma and
in up to 75% of cases of medullary thyroid carcinoma. It is not
expressed in other organs where TTF-1 expression is seen,
especially tumors of pulmonary origin [16, 43].

Thyroglobulin

Thyroglobulin (TG) is one the largest proteins in the verte-
brate proteome; it is exclusively synthesized by thyroid

Fig. 1 Thyroglobulin
immunohistochemistry.
Thyroglobulin immunoreactivity
is often considered to confirm
follicular cell origin. However,
thyroglobulin can sometimes be
negative in some thyroid
follicular epithelial proliferations,
or diffusion-type staining can
create a diagnostic challenge.
This photomicrograph of the
periphery of a medullary thyroid
carcinoma that was positive for
monoclonal CEA and calcitonin
(not illustrated) illustrates true
staining in the surrounding
follicular epithelium (left) and
diffusion-type false thyroglobulin
reactivity at the periphery of the
C-cell lesion (middle) that fades
in the center of the lesion (right)
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follicular cells. Human TG is encoded by chromosome
8q24.2-8q24.3 and has a monomeric molecular mass of
330 kDa and approximately consists of 2750 amino acids.
The expression of TG genes is controlled by TTF-1 and
PAX8. TG is stored in a highly concentrated form within the
extracellular colloid of thyroid follicles. This efficient storage
system is a unique feature of the thyroid gland which provides
on-demand availability of thyroid hormones and avoids the
disas t rous af termaths of iodide def ic iency. The

posttranslational modification of TG is iodination which leads
to synthesis of T3 and T4; this step is carried out upon stim-
ulation by thyroid-stimulating hormone (TSH) by an orches-
trated effort of the sodium iodide symporter (NIS), dual func-
tion oxidase (DUO), and TPO [49, 50].

The reference range of serum TG is 1.40–29.2 ng/ml for
males and 1.50–38.5 ng/ml with a half-life of 65 h [51]. The
serum levels of TG can be elevated in both nonneoplastic and
neoplastic lesions of the thyroid gland [49]. A significant in-
crease can be observed in patients with follicular-derived thy-
roid cancers as compared to those with benign conditions [51].

Fig. 2 CDX-2 reactivity in columnar cell variant papillary thyroid
carcinoma. When distinguishing metastatic carcinomas to the thyroid
gland, it is important to know that CDX-2 is expressed in columnar cell
variant of papillary thyroid carcinoma. This photomicrograph illustrates
CDX-2 reactivity in a columnar cell variant papillary thyroid carcinoma
(a) that was negative for thyroglobulin (not illustrated). Positivity for
TTF-1 (b) and monoclonal PAX8 (c) confirmed thyroid follicular
epithelial origin of this tumor

Fig. 3 Ultimobranchial body remnants (solid cell nests). This composite
figure illustrates solid cell nests (a) that are positive for p63 (b) and TTF-1
(c ) . I t i s impor tan t to know the c lone used fo r TTF-1
immunohistochemistry, as the 8G7G3/1 clone has been reported to be
either negative or variably/weakly positive in solid cell nests. However,
the SPT24 clone of TTF-1 (c) is diffusely and strongly expressed in
ultimobranchial body remnants
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Postthyroidectomy levels of TG can be utilized to monitor
locoregional tumor recurrence or distant metastasis; however,
this is highly dependent on the presence of residual thyroid
tissue after surgery and the degree of differentiation of the
malignant tumor [52, 53].

By immunohistochemistry, TG expression is indicative
of thyroid follicular origin; however, the intensity and type
of immunostaining is highly dependent on the tumor type
[42, 43]. Most follicular and papillary thyroid carcinomas
show strong and diffuse cytoplasmic expression with in-
tense staining of the luminal colloid. In case of oncocytic
(Hürthle cell) tumors, TG immunostaining can appear as
dense granular deposits localized to the perinuclear area,
whereas some cases may show weak and focal expression.
TG expression is relatively decreased in poorly differenti-
ated thyroid carcinomas and always absent in cases of ana-
plastic carcinoma. Most C-cell-derived lesions do not

express TG; however, rare cases of medullary thyroid car-
cinomas may show focal immunostaining with TG anti-
body, a feature which most likely is either due to entrapped
follicular epithelium within the tumor or diffusion-type
staining including TG sequestered within macrophages
and vascular channels [42, 43, 54]. Rare thyroid tumors
known as mixed or composite medullary and follicular/
papillary carcinomas will genuinely express both calcitonin
and TG in C-cell and follicular cell-derived components,
respectively [55–58]. In the experience of some authors of
this paper (OM, SLA), the use of monoclonal PAX8 and
calcitonin can be used to confirm the diagnosis of compos-
ite medullary thyroid carcinoma and follicular epithelial-
derived carcinomas (Fig. 5).

TG expression in fine-needle aspiration specimens can also
be utilized to confirm follicular cell origin, especially in cases
of secondary tumors clinically mimicking a solitary thyroid

Fig. 4 The role of PAX8 in the
diagnosis of anaplastic thyroid
carcinoma. This composite
photomicrograph illustrates an
anaplastic thyroid carcinoma
arising in the background of
poorly differentiated thyroid
carcinoma (a—left side:
anaplastic thyroid carcinoma).
The anaplastic carcinoma
component is negative for
thyroglobulin (b) and TTF-1 (c)
and is positive for monoclonal
PAX8 (d)
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nodule or metastatic thyroid tumors at other body sites.
Additionally, the determination of TG levels on aspirated ma-
terial from a neck lymph node can confirm the thyroid follic-
ular cell origin of metastatic carcinoma. This is extremely
beneficial in cases of nondiagnostic fine-needle aspiration
(FNA) specimen from cystic metastasis of papillary thyroid
carcinoma [59, 60]. However, the use of TG in association
with TTF-1 and monoclonal PAX8 is advised.

Thyroid Peroxidase

TPO is an enzyme expressed specifically by differentiated
thyroid cells [61]. It is useful to define cells as of thyroid
follicular differentiation.

Calcitonin

In the early 1960s, two major developments occurred in the
understanding of C-cell disorders. These included the discov-
ery of the hormone calcitonin and the description of the pa-
thology of medullary thyroid carcinoma (MTC) [62, 63]. In
1966, Williams postulated that medullary carcinoma could be
derived from the C cells and, if so, could produce calcitonin,
which might potentially serve as an elegant tumor biomarker
[63]. This concept was proven by Bussolati and Pearse in
1967 by demonstrating the presence of calcitonin in C cells
using immunofluorescence techniques [64].

Calcitonin (CT) is a highly effective hypocalcemic poly-
peptide hormone comprised of 32 amino acids. The CALC-1

Fig. 5 Composite medullary
thyroid carcinoma and follicular
variant papillary thyroid
carcinoma. The tumor nodule is
composed of a dual cell
population (a). C cells are positive
for calcitonin (b) and the
follicular component is positive
for monoclonal PAX8 (c). Both
components are positive for TTF-
1 (d)
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gene encodes human CT; it is a member of the CALC gene
family and is housed on the tip of the short arm of chromo-
some 11 (11p15.3-15.5). Calcitonin exerts its function by
binding to specific CT receptors which are widely expressed
in adult tissues [65, 66]. Interestingly, CT receptor expression
can also be seen in neuroendocrine tumors of the lung as well
as in malignant tumors of the breast and prostate [65, 67].
Demonstration of elevated serum calcitonin levels (basal and
stimulated) remains a sensitive and specific test for diagnosing
both sporadic and familial forms of medullary thyroid carci-
noma [68]. It has been shown that serum calcitonin correlates
with the size of theMTC. However, with dedifferentiation, CT
can decrease while CEA rises. Similarly, the morphologic
diagnosis of MTC in pathologic specimens (fine-needle
aspiration and histopathology) is usually confirmed by using
immunohistochemistry to demonstrate CT expression. Up to
95% of the MTC show positive immunostaining with CT;
however, the staining pattern can vary from diffuse to focal
staining, and up to 25% of cases will show only focal expres-
sion [54].

Undetectable serum calcitonin levels can be seen in a few
cases of MTC; however, by immunohistochemistry, these tu-
mors will show diffuse and strong to focal and weak calcitonin
expression [69–71]. Some experts have suggested that loss of
CT is indicative of poor prognosis; however, others have not
been able to corroborate this association [69, 72, 73]. It has
been shown that procalcitonin can serve as a useful marker in
calcitonin-negative tumors [84–86]. Similarly, calcitonin
gene-related peptide can also serve as a biomarker in CT-
negative MTC [76].

Calcitonin Gene-Related Peptide

The calcitonin/calcitonin gene-related peptide (CGRP) gene is
responsible for both producing both calcitonin and α-CGRP.
CT is the major peptide synthesized in thyroid C cells, where-
as α-CGRP is widely expressed in neural tissues including
perivascular nerve fibers, trigeminal ganglia, nonvascular ele-
ments of dura, and cerebellum. A similar peptide known as β-
CGRP encoded by a separate gene has also been identified
[74–76]. Expression of α-CGRP can be detected by immuno-
histochemistry and in situ hybridization techniques in MTC.
Furthermore, it can also be detected in the serum of patients
with MTC [76].

Other Biomarkers of MTC

In addition to CT and CGRP, C cells also express CEA,
chromogranin, and TTF-1. CEA staining is seen in foci of
C-cell hyperplasia and is very helpful in cases of MTC which
show focal weak or negative CT expression. Since monoclo-
nal CEA is virtually positive in all C-cell proliferations, it is
considered the best biomarker of MTC [1, 2] (Fig. 6). It has

been shown that CEAmaybe a superior biomarker of MTC as
compared to calcitonin for long-term follow-up. Metastases to
thyroid from neuroendocrine neoplasms arising elsewhere in
the body (usually lung and GI tract) can morphologically
mimic MTC. Therefore, it is important to stain for CT,
CGRP, CEA, and TTF-1 as well as chromogranin A and
S100 [42, 43, 54].

Immunoprofiles of Primary Thyroid
Neoplasms of Nonfollicular and C-Cell Origin

Thyroid Paraganglioma

Primary thyroid paragangliomas (TPGL) are rare andmorpho-
logically can mimic MTC or even follicular cell-derived tu-
mors with solid and insular growth pattern [77–79]. Based on
the findings of the European and American Head and Neck
Paraganglioma Registry, the prevalence of TPGL is 0.5%
(5 TPGL out of 944 head neck paraganglioma cases), and
except for one case, all were likely to carry germline SDHX
mutations. In this analysis, most cases stained for
chromogranin A, synaptophysin, and S100, and almost all
were negative for calcitonin and TTF-1 [78]. Castelblanco
et al. suggested an immunohistochemical panel comprised of
biomarkers based on cDNA results that includedNDUFA4L2,
COXIV2, and VMAT2 in addition to CGRP/calcitonin, CEA,
and TTF-1 to diagnose TPGL [79]. According to these au-
thors, a combination of low to negative expression of CT or
CGRP and any expression of NDUFA4L2, COXIV2, or
VMAT2 was most suggestive of TPGL. An easier approach
is to use GATA-3 and tyrosine hydroxylase, since a significant
proportion of TPGL will also demonstrate expression of these
two biomarkers that are perhaps more readily available [77].
Importantly, lack of keratin reactivity is important, since
GATA-3 is also expressed in parathyroid tumors that stain
for chromogranin A.

GATA-3 is a member of dual zinc-finger transcription fac-
tors which is involved in the development of multiple organs
including parathyroid glands, kidney, Th2 subset of helper T
cells, mammary glands, sympathetic nervous system, and epi-
dermal keratinocytes. To date, pathology studies employing
GATA3 antibodies have shown its expression in many tissues
including parathyroid, breast, urothelium, germ cell tumors,
paragangliomas, and a subset of kidney tumors [80, 81].
GATA-3 immunoreactivity is not seen in normal thyroid
follicular epithelial cells, C cells, or ultimobranchial body
remnants [41, 43], or in benign and malignant thyroid
neoplasms except a few cases of anaplastic carcinoma [82]
because of its propensity to be epigenetically dysregulated in
highly proliferative tumors.

Tyrosine hydroxylase is an aromatic amino hydroxylases and
catalyzes the conversion of tyrosine to dopamine. It is a rate-
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limiting step in catecholamine synthesis. Immunoexpression of
tyrosine hydroxylase in combination with positive
chromogranin immunostaining and morphology is consid-
ered diagnostic of paraganglioma. However, immunoreac-
tivity for tyrosine hydroxylase can be weak and variable
and rarely even negative in paragangliomas of parasympa-
thetic origin (head and neck paragangliomas) as compared
to their sympathetic (thoracolumbar paragangliomas) coun-
terparts [77, 78, 83, 84]. Of note, tyrosine hydroxylase is
also expressed in TT (MTC) cell lines and it has been re-
ported in a case of keratin- and TTF-1 expressing medullary
thyroid carcinoma arising in a patient with MEN2 syn-
drome [85]. Therefore, tyrosine hydroxylase reactivity sup-
ports paraganglial differentiation in conjunction with
GATA-3 reactivity and the absence of keratin and other
transcription factor reactivity [86].

Intrathyroidal Parathyroid Adenoma

Parathyroid neoplasms are encountered involving the parathy-
roid glands at their normal locations. However, these neoplas-
tic proliferations can also affect intrathyroidal or
juxtathyroidal parathyroid glands, resembling a thyroid nod-
ule [2]. The incidence of intrathyroidal parathyroid gland
ranges from 1.4 to 3.2% (0.2% in autopsy studies) [87, 88].
The presence of intrathyroidal parathyroid may be detected by
radiologic studies (especially ultrasound) during workup of
hyperparathyroidism or, less reliably, during evaluation of
thyroid nodules. An intrathyroidal parathyroid neoplasm can
be diagnosed by ultrasound due to its imaging characteristics
and further confirmed by Technetium-99m-sestamibi
scintigraphy [87].

FNA has proven to be helpful in the diagnosis of
intrathyroidal parathyroid lesions when the possibility is con-
sidered [2]. This procedure is most effective in this regard
when either a parathyroid hormone (PTH) assessment is per-
formed on an aliquot of the FNA specimen or immunohisto-
chemical studies are carried out on cell block preparations
[89]. The diagnostic immunopanel to confirm parathyroid or-
igin and distinguish a parathyroid from a thyroid neoplasm
includes antibodies to PTH, chromogranin, GATA-3, TTF-1,
and thyroglobulin [88, 89]. The utility of GATA-3 in the di-
agnosis of parathyroid lesions in both cytology and histopa-
thology specimens carries a higher specificity than PTH im-
munostaining which can show focal and weak positivity in a
subset of parathyroid neoplasms [88–90]. However, it must be
remembered that GATA-3 is also expressed by other tumors
including renal and breast carcinomas, paragangliomas, and
lymphomas. The use of GCM2, one of the master regulators
of the parathyroid, has also been shown to be reliable in the
distinction of parathyroid origin [91, 92].

Intrathyroidal Thymic Rests and Neoplasms

The thymus and inferior parathyroid gland develop from the
third and fourth branchial pouches, respectively, and migrate
caudally together from the 2nd to the 6th week of gestation to
settle at their normal anatomical locations. During the course
of migration, thymic precursors can become embedded into
various tissues in a region known as the thymopharyngeal
tract, which usually regresses later [91]. Ectopic thymic tissue
can develop due to aberrant migration, sequestration, or per-
sistent thymic tissue along the thymopharyngeal tract. Ectopic
intrathyroidal thymic rests are rare in adults, usually are

Fig. 6 CEA is the best biomarker
of medullary thyroid carcinoma.
This photomicrograph illustrates
monoclonal CEA reactivity in a
medullary thyroid carcinoma that
is variably positive for calcitonin
(not illustrated)
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asymptomatic and discovered incidentally either during radio-
logic workup of a thyroid nodule or on histopathologic exam-
ination of surgically removed thyroid glands [91, 93].
Intrathyroidal thymic rests can pose diagnostic difficulties on
fine-needle aspiration specimens and can be either mistaken
for chronic lymphocytic thyroiditis or a lymphoproliferative
lesion. Tumors arising from intrathyroidal thymic rests are rare
and include thymoma, spindle epithelial tumor with thymus-
like differentiation (SETTLE), and thymic carcinoma of the
thyroid (formerly known as carcinoma showing thymus-like
differentiation BCASTLE^) [94, 95]. Thymic differentiation in

an intrathyroidal tumor can be confirmed by performing a bat-
tery of immunostains. These tumors are usually negative for
TTF-1, PAX8, TG, and CT. Intrathyroidal thymomas are pos-
itive for pancytokeratins, CK5/6, EMA, p63, CD5, and C-kit.
The lymphocytic component seen in thymoma usually shows
expression of CD3 and TdT and stains negative for B-cell
markers. SETTLE stains positive for AE1/AE3, CAM5.2,
EMA, CK7, vimentin, and CD117 (C-kit). Thymic carcinoma
of the thyroid, which is easily identified as a malignant tumor,
stains positive for pancytokeratin (panCK), CD5, BCL2, p63,
and CD117 (C-kit) [95–98].

Fig. 7 Molecular
immunohistochemistry in thyroid
pathology. The VE1 antibody can
be used to distinguish thyroid
carcinomas driven by
BRAFV600E (a). The RAS
mutation-specific antibodies can
also be used in various thyroid
neoplasms including sporadic
RAS-driven medullary thyroid
carcinomas. Cytoplasmic staining
is seen in a RAS-mutant thyroid
carcinoma using NRAS61QR
immunohistochemistry (b). ALK
immunohistochemistry also
gained recent popularity in the
detection of ALK fusion-driven
papillary thyroid carcinomas (c)
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Thyroid Tumor Classification

The diagnosis of thyroid tumors of follicular cell derivation is
complex and subject to interobserver variability. It would be
ideal to have biomarkers that can address borderline features
and allow distinction of different entities. In this review, we
will provide evidence that biomarkers can offer assistance in
the distinction of (a) benign and malignant follicular-patterned
tumors, (b) classical and follicular papillary thyroid

carcinomas (PTCs), solid and poorly differentiated thyroid
carcinomas, and (d) anaplastic carcinoma distinction from sar-
coma and squamous carcinomas.

Follicular Lesions

For many years, follicular tumors of the thyroid have been
classified within the spectrum of benign follicular nodular
disease, follicular adenomas, follicular variant PTCs, and

Fig. 8 Universal biomarkers used
to support thyroid follicular
malignancies. HBME-1 is the
most commonly used
immunohistochemical biomarker.
Membranous and apical-luminal
staining is traditionally
considered to support malignancy
(a, b). However, functioning
thyroid nodules and NIFT-P
(formerly known as noninvasive
encapsulated follicular variant
papillary carcinoma) can also be
positive for this biomarker. While
most BRAF-like papillary
carcinomas show reactivity for
HBME-1 (a), RAS-like papillary
carcinomas tend to be either
negative or variably positive (b).
Diffuse membranous and
cytoplasmic cytokeratin 19 (c)
and loss of CD56 expression (d)
can also be identified in follicular
epithelial-derived thyroid
malignancy. Nuclear and
cytoplasmic galectin-3 reactivity
also expands the spectrum of
biomarkers of malignancy (e)
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follicular carcinomas [2, 92]. Frankly invasive lesions are
readily identified and the distinction between follicular variant
papillary carcinoma and follicular carcinoma is academic and
likely unwarranted [99]. Similarly, the distinction of follicular
nodular disease from adenoma is also academic [2, 100].
However, the distinction of a benign from a malignant lesion
is of cri t ical importance in patient management.
Unfortunately, it is one of the areas of most intense disagree-
ment [101–103]. This lack of consensus is largely because of
disagreement of the value of nuclear membrane irregularity in
the categorization of malignancy based on cytologic features.
While it is easy to recognize florid nuclear atypia with clearing
and inclusions, more subtle changes are harder to classify. In
an elegant study of the three-dimensional features of papillary
carcinoma nuclei [104], Papotti et al. defined the criteria based
on previous morphometric analyses [105], and subsequently,
Asioli et al. provided a biomarker, emerin, that could be used
to distinguish round from irregular nuclei [106, 107]. This
biomarker has not been widely adopted in clinical practice.

To address the discrepant diagnoses, a working group of
the Endocrine Pathology Society attempted to define the nu-
clear features that correlate with malignant behavior in nonin-
vasive encapsulated and well-delineated follicular neoplasms
[108]. The results of this initiative, that recommended the
terminology BNoninvasive follicular thyroid neoplasm with
papillary-like nuclei^ or BNIFT-P,^ provide guidelines for the
distinction of RAS-like follicular neoplasms from the BRAF-
like classical papillary thyroid carcinomas as identified in the
TCGA study of papillary carcinoma [109] based on nuclear
morphology. However, there are architectural requirements
for this distinction as well, and subsequent studies pointed to
the importance of papillae as an exclusion criterion for the

diagnosis of NIFT-P; while initially it was proposed that there
are < 1% papillae, it soon became evident that the presence of
even a single papilla could portend a tumor with BRAFV600E
mutation [110, 111], thus opening the door for classical variant
papillary carcinomas with predominant follicular architecture
to be included in the NIFT-P category. Since any classical
PTC has a higher risk of local nodal metastasis than a true
RAS-like follicular neoplasm, this led to a recommendation
that additional studies, including the use of the VE1 antibody
against the mutant BRAFV600E that characterizes approxi-
mately 70% of classical PTCs, be applied to ensure correct
classification of a RAS-like lesion [110, 111]. Therefore, im-
munohistochemistry using VE1 currently plays a major ancil-
lary role in the distinction of classical variant PTCs with pre-
dominant follicular growth as well as any BRAFV600E-mutant
thyroid carcinoma; it remains to be seen whether RAS
mutation-specific antibodies [112] will prove valuable in this
regard (Fig. 7a, b). The application of RET immunohisto-
chemistry for the diagnosis of PTC [42, 113, 114] has fallen
by the wayside with the loss of reliable antisera, but this re-
mains a valuable tool for potential molecular classification of
differentiated thyroid carcinomas.

A number of other biomarkers have been proposed to assist
in the diagnosis of malignancy in follicular-patterned lesions of
the thyroid (Fig. 8). The most widely recognized as helpful is
HBME-1, a monoclonal antibody that recognizes an unknown
epitope [115–124]. Even though this is a mystery protein, the
target of HBME-1 is reliably expressed in a proportion of thy-
roid carcinomas including papillary and follicular carcinomas
as well as in NIFT-Ps [124–126]. The value of this biomarker is
highest in follicular lesions where it helps to classify such a
tumor as malignant and may have prognostic value [125].

Fig. 9 Cribriform-morular
variant papillary thyroid
carcinoma. This rare variant of
papillary thyroid carcinoma is
characterized by diffuse nuclear
and cytoplasmic beta-catenin
staining. The identification of this
variant may be a harbinger of FAP
syndrome
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Similarly, galectin-3 has value in supporting the diagnosis of
malignancy [116–120, 125, 127–137]. Loss of CD56 expres-
sion is also a feature of progressive thyroid neoplasia [115]. An
interesting biomarker is cytokeratin 19 (CK19); this protein is
expressed in nontumorous thyroid, underexpressed or negative
in follicular neoplasms, and overexpressed with intense mem-
branous positivity in PTCs, including some with follicular ar-
chitecture [124, 138–141]. The qualitative interpretation

required for this stain differs from the positive versus the neg-
ative approach used for other biomarkers [142].

Papillary Lesions

The identification of a papillary lesion in the thyroid usually
indicates the diagnosis of papillary carcinoma. The vast ma-
jority of tumors with papillae fall into the category of classical

Fig. 10 Immunohistochemical
biomarkers of poorly
differentiated thyroid carcinoma.
It is not uncommon to encounter a
differentiated thyroid carcinoma
with areas of poorly differentiated
thyroid carcinoma. While most
cases can be classified using
morphological evaluation as
defined in the Turin criteria, the
application of biomarkers can
facilitate the diagnostic workup of
challenging cases. Demonstration
of increased mitotic activity using
phosphoHistone-H3 (a; mitotic
figures are circled), MIB-1 (often
> 10%), reduced expression of
thyroglobulin (b), bcl-2 (c), and
E-cadherin (d), as well as
increased p53 expression and
nuclear beta-catenin expression
(in the absence of cribriform
morular variant papillary thyroid
carcinoma) can assist
diagnosticians
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variant papillary carcinomas, with variable amounts of a fol-
licular component. Molecular studies have shown that the
majority of these lesions harbor BRAFV600E mutations, and
while this can be proven using immunohistochemistry with
the VE1 mutation-specific antibody [143, 144], it is clinically
and diagnostically unnecessary [145]. The tumors that lack
this mutation may have RET rearrangements that also can be
detected by immunohistochemistry [109], but again there is
no clinical relevance.

Papillary architecture can be found in rare benign
tumors, follicular adenomas, that are associated with activat-
ing mutations of GNAS or TSHR, resulting in autonomous
hyperactivity and tumors that can be associated with clinical
or subclinical hyperthyroidism [2, 146]. These lesions are
usually recognized on routine histology because of the orga-
nized architecture of the papillae within intact follicles and the
benign nuclear morphology; however, in difficult cases, appli-
cation of immunohistochemistry can be used to show lack of
HBME-1, CK19, galectin-3, and VE1 staining.

One variant of PTC with classical architecture, the diffuse
sclerosing type, has been reported to harbor ALK rearrange-
ments that can be detected by immunohistochemistry for ALK
[147] (Fig. 7c).

Another variant PTC, the cribriform morular variant, typi-
cally manifests with a complex growth pattern that can also
include papillary growth in addition to cribriform, follicular,
and solid architecture. The recognition of this variant is of
clinical significance as this histological variant of PTC can
be associated with germline mutations of APC in the setting
of the familial adenomatous polyposis (FAP) syndrome ( [2],
[148]). Staining for beta-catenin (Fig. 9) shows nuclear trans-
location due to activated WNT signaling and can confirm this

diagnosis. Rare cases are sporadic and harbor somatic muta-
tions of CTNNB1 that encodes beta-catenin [149].

Solid Lesions

Thyroid tumors with solid architecture include solid variant
PTC, MTC, and poorly differentiated, or Binsular^ thyroid car-
cinoma [2]. Immunohistochemistry is critical to diagnoseMTC
based on the expression of chromogranin, calcitonin, and CEA.
The distinction of solid variant PTC from poorly differentiated
carcinoma requires histologic features, including cell size and
nuclear morphology [150] and the identification of mitoses and
necrosis [1]. However, other biomarkers can play a role in this
distinction. In our experience, poorly differentiated thyroid car-
cinomas show loss of bcl-2, membranous E-cadherin and beta-
catenin, and thyroglobulin [2], as well as increased p53 nuclear
reactivity (Fig. 10). The use of phosphoHistone-H3 staining
can assist in mitotic counts and Ki67 labeling using the MIB-
1 antibody help to identify more proliferative lesions (Fig. 10).
Hyalinizing trabecular neoplasms can also be distinguished by
a membranous pattern of MIB-1 staining [1] (Fig. 11).

Spindle and Giant Cell Lesions

The diagnosis of anaplastic thyroid carcinoma is easy when it
is associated with a more different iated thyroid
carcinoma with clear progression and dedifferentiation.
Immunohistochemistry confirms progression with loss of thy-
roglobulin, bcl-2, E-cadherin, and beta-catenin; increasing
p53; and ultimately loss of TTF-1 followed by loss of PAX8
reactivity. As mentioned earlier, reactivity for PAX8 can be
seen in a subset of anaplastic thyroid carcinoma as well as in

Fig. 11 Paradoxical membranous
MIB-1 reactivity is the hallmark
of hyalinizing trabecular thyroid
neoplasms. This finding is
typically identified when the test
is performed at room temperature
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primary squamous cell carcinomas of the thyroid gland. In
cases with no differentiated tumor, the diagnosis of anaplastic
carcinoma is one of exclusion and requires extensive immu-
nohistochemistry to rule out other spindle and giant cell
tumors.

Prognostic Features of Primary Thyroid
Malignancies

Well-differentiated thyroid carcinomas tend to be indolent
cancers that are amenable to targeted therapy with radio-
active iodine. However, some develop locoregional lymph

node metastases, others recur locally, and few develop
distant metastatic spread with significant morbidity and
mortality. The distinction of localized tumors that can be
cured by surgery from those that require more aggressive
management with total thyroidectomy to pave the way for
radioactive iodine ablation is the biggest challenge in thy-
roid oncology.

A few immunohistochemical biomarkers have been sug-
gested to predict behavior by well-differentiated thyroid car-
cinomas. In contrast to the driver genes that are known to be
mutated in these cancers [109], most of the alterations impli-
cated in behavior are due to epigenetic dysregulation.
Upregulated genes include CITED1 [116, 118, 151],

Fig. 12 p27 and cyclin D1 in risk
stratification. Loss of p27 (a) and
overexpression of cyclin D1 (b)
can predict lymph node
metastasis in papillary thyroid
carcinoma
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galectin-3 [116, 118, 135–137], CK19 and high molecular
weight cytokeratins [116, 118, 124, 140], CD57 and
CD44V6 [152], as well as the mysterious protein detected
by HBME-1; downregulation in differentiated thyroid cancer
is mainly seen with CD56 [115]. These biomarkers may have
prognostic value [125].

The cell cycle regulators p27 and cyclin D1 are dysregu-
lated with loss of the tumor suppressor p27 and overexpres-
sion of the cyclin D1 in papillary carcinomas with the
potential for lymph node metastasis [125, 153–155]
(Fig. 12). Expression of p27 may be epigenetic through
miRNAs [156], but posttranslational processing that is
PTEN-mediated through Skp2 degradation can be inhibited
by vitamin D [157, 158].

Fibronectin is also overexpressed in locally invasive tu-
mors [(118], [159–161)] as is MAGE-A [160, 162],
CEACAM1 [163, 164], and osteopontin, which mediates
CD44v6 and CEACAM action [165, 166]. ERβ expression
is also upregulated in more aggressive classical PTCs [125].
Rap1 (Ras-proximate-1 or Ras-related protein 1) is a GTPase
that acts as a putative oncogene similar to RAS. It is regulated
by the Rap1 GTPase-activating protein (GAP) Rap1GAP.
This gene is downregulated in PTCs [167], but the methyla-
tion status of this gene has not been reported.

One of the best predictors of distant metastatic spread by a
differentiated thyroid carcinoma is vascular invasion [168].
Indeed, in the thyroid gland, there is a markedly distinct dif-
ference in prognosis between tumors that exhibit lymphatic
invasion, which spread to locoregional lymph nodes and can
be cured with radioactive iodine, and those with angioinvasion
that spread to the lungs, bone, brain, and liver. Assessment of
lymphatic versus vascular invasion may require the use of
biomarkers such as D240 (Fig. 13) that decorates lymphatic
channels versus CD31, CD34, and ERG that highlight blood
vessels. Among the three vascular markers, ERG is the most
specific and offers clean staining. Since true vascular invasion
in vivo induces a thrombotic reaction, special staining for
fibrin and immunolocalization of fibrinogen can be helpful.

Other prognostic features include loss of biomarkers of
differentiation, including reduced thyroglobulin and NIS in
poorly differentiated thyroid carcinomas, and loss of almost
all markers of differentiation in anaplastic carcinomas.

In MTC, loss of calcitonin with retained CEA positivity is
associated with more aggressive behavior. The role of Ki67 as
a proliferation marker in this type of neuroendocrine neoplasia
and in other thyroid tumors [169, 170] remains to be validated.

Identification of Genetic Predisposition

Genetic predisposition to thyroid neoplasia is becoming in-
creasingly recognized as a feature that the pathologist can
predict. The first studies of this type of genetic analysis were

initiated with the identification of C-cell hyperplasia in pa-
tients with multiple endocrine neoplasia type 2 [67], a diag-
nosis that relies entirely on immunohistochemical confirma-
tion. While many patients with MEN2 exhibit florid C-cell
hyperplasia (Fig. 14) with neoplasia illustrating the progres-
sion of this disorder, some cases are diagnosed by identifying

Fig. 13 Distinction of lymphatic invasion from vascular invasion. This
distinction is one of the most important in differentiated thyroid
carcinomas of follicular epithelial derivation. Vascular channels can be
highlighted using ERG immunohistochemistry, whereas D240 can be
used to dis t inguish lymphat ic channels . This composi te
photomicrograph illustrates lymphatic invasion (a: H&E, b: D240)
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C-cell hyperplasia during thyroid surgery for unrelated le-
sions. This requires the application of CEA and/or CT in all
sections from the lateral thyroid lobes [1, 2]. The distinction of
nodular C-cell hyperplasia from infiltrative medullary
microcarcinoma can benefit from the application of immuno-
histochemistry for collagen type IV that delineates the base-
ment membranes of follicles [171].

Other familial syndromes associated with thyroid neoplasia
include PTEN hamartoma tumor syndromes (Cowden syn-
drome, Cowden-like syndrome, Bannayan–Riley–Ruvalcaba
syndrome, Proteus syndrome, and Proteus-like syndrome),
frequently due to PTEN inactivation mutations, and familial
polyposis coli (FAP) syndrome due to germline APC

mutations. Patients with Cowden syndrome or other PTEN-
related disorders develop multifocal follicular neoplasms
[172], and staining for PTEN can confirm global loss attrib-
utable to this disorder (Fig. 15). Some authors also recom-
mend the use of SDHB immunohistochemistry as germline
mutations or variants in SDH genes have also been identified
in patients with PTEN wild-type Cowden and Cowden-like
syndromes [1, 173].

Patients with FAP usually develop the cribriform morular
variant of thyroid carcinoma with nuclear translocation of
beta-catenin that is diagnostically helpful and usually indi-
cates a germline disorder; however, sporadic cases have also
been described [174].

Fig. 14 Bilateral and multifocal
C-cell hyperplasia is the hallmark
of germline RET-disease (MEN2
syndrome). This composite
photomicrograph illustrates an
incidental finding in a
thyroidectomy specimen. The
identification of bilateral florid C-
cell hyperplasia (a) led to positive
germline RET testing. Linear and
micronodular C-cell
proliferations are highlighted
using calcitonin
immunohistochemistry (b)
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Conclusions

While much of thyroid pathology is based on examination of
slides stained with hematoxylin and eosin, there is a signifi-
cant role for immunohistochemistry in ensuring the correct
diagnosis of thyroid nodules, defining predictive biomarkers
for behavior, and potentially identifying genetic predisposi-
tion to disease.
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