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Abstract
Long non-coding RNAs (lncRNAs) may contribute to carcinogenesis and tumor progression by regulating transcription and gene
expression. The role of lncRNAs in the regulation of thyroid cancer progression is being extensively examined. Here, we
analyzed three lncRNAs that were overexpressed in papillary thyroid carcinomas, long intergenic non-protein coding RNA,
regulator of reprogramming (Linc-ROR, ROR) PVT1 oncogene (PVT1), and HOX transcript antisense intergenic RNA
(HOTAIR) to determine their roles in thyroid tumor development and progression. ROR expression has not been previously
examined in thyroid carcinomas. Tissue microarrays (TMAs) of formalin-fixed paraffin-embedded tissue sections from 129
thyroid cases of benign and malignant tissues were analyzed by in situ hybridization (ISH), automated image analysis, and real-
time PCR. All three lncRNAs weremost highly expressed in the nuclei of PTCs. SiRNA experiments with a PTC cell line, TPC1,
showed inhibition of proliferation with siRNAs for all three lncRNAs while invasion was inhibited with siRNAs for ROR and
HOTAIR. SiRNA experiments with ROR also led to increased expression of miR-145, supporting the role of ROR as an
endogenous miR-145 sponge. After treatment with TGF-β, there was increased expression of ROR, PVT1, and HOTAIR in
the PTC1 cell line compared to control groups, indicating an induction of their expression during epithelial to mesenchymal
transition (EMT). These results indicate that ROR, PVT1, and HOTAIR have important regulatory roles during the development
of PTCs.
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Introduction

Thyroid cancer is the most common malignancy of endocrine
organs and papillary thyroid carcinomas (PTCs) constitute
approximately 80% of thyroid cancers. PTCs and follicular
thyroid carcinomas (FTCs) make up the group of well-
differentiated thyroid carcinomas. Most of these PTCs are
low-grade lesion with only about 10 to 15% constituting more
aggressive carcinomas from these groups. The rare poorly

differentiated thyroid carcinomas (PDCs) and undifferentiated
or anaplastic thyroid carcinomas (ATCs) are more aggressive
thyroid carcinomas that frequently result in the death of pa-
tients after the diagnosis is established. Extensive research on
morphological subclassification and immunohistochemical
analyses have contributed to the precise diagnosis and to
predicting the biological behavior of these carcinomas [1],
while molecular analyses have advanced our knowledge about
the biological behavior and provided new predictive informa-
tion about these malignancies [1–3].

Non-coding RNAs, which are defined as RNA species that
do not code for specific proteins, have been studied in thyroid
neoplasms in recent years. Most of the studies have been with
microRNAs which are composed of approximately 22 nucle-
otides. However, several recent studies have examined long
non-coding RNAs, non-coding RNAs greater than 200 nucle-
otides, in thyroid neoplasms [4–10]. Some long non-coding
RNAs (lncRNAs) function as oncogenes or tumor suppressor
genes and regulate thyroid tumor progression. Most studies of

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s12022-017-9507-2) contains supplementary
material, which is available to authorized users.

* Ricardo V. Lloyd
rvlloyd@wisc.edu

1 Department of Pathology and Laboratory Medicine, University of
Wisconsin School of Medicine and Public Health,
Madison, WI 53792, USA

Endocrine Pathology (2018) 29:1–8
https://doi.org/10.1007/s12022-017-9507-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s12022-017-9507-2&domain=pdf
https://doi.org/10.1007/s12022-017-9507-2
mailto:rvlloyd@wisc.edu


lncRNAs have used real-time quantitative PCR (RT-qPCR) to
measure expression levels. Only a few studies have used in
situ hybridization (ISH) which allows for the intracellular lo-
calization of the lncRNA and distinguishes between nuclear
and cytoplasmic localization as well as quantification of ex-
pression in individual cells.

Various studies with thyroid neoplasms have shown pro-
gression fromwell-differentiated carcinomas to highly aggres-
sive ATCs usually by epithelial to mesenchymal transition
(EMT) [11–15]. Our recent studies with MALAT1 expression
in thyroid neoplasms suggested that this lncRNA functions as
an oncogene in the progression from normal thyroid to PTCs,
but could possibly function as a tumor suppressor in ATCs [9].
The current studies examine long intergenic non-protein cod-
ing RNA, regulator of reprogramming (Linc-ROR, ROR) ex-
pression in thyroid tissues for the first time. In addition, PVT1
oncogene (PVT1) and HOX transcript antisense intergenic
RNA (HOTAIR) are also examined for EMT and we show
for the first time that these lncRNAs regulate EMT in thyroid
PTCs and also have roles as oncogenes in PTC development
during thyroid cancer progression.

Materials and Methods

Tissue Microarrays (TMAs)

TMAs were constructed as described previously [11, 12] from
129 cases of formalin-fixed paraffin-embedded (FFPE) tis-
sues, including normal thyroid (NT, n = 10), Hashimoto thy-
roiditis (HT, n = 10), nodular goiters (NG, n = 10), follicular
adenoma (FA, n = 32), follicular carcinoma (FC, n = 28), con-
ventional papillary thyroid carcinoma (PTC n = 28), follicular
variant of papillary thyroid carcinoma (FV, n = 29), and ana-
plastic thyroid carcinoma (ATC, n = 10). The TMA consisted
of triplicate 0.6-mm cores made with a manual tissue
microarrayer (Beecher Instruments, Sun Prairie, WI). The
NT consisted of tissues from the opposite (histologically nor-
mal) thyroid lobe in patients with follicular or papillary
carcinomas.

The study was approved by the Institutional Review Board
at the University of Wisconsin–Madison.

In Situ Hybridization

TMAs were probed for PVT1 (406951), ROR (402831), and
HOTAIR (312341) expression using the RNAscope 2.5 HD-
Brown Manual Assay (Advanced Cell Diagnostics, Newark,
CA) as per manufacturer’s recommendations [10] with the
following modifications to manufacturer’s protocol, including
a step in which antigen retrieval was performed in a Decloaker
(Biocare Medical, Pacheco, CA) for 3 min, and the probe was
incubated overnight at 40 °C with a parafilm cover over

sample in a humidified chamber. The probes used included
positive control probes hs-PPIB (positive control, 313901),
hs-ACTB (actin, positive control, 310141), and negative con-
trol probe dapB (negative control, 310043) (Advanced Cell
Diagnostics). Probe expression levels were visualized with
DAB.

Automated Image Acquisition and Analysis

The stained TMA slides were visualized and analyzed with
the Vectra slide scanner and associated software (PerkinElmer,
Waltham,MA) as previous described [10]. Briefly, after image
acquisition, any core with tissue folding or loss of tissue was
excluded for analysis. InForm 1.4.0 software was used to seg-
ment tissue compartments (epithelium vs. non-epithelium)
and subcellular compartments (nucleus vs. cytoplasm).
PVT1, ROR, and HOTAIR expression levels from each sam-
ple were quantitated as optical density (OD) per unit area
(pixel). Only nuclear signal was used for analysis. Mean
lncRNA expression level of each sample from the triplicated
cores was used for further analysis.

Real-Time PCR

Total RNA was extracted from samples with TRIzol re-
agent (ThermoFisher Scientific, Waltham, MA) according
to the manufacturer’s instructions, and RNA quality and
concentrations were assessed with a NanoDrop 1000 spec-
trophotometer (ThermoFisher Scientific, Waltham, MA).
One microgram of total RNA was reverse-transcribed
using the All-in-One miRNA RT-qPCR detection kit
(GeneCopoeia, Rockville, MD). RT-qPCR was performed
on a CFX96 PCR detection system (Bio-Rad Laboratories,
Hercules, CA) using Bullseye EvaGreen qPCR master mix
(MIDSCI, St. Louis, MO), normalized to 18S rRNA; rel-
ative fold change was determined by the ΔΔ CT method
as previously reported [14, 15]. The PCR primers used for
PVT1, ROR, HOTAIR, SOX2OT, PTCSC1, and miR-145
are as follows: PVT1, forward 5′-TGAGAACTGTCCTT
ACGTGACC-3′ and reverse 5′-AGAGCACCAAGACT
GGCTCT-3′; ROR, forward 5′-CTGGCTTTCTGGTT
TGACG-3 ′ and reverse 5 ′-CAGGAGGTTACTGG
ACTTGGAG-3 ′ ; HOTAIR , fo rwa rd 5 ′ -CAGT
GGGGAACTCTGACTCG-3′ and reverse 5′-GTGC
CTGGTGCTCTCTTACC-3′; SOX2OT, forward 5′-GCTC
GTGGCTTAGGAGATTG-3′ and reverse 5′-CTGG
CAAAGCATGAGGAACT-3′; PTCSC1, forward 5′-
CAGGGCATGGCTGTGTTT-3′ and reverse 5′-GACA
TTATCAAGTAACTAGTGCTGTCA-3′; miR-145, forward
5′-GCCAGAGGGTTTCCGGTACTTT-3′ and reverse 5′-
CCAAGAGTACGGCAGTGCTGAA-3′; and 18S, forward
5′-GTAACCCGTTGAACCCCATT-3′ and reverse 5′-CCAT
CCAATCGGTAGTAGCG-3′.
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Tissue Culture and EMT Induction with TGF-β

The papillary thyroid carcinoma cell line TPC1 was cultured
and treated with TGF-β to induce EMT as previously de-
scribed [14, 15]. TPC-1 cells were treated with serum-free
media with and without TGF-β (2 ng/ml) for 7, 14, and
21 days [14, 15].

siRNA Transfection, Proliferation, and Invasion Assays

TPC1 cells were seeded into a 96-well plate at 1 × 104/well
(ten replicates each) in 100-ml serum-free/antibiotic-free me-
dia. Wells were transfected with 50 nmol PVT1, 30 nmol
ROR, and 10 nmol HOTAIR siRNAs or scrambled control
Silencer Select siRNAs (ThermoFisher Scientific, Waltham,
MA) using X-tremeGENE siRNA Transfection Reagent
(Roche, Indianapolis, IN) for 72 h at 37°C, 5% CO2. After
72-h incubation, the Vybrant® MTT Cell Proliferation Assay
Kit (Life Technologies, Carlsbad, CA) and the Cultrex BME
Cell Invasion Assay (R&D Systems, Minneapolis, MN) were
performed according to protocol. The 96-well plate for the
invasion assay was coated with 0.1× BME (basement mem-
brane extract) overnight prior to seeding cells. Analysis for
both assays used the SpectraMax® M3 Multi-Mode
Microplate Reader with SoftMax® Pro (6.2.2) software.

Statistics

Student’s t test was used to analyze lncRNA expression data
collected from RNA ISH and RT-qPCR. Two-tailed p values
< 0.05 were considered to be statistically significant. Data are
expressed as means ± standard error of the mean (SEM).

Results

ISH Analysis

ISH was performed with probes for PVT1, ROR, and
HOTAIR on TMAs containing 10 NT, 12 HT, 10 NGs, 32
FAs, 28 FCs, 28 cPTCs, 29 FVs, and 10 ATCs. There was
predominantly nuclear localization of the hybridization sig-
nals for all three probes with weak cytoplasmic localization.
The positive control probe PPIB showed predominantly nu-
clear localization (Fig. 1) while actin showed nuclear and cy-
toplasmic localization (data not shown). The negative control
probe resulted in no staining of the tissues (data not shown).
The highest hybridization signals were observed in PTCs for
all three probes, which is consistently higher than NTs (Figs. 1
and 2 and supplementary Fig. 1). In addition, PTCs showed
increased hybridization signals compared to FC, FA, NG, and
FVaswell as ATC for all three lncRNAs, although some of the
trends did not meet statistical significance (Fig. 2).

Real-Time PCR Analysis of PVT1, ROR, and HOTAIR
in Thyroid Cancers in FFPE Tissue

To support the ISH findings, PVT1, ROR, and HOTAIR ex-
pression levels were studied using RT-qPCR in FFPE tissues
from a subset of PTCs, FTCs, PTCs, and ATCs used on the
TMA. As seen in Fig. 3, PVT1, ROR, and HOTAIR expres-
sions were significantly higher in the PTCs compared to the
other groups (p < 0.05), including ATCs (Fig. 3). Analysis of
two additional lncRNAs which were not increased in PTCs in
some of our preliminary screening experiments, PTCSC1 and
SOX2OT, showed that these were significantly decreased in
PTCs compared to normal thyroid tissues or ATCs
(Supplementary Fig. 2).

Real-Time PCR Analysis of PVT1, ROR, and HOTAIR
in Primary Fresh Frozen Tissue

To eliminate potential artifacts from FFPE tissues, RT-qPCR
analysis of PVT1, ROR, and HOTAIR was performed in fresh
frozen primary PTCs with matching normal thyroid tissues
from three different patients. The results showed increased
expression of all three lncRNAs in the PTCs compared to
the matching normal thyroid tissues (Fig. 4).

The Effect of siRNA Silencing of PVT1, ROR,
and HOTAIR on Proliferation and Invasion of PTCs

In order to assess the functions of lncRNAs in PTC progres-
sion, silencing was performed on the TPC1, a PTC cell line,
using siRNA to PVT1, ROR, and HOTAIR. After testing
siRNA concentrat ions for knockdown effic iency
(Supplementary Fig. 3), the TPC1 cells were treated with
50 nmol PVT1, 30 nmol ROR, and 10 nmol HOTAIR
siRNAs or scrambled control siRNAs and examined for pro-
liferation and invasion usingMTTand invasion assay (Fig. 5).
Knockdown of all three lncRNAs showed low level but sta-
tistically significant inhibition of proliferation while invasive
potential was inhibited by knockdown ROR and HOTAIR,
but not PVT1 (Fig. 5).

The Potential Regulatory Role of ROR in PTCs
Through Downregulating miR-145

Previously, it was reported that ROR functions as a molecular
sponge to downregulate miR-145 [20], a microRNA that was
known to inhibit the proliferation of PTCs and TPC1 cell line
[21]. To assess the role of ROR on the expression of miR-145,
TPC-1 cells were transfected with 30 nmol ROR siRNA or a
scramble control probe siRNA and RT-qPCR was performed
tomeasure the expression of miR-145. There was a significant
increase in miR-145 expression in the ROR knockdownTPC1
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cells, indicating that ROR lncRNA had a negative regulatory
role on miR-145 (Fig. 6).

TGF-β Treatment

Our previous studies had shown an increase in the EMT
markers including SLUG and OCT4 after TGF-β treatment
in the TPC1 cells [5, 11]. To study the effect of EMT on the
expression of lncRNAs in PTCs, the expression of PVT1,
ROR, and HOTAIR in TPC1 cells were measured after 7,
14, and 21 days of treatment with or without TGF-β. There

was increased expression of all three lncRNAs in the TGF-β
treated TPC1 cells compared to control groups, indicating an
induction of these lncRNAs during EMT (Fig. 7).

Discussion

It is being increasingly recognized that lncRNAs have a role in
the pathogenesis of thyroid carcinomas [2–9]. PVT1, ROR,
and HOTAIR have all been reported to have oncogenic roles
in the development of various human malignancies [4, 6–10].
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However, ROR has not been previously examined in thyroid
tissues. These three lncRNAs were shown to be oncogenic in
the development of PTCs in the present study. ISH analysis
using TMA containing NT and various thyroid neoplasms
showed increased expression of all three lncRNAs in the nu-
cleus of PTC cells, and quantitative imaging analysis con-
firmed the visual ISH observations. In addition, RT-qPCR
using RNA extracted from a subset of cases from the TMA
supported the ISH findings. This is further supported by anal-
ysis using fresh frozen primary PTC tumors with adjacent
matched normal thyroid tissues.

Recent studies have increasingly shown that lncRNAs have
regulatory roles in thyroid cancers, including PVT1 and
HOTAIR. PVT1 was shown to be upregulated in thyroid can-
cers [16]. Downregulation of PVT1 decreased the recruitment
of the transcriptional factor EZH2 in several thyroid cancer

cell lines, resulting in decreased expression of cyclin D1 and
thyroid-stimulating hormone receptor (TSHR). This inhibited
the proliferation of thyroid cancer cells and promoted cell
cycle arrest [16]. Similarly, HOTAIR was found to be upreg-
ulated in thyroid cancer and promoted proliferation by down-
regulating the tumor suppressor miR-1 that inhibits the ex-
pression of CCND2 (cyclin D2) [17]. Our studies again con-
firm the upregulation of PVT1 and HOTAIR in PTCs com-
paring to other thyroid epithelial neoplasms and normal thy-
roid tissues. In addition, by examining a spectrum of thyroid
neoplasm, we demonstrate that despite the lack of statistical
significance in some cases, there appear to be a gradual up-
regulation trend of PVT1 and HOTAIR from NT to benign
thyroid neoplasm (FA) then to PTCs.

Our studies are the first reported ones of lncRNA ROR
expression in thyroid cancer. Previously, ROR was shown to
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exert regulatory effect in proliferation, invasion, and stemness
of gastric carcinoma stem cells and in breast cancer, pancreatic
cancer, hepatocellular cancer, endometrial cancer, and naso-
pharyngeal carcinomas. In liver cancer cells, it was regulated
by hypoxia and was able to promote cell proliferation partially
by acting as an endogenous sponge to miR-145, a known
microRNA with tumor suppressor functionality [18]. Our
studies show upregulation of ROR in PTCs in a similar pattern
as PVT1 and HOTAIR. In addition, examining the interaction
of ROR with miR-145 showed that there was upregulation of
miR-145 after ROR silencing with a specific siRNA.

Previous studies in breast carcinomas [22] and thyroid car-
cinomas [14] have shown a close relationship between EMT
and cancer stem-like cell proliferation [14, 22]. Interestingly,
PVT1, ROR, and HOTAIR were all shown to be involved in
EMT in the current study. Both PVT1 and HOTAIR were sug-
gested to promote EMT in esophageal carcinoma [19, 20].
Other studies have shown that ROR prevented degradation of
the miR-205 target genes including the EMT inducer ZEB2 in
breast carcinoma [21], emphasizing its role in EMT [22, 23].
The present study found that downregulation of all three
lncRNAs negatively regulated proliferation and migration,

and that TGF-β stimulated EMT had increased all three
lncRNAs. These findings further support the notion that EMT
is an important pathway for lncRNAs to regulate thyroid cancer
progression.

Recent large-scale genome sequencing projects suggested
that PTCs be divided into BRAFV600E-like and RAS-like
groups [24]. The RAS groups included some FVs which were
histologically related to PTCs but were recently suggested to
behave like very low-grade neoplasms if totally encapsulated
[25]. Non-invasive encapsulated neoplasms with papillary-
like nuclear features are currently referred to as NIFTP [26].
In the currently study, although it was interesting to note the
statistically lower expression of all three lncRNAs in FV com-
pared to PTCs, we were not able to draw further conclusions
due to the inability to separate the invasive FV tumors from
the NIFTP tumors in our TMAs. This is because the TMAwas
constructed before these additional histological divisions were
formulated and the entire tumor capsule must be examined
microscopically before a diagnosis of NIFTP can be made.

Various studies have suggested that there is tumor progres-
sion from PTCs to ATC by dedifferentiation [14, 27–29].
Mutations of the BRAFV600E gene and the TP53 gene have
helped to link tumor progression from PTC to ATC. In light
of these findings, our results showing that there was no in-
creased expression of PVT1, ROR, or HOTAIR during progres-
sion from PTC to ATC were surprising. LncRNAs can serve as
molecular scaffolds, miRNA sponges, protein decoys, and res-
ervoirs of small non-coding RNAs to regulate gene expression
and protein function [5, 6]. It is possible that the lncRNA reg-
ulatory mechanisms in ATCs are different from those in PTCs
and normal thyroid which may explain the differences in the
upregulation of these lncRNAs in PTCs compared to ATCs. In
addition, the genomic landscape, as well as the microRNA
distribution, of ATCs is different from that of PTCs [30–32].
All of these differences may contribute to the differences in the
regulation of PVL1, ROR and HOTAIR in PTCs and ATCs.
Further studies to elucidate these differences are ongoing.
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ISH analysis is a powerful method to analyze gene
expression in tissues. It can localize the specific intracel-
lular compartment expressing the genes of interest with-
out the need for tissue microdissection by manual
methods or by laser capture techniques. The ISH approach
as was done in these studies can be used for visualization
and quantitation [33] as well as for predicting clinical
outcome in specific diseases such as localized prostate
cancer [34]. When combined with other methodologies
such as RT-qPCR, ISH is a powerful tool in cell biology
and pathology.

In summary, our studies showed that there is increased
expression of ROR for the first time as well as PVT1 and
HOTAIR lncRNAs during progression from NT to PTCs.
All three lncRNAs were highly expressed in PTCs with
lower levels of expression in normal, benign thyroid tis-
sues as well as in ATCs. SiRNA experiments inhibited
cell proliferation with all three lncRNAs, and invasive
potential was inhibited with siRNAs for ROR and
HOTAIR, but not for PVT1. We also show for the first
time that TGF-β-induced EMT increased expression of
PVT1, ROR, and HOTAIR in the TPC1 cell line.
Collectively, these findings suggest that these three
lncRNAs have important regulatory roles in PTC
development.
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*p < 0.05 and ***p < 0.001
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