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Abstract
Identification of informative signatures from electrophysiological signals is important for understanding brain develop-
mental patterns, where techniques such as magnetoencephalography (MEG) are particularly useful. However, less attention 
has been given to fully utilizing the multidimensional nature of MEG data for extracting components that describe these 
patterns. Tensor factorizations of MEG yield components that encapsulate the data’s multidimensional nature, providing 
parsimonious models identifying latent brain patterns for meaningful summarization of neural processes. To address the 
need for meaningful MEG signatures for studies of pediatric cohorts, we propose a tensor-based approach for extracting 
developmental signatures of multi-subject MEG data. We employ the canonical polyadic (CP) decomposition for estimat-
ing latent spatiotemporal components of the data, and use these components for group level statistical inference. Using CP 
decomposition along with hierarchical clustering, we were able to extract typical early and late latency event-related field 
(ERF) components that were discriminative of high and low performance groups ( p < 0.05 ) and significantly correlated with 
major cognitive domains such as attention, episodic memory, executive function, and language comprehension. We demon-
strate that tensor-based group level statistical inference of MEG can produce signatures descriptive of the multidimensional 
MEG data. Furthermore, these features can be used to study group differences in brain patterns and cognitive function of 
healthy children. We provide an effective tool that may be useful for assessing child developmental status and brain function 
directly from electrophysiological measurements and facilitate the prospective assessment of cognitive processes.
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Introduction

The characterization and identification of typical brain 
developmental patterns can provide important insights 
into brain organization and function. Brain function can be 
described by cognitive processes, which may include, but 
are not limited to, sensory, grammatical, semantic process-
ing, memory retrieval, or motor events (Hernández et al., 
2022). One method of studying the timing properties of 
cognitive processes is focusing on their underlying brain 
mechanisms. This can be achieved using functional neu-
roimaging techniques such as magnetoencephalography 
(MEG) and electroencephalography (EEG) (Hernández 
et al., 2022) by extracting neural sources (latent compo-
nents) describing these processes. MEG is a powerful neu-
roimaging technique that measures the magnetic fields gen-
erated by neuronal activity, which arises collectively within 
the brain from population neuronal responses to target 
stimuli (Hämäläinen et al., 1993). The direct measurement 
of neuronal currents by MEG, its high spatial resolution, 
and its excellent temporal resolution makes it an especially 
useful noninvasive technique for studying brain function. 
Thus, MEG is the preferred method for studying the rapid 
spatiotemporal dynamics of brain activity (He & Liu, 2008). 
To this end, event-related fields (ERFs) and event-related 
potentials (ERPs) have been identified as important research 
tools for understanding brain developmental patterns of 
pediatric cohorts. ERFs and ERPs represent a time-locked 
MEG/EEG activity that measures brain responses elicited 
by stimuli.

Multi-subject MEG studies that focus on large pediatric 
cohorts have high potential to provide important insights 
into brain organization and brain development in children 
and adolescents. One approach to this is by using multi-
subject latent component analysis, through which latent 
components within multiple MEG datasets are learned 
jointly by exploiting dependence across the datasets 
(Gabrielson et al., 2020; Akhonda et al., 2018). However, 
as we discuss next, many existing multi-subject latent 
component analysis techniques in neuroimaging are based 
on matrix factorization methods. Matrix representations 
cannot account for the multiple dimensions of the data, 
such as participant, stimulus condition, variations in time 
and space, and the relationships across these dimensions.

Over the past decades, substantial efforts have been 
made in finding ways to model and extract common hemo-
dynamic or electrophysiological components from multi-
subject task and resting state neuroimaging (NI) data 
such as fMRI and MEG/EEG. The common components 
detected during the task may be indicative of a typical or 
atypical patient state and can be further used to discover 
the prognostic imaging biomarkers. Data fusion and joint 

analysis methods based on matrix decompositions such as 
joint independent component analysis (jICA) (Calhoun 
et al., 2006), group ICA (GICA) (Calhoun et al., 2001; 
Labounek et al., 2018; Calhoun & Adali, 2012; Salman 
et al., 2019), dictionary learning (Jin et al., 2020; Akhavan 
et al., 2022), independent vector analysis and its transposed 
variant (tIVA) (Adali et al., 2015) have been used for analy-
sis and fusion of NI data. A reason for the popularity of 
these methods is the convenience of presenting the time-
varying NI data as a matrix of time × space . It was shown 
in many studies that these matrix-based approaches are 
powerful for extracting meaningful components (Calhoun 
& Adali, 2012). The group-level ICA methods exploit high-
order statistics (Hyvärinen & Oja, 2000) of the data and 
enable assessment of complex spatiotemporal relationships 
(Calhoun & Adali, 2012). However, a primary problem of 
two-way techniques is that components are defined only by 
two signatures, which are not determined uniquely with-
out further constraints on the model. The uniqueness is 
achieved by imposing constraints such as independence 
or sparsity (Lahat et al., 2015; Adali et al., 2014; Acar 
et al., 2013; Jin et al., 2020; Akhavan et al., 2022). To 
use matrix-based methods for the higher dimensional data, 
the unfolding and the dimension reduction into a matrix 
is required, which is done by concatenation or stacking of 
the data (Calhoun et al., 2009; Delorme & Makeig, 2004). 
Such unfolding inevitably discards the inherent multilinear 
structure of brain imaging data, and therefore, may ignore 
complex important interactions between/among the folded 
modes (Cong et al., 2015).

Given that most NI data can be conveniently expressed 
as a high order array, tensor decomposition techniques are 
preferred to represent the original data as a mixture of the 
latent components with corresponding signatures from each 
dimension. In addition, certain tensor decompositions pro-
vide uniqueness under mild constraints. The uniqueness 
property is critical for an unambiguous interpretation of the 
components, finding matches with neural processes and/or 
component signatures. Moreover, tensors provide a natural 
representation of the inherently multidimensional NI data 
and preserve the structural information among the tensor 
modes, thus effectively exploiting the multilinear correlation 
structure and enabling robust group-level statistical analyses 
for multiple datasets.

Among the tensor decomposition techniques, the canoni-
cal polyadic (CP) decomposition and the Tucker decompo-
sition (Carroll & Chang, 1970; Kolda & Bader, 2009) are 
particularly useful in fMRI, MEG/EEG processing of real 
(Cong et al., 2015) and complex-valued data (Kuang et al., 
2019). The main advantage of the CP model (Carroll & 
Chang, 1970) is that it is essentially unique up to scaling 
and permutations (Sidiropoulos & Bro, 2000). However, it is 

116



Neuroinformatics (2023) 21:115–141

1 3

worth noting that the CP model cannot effectively take into 
account higher-order statistical information like ICA-based 
methods (Kroonenberg & De Leeuw, 1980). The disadvan-
tage of the Tucker decomposition compared with the CP 
model is limited model interpretability without imposing the 
orthogonality constraint, which is unrealistic for the brain 
components. Thus, in this paper we chose the CP tensor 
format as our primary model of interest.

Tensor-based analysis of MEG/EEG has received 
increased attention during the last decade (Cong et  al., 
2012; Wang et al., 2018, 2020; Zhu et al., 2020; Liu et al., 
2021; Chatzichristos et al., 2022). The CP model has been 
extensively used for high-order decompositions of multi-
subject EEG data (organized as a channel × time × subject 
third-order tensor) or wavelet EEG (organized as a chan-
nel × time × frequency × subject) (Cong et al., 2012; Wang 
et al., 2018; Wang et al., 2020; Vanderperren et al., 2013). 
The specialized multiway algorithms have been proposed 
for ERP analysis of EEG to deal with noisy and nonstation-
ary signals using the Bayesian CP model (Wu et al., 2014) 
and fifth-order ERP feature extraction (Wang et al., 2018). 
In (Kinney-Lang et al., 2018, 2019), authors employed the 
CP decomposition for developmental feature extraction 
from EEG pediatric datasets. In (Zhu et al., 2020; Liu et al., 
2021), the CP model was used to study the functional con-
nectivity patterns of MEG data (organized as time × fre-
quency × connectivity third-order tensor).

Despite a substantial number of studies dedicated to high-
order ERP analysis, the multidimensional nature of MEG 
has not been fully exploited for the data-driven extraction 
of sensor-level ERF components. MEG ERF components 
can better inform about the rapid spatiotemporal dynamics 
of brain information processing compared with EEG due 
to higher spatial resolution of MEG. Provided that ERFs 
are collected using the same stimuli, the assumption is that 
activity elicited by the same stimuli is highly correlated 
among subjects, which can be seen as a prerequisite for 
applying the CP decomposition. Thus, multi-subject MEG 
studies generate ERFs that can be naturally represented 
using CP tensor format.

Several works (Stephen et al., 2013; Ablin et al., 2021; 
Ikeda & Toyama, 2000; Jung et al., 2001; Boonyakitanont 
et al., 2022) focus on the characterization and identification of 
sensor-level MEG ERFs using matrix-based approaches such 
as ICA/jICA algorithms. The algorithms that have been used 
in (Stephen et al., 2013; Pinner et al., 2020; Ablin et al., 2021; 
Ikeda & Toyama, 2000; Jung et al., 2001; Boonyakitanont 
et al., 2022) inherently transform three-dimensional (3D) 
multi-subject MEG data into two-dimensional (2D) matrix 
representation. For multi-subject MEG data, such a 2D trans-
formation loses the multidimensional low-rank structure that 
may provide an intrinsic description of the spatiotemporal 
interactions. On the hand, the low-rank structure of MEG data 

can be fully captured by the CP tensor format as we propose. 
Hence, we model the multi-subject MEG data as a 3D tensor 
with dimensions of subject × time × channel . This high-order 
representation of the multi-subject MEG dataset maximizes 
the simultaneous use of spatiotemporal modes and multilinear 
interactions across modes within the data.

Our goal is the identification of typical brain developmen-
tal patterns that could be used as descriptive imaging sig-
natures in a healthy population of children and adolescents. 
Using CP decomposition, we propose a group-level tensor 
analysis method to characterize and identify sensor-level 
ERF components in task-related multi-subject MEG data. 
The proposed model enables the analysis of a multi-subject 
MEG dataset as a third-order tensor and, thus, exploits the 
multidimensional nature of the group-level data. We use 
hierarchical clustering on principal components (HCPC) 
(Husson et al., 2010; Argüelles et al., 2014) approach to 
find subject groups using a supplementary cognitive meas-
ures dataset.

We summarize our contributions as follows: The paper 
presents a CP analysis framework to robustly identify 
common brain developmental patterns for multi-subject 
sensor-level MEG data. The proposed formulation of the 
CP model shown in Fig. 3 was capable of extracting typi-
cal early (M150), and late latency (M300a and M400) ERF 
components representative of visual spatial attention, asso-
ciative memory and semantic processing, similar to the 
results reported in existing ERF/ERP studies. We develop 
a group-level inference approach that allows robust statisti-
cal inferences directly using CP component matrices. We 
demonstrate the statistical significance of tensor group-level 
analyses by identifying the discriminative ERF components 
that can differentiate between high performance and low 
performance groups. We show that the discriminative ERF 
components were significantly correlated with major cogni-
tive domains such as attention, episodic memory, executive 
function, and language comprehension.

A preliminary work using the same MEG data with simi-
lar clustering of subjects used ICA model and is presented as 
a conference contribution (Boonyakitanont et al., 2022). The 
current paper presents a novel formulation for group-level 
analysis using the CP model, a detailed description of the 
clustering approach (see “Subject Subgroup Identification”), 
and novel experimental results.

This paper is organized as follows. The description and 
notations for CP decomposition are introduced in “Notations 
and Definitions”. We describe multidimensional generative 
data model and CP tensor decomposition for multi-subject 
MEG data in “Tensor Analysis of MEG Data for Brain 
Pattern Extraction”. The experimental setup is described 
in “Experimental Design”. In “Results”, the typical ERF 
components extracted from the CP model and the group-
level tensor-based statistical inference results are presented. 
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The experimental results are discussed in “Discussion”. The 
conclusions and future work are presented in “Conclusion”.

Materials and Methods

Notations and Definitions

In this paper, the mathematical notations and definitions are 
adopted from (Kolda & Bader, 2009) and (Cichocki et al., 
2016). We denote scalar with the lower case letter x, vectors 
with boldface lowercase letters ( �, �, �,⋯ ), matrices with 
boldface capital letters ( �,�,�,⋯ ), and tensors with bold 
calligraphic uppercase letters ( X,Y,Z,⋯ ). The number 
of dimensions is called the order, and each dimension is 
referred to as a mode. ‖ ⋅ ‖F denotes the Frobenius norm, 
�⊗ � denotes the Kronecker, �⊙ � denotes the Khatri-Rao 
product and ⟨�,�⟩ = �T� denotes the inner product of two 
vectors. A rank-1 tensor is expressed as the outer product of 
vectors, i.e., X = �◦�◦� , where ◦ represents the vector outer 
product. The mode-n matricitization of a given tensor along 
dimension n is denoted by �(n) ∈ ℝ

In×I1I2⋯In−1In+1⋯IN (Kolda 
& Bader, 2009). The n−mode product of a tensor 
X ∈ ℝ

I1×⋯×In×IN and a matrix � ∈ ℝ
JnIn along the nth mode, 

denoted as X ×n � , is a tensor of size I1 ×⋯ × Jn ×⋯ × IN.

Participants

The participants included 170 healthy children (89 male, 
81 female) and adolescents between the ages of 9 and 15 
( M = 11.92 years, SD = 1.18 ) with no reported clinical diag-
noses from the Mind Research Network (MRN) in Albu-
querque, New Mexico (90) and the University of Nebraska 

Medical Center (UNMC) in Omaha, Nebraska (80) as part 
of the Developmental Chronnecto-Genomics (Dev-CoG) 
study (Stephen et al., 2021). The participants and parents 
signed consent forms approved by each institutional review 
board (IRB) prior to joining the study. All procedures were 
approved by the MRN and UNMC IRBs prior to the start of 
the experiment.

Neuropsychological Testing

All the participants completed the Wechsler abbreviated scale 
of intelligence (Second Edition; WASI-II; (Wechsler, 2011)) 
to assess full-scale IQ (FSIQ) and NIH-Toolbox Cognitive 
Battery(Weintraub et al., 2013) (NIHTB-CB) tests assessing 
age-adjusted neuropsychological (T) scores in six cognitive 
domains: attention, episodic memory, executive function, 
language, processing speed, and working memory. The data 
collection also included the Conners 3 Inattention/Hyperac-
tivity scores (Conners, 2008) for assessing attention-deficit 
hyperactivity disorder (ADHD), and children with diagnosed 
ADHD were excluded from the study. There were no signifi-
cant differences ( p > 0.05 ) in terms of age or gender with 
respect to the neuropsychological measures in participants 
from the MRN and UNMC.

MEG Experimental Paradigm

Participants completed a multisensory task while MEG 
data were recorded (see Fig. 1). The visual stimulus was a 
full-screen, black and white vertical grating (0.25 cycles/
degree). The auditory stimulus was a 40 Hz modulated 1000 
Hz tone. For multisensory stimulus, the auditory and visual 
stimuli were presented simultaneously. The baseline fixation 

Fig. 1   Multisensory task para-
digm. The presentation started 
with a baseline fixation screen, 
followed by the appearance of 
auditory (AUD), visual (VIS) or 
multisensory stimulus (AV)
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was a red box in the center of the screen. Subjects were 
instructed to press their index finger when they saw any-
thing, heard anything, or both. Each MEG trial began with a 
fixation for an intertrial interval (ITI) that pseudo-randomly 
changed between 2400 and 2600 milliseconds (ms) in 10 ms 
increments. Following fixation, a sensory stimuli (auditory 
(AUD), visual (VIS), or audio-visual (AV)) was presented 
for 800 ms (Stephen et al., 2021). The total task duration was 
approximately 18 min.

MEG Data Acquisition and Image Preprocessing

The MEG data acquisition and preprocessing details were 
previously published in (Stephen et al., 2021). MEG record-
ings were acquired with the Elekta/MEGIN MEG system 
with 306 magnetic sensors (204 gradiometers and 102 mag-
netometers) in a magnetically shielded room. The MEG data 
were continuously sampled at 1000 kHz with a passband 
between 0.1 and 330 Hz. We used preprocessing technique 
such as signal-space separation (SSS) (Taulu & Kajola, 
2005) for MEG data denoising and to ensure comparability 
between magnetometer and gradiometer source reconstruc-
tions (Garcés et al., 2017). The MEG sensor-level artifacts 
were removed during prepossessing at both the MRN and 
UNMC sites. MEG epochs between −100 to 1000 ms (1100 
time points) around the stimulus onset were averaged across 
300 trials within respective stimuli and formed sensor-level 
ERFs time-locked to the stimulus condition (AUD, VIS, or 
AV).

Prior to MEG recording 3D digitization was performed 
to collect positioning data for four head-position indica-
tor (HPI) coils, and the scalp surface. The HPI coils data 
were collected throughout the recordings, which allowed 
offline head movement correction (Stephen et al., 2021). 
The Maxfilter program was used to adjust the location of 
the head to a common head location within the dewar. The 
movement compensation extension of the Maxfilter pro-
gram allows one to correct for head movement throughout 
the scan (effectively correcting small changes in head posi-
tion through re-mapping the MEG data to a constant head) 
(Taulu & Simola, 2006). Another use of this capability is 
to map each subject’s MEG data to a common head posi-
tion within the dewar. Prior work has shown that too much 
adjustment of the head position can lead to noise amplifica-
tion. Therefore, we chose a head position that was the closest 
to the average participant head location within the dewar and 
mapped all data to this common head position. Once the data 
were mapped to a common head position, the results were 
compared across participants as is often done with EEG 
sensor data. We did not perform source reconstruction and 
worked in sensor space when we applied tensor decomposi-
tion. Using the sensor’s spatial adjacency matrix, we asso-
ciated each sensor with a sensor spatial region (Occipital, 

Frontal, Parietal, Temporal, and left/right hemisphere). 
These sensor regions shown in Fig. 2 do not correspond 
to the brain regions or anatomical labels. Throughout the 
paper, the approximate sensor groups were used to describe 
ERF component spatial patterns on the scalp topographic 
map (topomap).

Tensor Analysis of MEG Data for Brain 
Pattern Extraction

Multidimensional Model for Multi‑Subject MEG Data

The MEG experimental paradigm shown in Fig. 1 results 
in simultaneously recorded neural measurements elicited in 
C common sensors at T timepoints across K subjects. As 
a result, the observed MEG recordings are modeled as a 
mixture of the underlying neural sources of interest syn-
chronized in time across subjects within a specific task. To 
identify the common brain developmental patterns elicited 
by sensory stimuli across subjects, we applied the CP ten-
sor decomposition to extract the latent brain activity pat-
terns. The proposed approach has two important advantages. 
The CP representation of MEG data allows us to take into 
account the higher-order structure of the multi-subject data 
to extract common patterns across subgroups. By virtue 
of the CP decomposition, the MEG factorization provides 

Fig. 2   Top down view of MEG magnetometers. MEG regional divi-
sion based on the sensor’s spatial adjacency matrix. Inserts show 
global field power of MEG. The approximate sensor groups were 
used to describe the ERF components spatial patterns on the scalp 
topographic map. R - right, L - left. Adopted from (Stephen et  al., 
2013)
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a unique solution under mild constraints (Kruskal, 1977; 
Sidiropoulos & Bro, 2000). The importance of the unique-
ness condition cannot be overstated since it allows finding 
meaningful components unambiguously and matching them 
to the true brain processes.

To preserve the intrinsic multidimensional nature of multi-
channel MEG data, the data are tensorized as third-order ten-
sor X ∈ ℝ

K×T×C by stacking subject ERF matrices �k ∈ ℝ
C×T 

in subject mode. Fig. 3a shows the generative model for multi-
dimensional representation of multi-subject MEG data.

Multi‑Subject MEG Tensor Decomposition

By adopting the tensorization strategy shown in Fig. 3a, we 
present the CP model of the multi-subject MEG data as a 
third-order tensor X ∈ ℝ

K×T×C ( ℝsubject×time×channel ). The CP 
decomposition approximates tensor X ∈ ℝ

K×T×C as a sum 
of rank-1 tensors:

where �r ∈ ℝ
K , �r ∈ ℝ

T , �r ∈ ℝ
C are the factor vectors nor-

malized to the 2-unit norm; �r represents the scale factor 
for each component, and the norms absorbed into diagonal 
matrix � ; � ∈ ℝ

K×R,� ∈ ℝ
T×R,� ∈ ℝ

C×R are the factor 
matrices and R is the rank or number of components. Each 
rank-1 tensor obtained from the �r◦�r◦�r◦�r decomposi-
tion, can be interpreted as a distinct spatiotemporal brain 
pattern, where �r , �r and �r are the subject weights of the 

(1)X ≈

R∑

r=1

�r◦�r◦�r◦�r = � ×1 � ×2 � ×3 �

time-varying spatial patterns, timecourses, and spatial 
maps, respectively, as illustrated in Fig. 3b. The CP model 
optimizes a least-squares fit of the following cost function 
(Kolda & Bader, 2009):

We apply alternating least squares (ALS) to estimate the fac-
tor matrices (Cichocki et al., 2016; Kolda & Bader, 2009). 
The minimization problem is solved by fixing two matrices 
and optimizing over the third-one. Each least squares sub-
problem is convex and has a closed-form solution (Kolda & 
Bader, 2009).

Component Number Estimation

As in many dimensionality reduction methods, a critical step 
is the selection of the optimal number of components. We use 
three methods to make this choice for the CP decomposition: 
the core consistency diagnostic (CORCONDIA/CCD) (Bro & 
Kiers, 2003), the average congruence product (ACP) (Tomasi 
& Bro, 2005) and the Bayesian information criterion (BIC) 
(Schwarz, 1978) as a function of tensor rank R. The CCD 
measures the similarity between the estimated core and the 
superdiagonal ideal core, in the absence of noise (Bro & Kiers, 
2003). According to (1), the CP core can be estimated as

(2)

f (�,�,�,�) =

min
�,�,�,�

1

2
‖X − � ×1 � ×2 � ×3 �‖2F,

s.t ‖�r‖2 = ‖�r‖2 = ‖�r‖2 = 1,∀r = 1,⋯ ,R.

Fig. 3   Brain developmental patterns discovery via tensor decomposi-
tion. a-b  Illustration of tensor analysis for multi-subject MEG data. 
(a) Tensor formation by arranging the subjects along the first dimen-
sion. b MEG tensor decomposition into R rank-1 components. Each 
rank-1 component represents a distinct spatiotemporal brain activity 

pattern with subject weight ( �r ) and temporal ( �� ) and spatial sig-
natures ( �� ). c Tensor group-level analysis, which includes subgroup 
identification and group-level statistical inference. d Left: Component 
association patterns with cognitive domains. Right: Sensor spatial 
locations associated with the components
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The CCD in ( % ) is defined as in (Bro & Kiers, 2003)

where G ×ℝ
R×R⋯×R and I ×ℝ

R×R⋯×R are the estimated and 
ideal CP cores, respectively. We choose the model with the 
highest number of components such that

where 0 < 𝜂 < 100% is the threshold coefficient, with 
r = 1,⋯R . Typically, 80% < 𝜂 < 90% is used.

Furthermore, to assess the number of components, we com-
puted the ACP measure of all fitted models for a given tensor 
rank R. The ACP metric measures the correlation between 
components extracted from different models for a given ten-
sor rank R:

where �(k)
r
,�(k)

r
,�(k)

r
 represents the rth component of the ith 

solution i = 1,⋯ I , r = 1,⋯R , � is the permutation matrix 
that accounts for the ambiguity (Harshman et al., 1970) of 
ordering the solutions, and tr(⋅) is the trace of the matrix. 
We select the model that produces the highest ACP value 
such that

We used the BIC metric further to assess the number of 
components as an information-theoretical criterion. The 
BIC measure is based on the negative log-likelihood and 

(3)G = X ×1 ×2�
† ×3 �

† ×3 �
†.

(4)CCD(%) = 100 ×
�
1 −

‖GR − IR‖2F
R

�
,

(5)R̂CCD = argmax
r

(CCD) s.t CCD(r) ≥ 𝜂,

(6)
ACP = max

�
tr
(
(�(1)

r

T
�(2)

r
)

(�(1)
r

T
�(2)
r
)(�(1)

r

T
�(2)

r
)�
)
,

(7)R̂ACP = arg max
r

(ACP), r = 1,⋯R.

the maximum a posteriori (MAP) approximation (Stoica & 
Selen, 2004).

The BIC metric is defined in terms of the sum squared 
error ( SSE = ‖X − X̂‖2

F
 ) (Mørup & Hansen, 2009), where 

X  stands for the original data tensor, and X̂  denotes the 
fitted model

F is the degree of freedom, and S =
∏N

n=1
In is the number 

of tensor data elements. We chose the model that produces 
the lowest BIC value such that

Clustering Analysis for Subject Subgroup 
Identification

In this section, we present the clustering analysis methodol-
ogy for identifying subgroups. A preliminary version of the 
clustering approach presented here using cognitive measures 
collected during the Dev-Cog study presented as a confer-
ence contribution (Boonyakitanont et al., 2022). The detailed 
clustering protocol is described in the Supplementary Meth-
ods Sect. 3.1. We partitioned the subject cohort ( N = 170 ) 
into distinct subgroups using a neuropsychological dataset. 
We performed HCPC clustering using nine cognitive vari-
ables from six cognitive domains, including the Connors 3 
inattention/hyperactivity scores: WASI-II FSIQ, ORRENG, 
PICVOCAB, PSM, LSWM, DCSS, FICA, INATTENTION 
and HYPERACTIVITY. The HCPC method (Husson et al., 
2010; Argüelles et  al., 2014) combines three standard 
techniques (principal component analysis (PCA), hierar-
chical clustering, and the K-means algorithm) to obtain a 
higher quality clustering solution. A schematic view of the 

(8)BIC = S log
SSE

S
+ F log S,

(9)R̂BIC = arg min
r

(BIC), r = 1,⋯R.

Fig. 4   Hierarchical clustering on principal components of neuropsy-
chological (T) scores for subject group identification using Ward’s D2 
criterion (Murtagh & Legendre, 2014). PCA is used on the subject 
cognitive matrix � ∈ ℝ

K×L to remove highly correlated continuous 
variables. Next, we apply hierarchical clustering using Ward’s D2 
method on the distance matrix � to select the clusters based on the 
height of the hierarchical tree. The distance matrix � ∈ ℝ

K×K is com-
puted using the dissimilarity measure such as the distance correlation 
(Székely et al., 2007) of the PCs. The initial number of clusters NCk

 is 

assessed according to the compactness metrics (Halkidi et al., 2002a, 
b), and the cluster stability is evaluated using the Jaccard similarity 
index (Jaccard, 1912) via a nonparametric bootstrap technique with a 
number of repetitions n = 1000 (see detailed protocol in Supplemen-
tary Methods Sect.  3.1). We select significant clusters based on the 
approximately unbiased probability p-values (Efron et  al., 1996), as 
shown in Fig. 8a. We provide the final clustering solution by applying 
the K-means algorithm to the hierarchical clustering output
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subgroup identification using the HCPC algorithm is pre-
sented in Fig. 4.

First, the PCA algorithm is applied to the neuropsychologi-
cal dataset, represented as a subject score matrix � ∈ ℝ

K×L , 
K = 170 , L = 9 , to reduce the dataset into fewer dimensions 
called principal components (PCs), which are uncorrelated 
with each other. We compute a distance matrix � ∈ ℝ

K×K 
of these PCs, which uses the dissimilarity measure such as 
distance correlation (Székely et al., 2007). The distance cor-
relation measure allows the detection of nonlinear correla-
tions (Székely et al., 2007) that might not be identified by the 
Pearson correlation (Székely et al., 2007), which may result 
in suboptimal performance of the downstream tasks. Next, we 
apply hierarchical clustering using Ward’s D2 (Murtagh & 
Legendre, 2014) method on the distance matrix � to select the 
clusters based on the height of the hierarchical tree. The sig-
nificant clusters are selected on the basis of the approximately 
unbiased (AU) probability (Efron et al., 1996) p-values with 
p < 0.05 . The quality of clustering is assessed according to 
the compactness metrics (Halkidi et al., 2002a, b) (see Supple-
mentary Methods Sect. 3.1 and Supplementary Fig. S.3). The 
cluster stability is evaluated as a function of the number of 
clusters using the Jaccard similarity index (J) (Jaccard, 1912) 
via a nonparametric bootstrap technique with a number of 
repetitions n = 1000 (Supplementary Methods Sect. 3.1). The 
final clustering solution is obtained by applying the K-means 
algorithm to the hierarchical clustering output.

Numerical Experiments

Data Preprocessing

The MEG multi-subject dataset consists of 170 subjects 
taken from the Dev-CoG study (Stephen et al., 2021). 
Before the tensor analysis, we normalized the data by 
centering the third-order MEG tensor across the time 
mode, and scaling within the subject mode by its stand-
ard deviation (Bro & Smilde, 2003). We used 204 planar 
gradiometers and 102 magnetometers out of available 306 
sensors after SSS preprocessing (see “MEG Data Acquisi-
tion and Image Preprocessing”). Thus, the data preproc-
essing resulted in 170 C × T  ERF subject datasets with 
C = 306 , and T = 1100 . Furthermore, tensor analyses were 
performed separately for three stimulus conditions (AUD, 
VIS, and AV). We selected nine age-adjusted cognitive 
(T) scores from available neuropsychological measures 
(see “Neuropsychological Testing”) in the data analyses: 
the WASI-II FSIQ, Picture Sequence Memory (PSM) 
(T) score (Weintraub et al., 2013), Picture Vocabulary 
(PICVOCAB) (T) score (Weintraub et al., 2013), Oral 
Reading Recognition (ORRENG) (T) score (Weintraub 
et al., 2013), List Sorting Working Memory (LSWM) (T) 

score (Weintraub et al., 2013), Flanker Inhibitory Control 
and Attention (FICA) (T) score (Weintraub et al., 2013), 
Dimensional Card Sorting (DCCS) (T) score (Weintraub 
et al., 2013), and the Conners 3 Inattention/Hyperactivity 
scores. The neuropsychological (T) scores were aggre-
gated to construct a cognitive score matrix � ∈ ℝ

K×L , 
where K is the number of subjects and L is the number of 
cognitive tests. Prior to clustering, the matrix was stand-
ardized by the z-score to account for scale differences. In 
addition to the neuropsychological (T) scores, we used 
parental socioeconomic status (SES), age and gender as 
model covariates (see the detailed protocol in “Correla-
tion Analysis between Component Loading Factors and 
Neuropsychological (T) Scores”).

Experimental Design

The goal of this study was to estimate common imaging 
patterns representing typical brain development in healthy 
children and adolescents. Three MEG data tensors were 
constructed ( XVIS , XAUD , and XAV ) for each stimulus condi-
tion according to the generative model shown in Fig. 3a. The 
tensor rank R was estimated for each original data tensor as 
described in “Component Number Estimation”. Three separate 
CP decompositions were conducted for each stimulus condi-
tion with the chosen tensor rank. The fitted CP models resulted 
in three estimated tensors, consisting of R-component factor 
matrices � ∈ ℝ

K×R , � ∈ ℝ
T×R , � ∈ ℝ

C×R that described the 
latent ERF spatiotemporal brain patterns.

To associate brain function with the cognitive perfor-
mance observed in the neuropsychological tests, we parti-
tioned the subject dataset into two distinct subgroups, high 
performance (HP) and low performance (LP), using the 
HCPC method (Husson et al., 2010; Argüelles et al., 2014). 
Thus, we could perform group-level statistical analyses 
using the extracted ERF components to identify group-level 
discriminative brain developmental signatures. We identify 
associations between extracted latent ERF components and 
cognitive processes by correlating these latent components 
with children’s scores in the cognitive domains. We hypoth-
esize that statistically significant latent ERF components can 
differentiate between children’s brain patterns in those with 
low vs. high performance and could indicate brain devel-
opmental trajectory or cognitive development status. Fig. 3 
illustrates the application of tensor decomposition to identify 
brain developmental patterns using MEG data.

Execution Details

The CP model (2) was fit using CP-ALS (Kolda & Bader, 
2009) from the TensorLy toolbox (Kossaifi et al., 2019), 
MNE-Python (Gramfort et al., 2013) was used to generate 
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topographic maps, and R software (Team RC et al., 2013) 
version 3.6.0 (R Foundation for Statistical Computing, 
Vienna, Austria) was used for statistical analyses. All experi-
ments were performed on a Linux workstation with 4 Quad-
Core Intel Xeon 3.1 processors and 16 GB memory.

Model Selection and Evaluation

The model performance was assessed with qualitative 
and quantitative metrics. The qualitative assessment used 
interpretations of the extracted components and com-
parisons with existing literature findings on adolescent 
cohorts. We computed the reconstruction error of the CP 
model as RMSE = ‖X − X̂‖∕∏N

n=1
In , and the model fit 

FIT =
�
1 − ‖X − X̂‖2

F
∕‖X̂‖2

F

�
 . The CP-ALS stopping cri-

teria included reaching 1000 iterations or achieving a con-
vergence tolerance of � ≤ 10−8 . We investigated the model 
order and stability by running the CP-ALS algorithm 100 
times for each stimulus condition and R values of one to ten, 
with each run randomly initialized. This procedure allowed 
us to determine whether some runs converged to local min-
ima with high reconstruction error. The error plot in Fig. 5c 
reveals that all runs at fixed R yielded the same RMSE with 
a standard error of the mean (SEM) < 0.0001 . These results 
suggest that all CP-ALS local minima are similar and pre-
sumably also similar to the global minimum.

We assessed the number of components for the CP model 
(2) by generating average CCD (4) plots, average ACP (6) 
plots and average BIC (8) plots as a function of tensor rank 
R for R = 1,⋯ , 10 . Fig. 5a–b and d show boxplots of the 
mean CCD (4), mean APC (6) and mean BIC (8) metrics 
for each stimulus, demonstrating the sensitivity of the solu-
tion to the selection of R and initialization parameters of the 
CP-ALS algorithm.

According to (Bro & Kiers, 2003), the tensor rank of 
the CP model should be chosen such that the CCD value 
is greater than 90% . Fig. 5a reveals that R = 2 should be 
chosen for the AUD ( M = 97.9, SD = 2.28 ) and VIS 
( M = 96.2, SD = 2.25 ) conditions, while R = 3 should be 
chosen for the AV ( M = 93.1, SD = 1.37 ) condition.

The ACP values for different R was another method for 
assessing the number of components. Fig. 5b shows that 
adding more components resulted in lower mean and higher 
SEM values for the ACP metric. Similar to the CCD boxplot, 
the ACP boxplot confirms that R = 2 is the correct number 
of components for the AUD ( M = 0.988, SD = 0.05 ) and 
VIS ( M = 0.998, SD = 0.02 ) conditions, while R = 3 is the 
best for the AV ( M = 0.988, SD = 0.05 ) condition.

The BIC (8) method was used as model-driven meas-
ure to complement the CCD and ACP metrics for assessing 
the number of components for different R. Fig. 5d shows 
that for the AUD ( M = 4.53 × 105, SD = 1015 ) and VIS 
( M = 6.63 × 105, SD = 930 ) conditions R = 2 and for the 

AV ( M = 3.01 × 105, SD = 845 ) R = 3 should be chosen 
based on the minimum BIC value. As shown in Fig. 5d, the 
BIC criterion demonstrates the agreement in terms of the 
number of components with the CCD and ACP measures. 
The final solution was selected based on the chosen R, which 
produced the minimum RMSE value, maximum CCD and 
ACP values, and minimum BIC value.

Statistical Analysis

We quantified the CP model performance to produce latent 
factors for differentiating subject subgroups using mixed 
measures analysis of covariance (ANCOVA). We performed 
post hoc analyses with two-tailed parametric t-tests and cor-
rections for multiple comparisons using the false discovery 
rate (FDR) (Benjamini et al., 2001) with the significance 
level of � = 0.05 to determine statistical significance. The 
ANCOVA and post hoc analyses results were accompa-
nied with F-statistics, t-statistics, p-values and effect size. 
The effect size was evaluated by generalized eta squared 
( �2

G
 ) (Olejnik & Algina, 2003), Cohen’s d values and char-

acterized as small ( < 0.06 ), medium (0.06–0.14), or large 
( > 0.14 ), according to (Cohen, 2013). Additionally, we 
reported the mean (M), and standard deviation (SD) of the 
measures of interest.

Group‑Level Statistical Inference of CP Component Matrices

The columns of the factor matrices � ∈ ℝ
K×R in subject 

mode contain the component loading factors (coefficients), 
with the column index corresponding to the loading factors 
of the given Rth component. The loading factors of each 
component indicate how much of the component is required 
to reconstruct the subject’s source data (Acar et al., 2019). A 
higher subject loading factor signifies an increased contri-
bution of that component (Stephen et al., 2013). Therefore, 
group-discriminative components can be obtained by sta-
tistically comparing the component loading factors of sub-
groups to determine significant between-group differences.

Group differences in the component loading factors were 
assessed with 2 × 2 mixed measure ANCOVAs with the 
stimuli condition (AUD, VIS, or AV) as a within-subject 
factor and subgroup (HP vs. LP) as a between-subject fac-
tor. The ANCOVAs were calculated for each component 
and condition while controlling for age, gender and paren-
tal SES. In addition to the ANCOVA tests, planned direct 
comparisons between HP and LP groups were made for 
each component and condition separately to determine if 
subgroups differed significantly in the component loading 
factors of any specific stimulus condition while controlling 
for the same covariates. We applied a two-tailed level of sig-
nificance ( p < 0.05 ) and an FDR correction for the number 
of tests performed for each condition.
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Prior to performing group-level statistical analyses, we 
examined group differences in the subject head motion between 
subgroups to determine if it may cause differences in compo-
nent loading factors. We assessed group differences in the head 
motion values with one-way ANCOVA with the subgroup (HP 
vs. LP) as a between-subject factor while controlling for age. 
There was no significant difference in the mean values of the 
head motion ( F1,167 = −1.051 , p > 0.05 ) between subgroups. 

Post hoc independent samples two-tailed t-test (FDR corrected, 
p < 0.05 ) with unequal variances correction confirmed there 
was a no significant difference in the head motion for HP 
( M = 0.922 , SD = 0.807 ) and LP ( M = 1.12 , SD = 1.036 ) 
groups ( t167 = −1.051, p = 0.295 ). These results suggest that 
the head motion would not impact results of the group-level 
statistical analyses. The summary of the head motion statistical 
analysis is presented in Supplementary Fig. S.4.

Fig. 5   Estimation of the 
number of components for the 
CP model, showing the mean 
values ( N = 100 ) of the CCD, 
ACP, BIC and RMSE metrics as 
a function of tensor rank R for 
100 random initializations for 
each stimulus condition (VIS, 
AUD, and AV). a–b Boxplots 
summarize the distribution of 
the mean CCD and mean ACP 
as a function of tensor rank. 
Median values are represented 
by black lines inside the box-
plot, with the top of the whisker 
lines indicating the 25th and 
75th percentile values. Mean 
values are plotted in white 
circles, and red circles represent 
outliers. Error bars represent the 
standard error of the mean. The 
plot of mean values of RSME 
suggests that all runs at fixed R 
yielded the same RMSE with 
a standard error of the mean 
< 0.0001 . These results suggest 
that all CP-ALS local minima 
are similar and presumably also 
similar to the global minimum. 
a CCD boxplot. b APC boxplot. 
c Mean and standard error of 
the RMSE and APC as a func-
tion of tensor rank R. d Mean 
BIC as function of tensor rank R 

(a)

(b)

(c)

(d)
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Correlation Analysis between Component Loading Factors 
and Neuropsychological (T) Scores

To identify the specific neuropsychological scores associated 
with the ERF components, we separately correlated the ERF 
components with the neuropsychological (T) scores in the 
HP group, LP group and full sample. The relationships were 
evaluated with Pearson’s correlation tests. Partial correla-
tion analyses (controlling for age, gender and parental SES) 
were performed between the component loading factors 
in subject mode (columns of matrix � ) and neuropsycho-
logical age-adjusted (T) scores. Specifically, we computed 
the two-tailed Pearson’s partial correlation coefficient (r) 
between the component loading factors and the nine cog-
nitive variables, namely, WASI-II FSIQ, PSM, PICVO-
CAB, ORRENG, LSWM, FICA, DCCS, and the Conners 
3 inattention/hyperactivity scores. Partial correlations were 
considered significant below the FDR-corrected threshold 
( p < 0.05,N = 170).

Results

The proposed model was used to extract MEG ERF compo-
nents using CP decomposition, followed by statistical group-
level analyses (see “Group-Level Statistical Inference of CP 
Component Matrices” and “Correlation Analysis between 
Component Loading Factors and Neuropsychological (T) 
Scores”). In this section, we describe the results of the multi-
subject tensor analyses for extracting typical brain develop-
mental patterns from the original MEG data.

Multi‑Subject MEG Tensor Analysis Using the CP 
Model

We employed CP decomposition to determine the compo-
nent structure of MEG ERF responses to multisensory task. 
The MEG tensor X ∈ ℝ

K×T×C was decomposed using the 
CP factorization model (2) shown in Fig. 3b. The data tensor  
was fitted with the number of components R as determined  
in “Model Selection and Evaluation”. The average model  
FIT indicates (VIS: R = 2,M = 0.93, SD = 0.01 ; AUD:  
R = 2,M = 0.91, SD = 0.01 ; AV: R = 3,M = 0.91, SD = 0.01 ; 
see experimental setup in “Model Selection and Evaluation”) 
that the extracted factors account for a large part of the explained 
variance of the original datasets. Supplementary Fig. S.5 and 
Supplementary Table S.2 show the mean values of FIT metric 
of the fitted CP decomposition for each stimulus condition (VIS, 
AUD, and AV). To quantify the common associations between 
the original MEG ERF subject’s datasets and the extracted 
ERF components, we performed repeated measures correlation 

analyses (Bakdash & Marusich, 2017) between these paired 
datasets (see Supplementary Methods Sect. 3.2).

The tensor analysis yielded seven ERF components (see 
Table 1), which describe patterns of temporal variance 
(temporal factors), spatial variance (spatial factors), and the 
subject factors. The spatial loadings provide the measure 
of activity in the MEG ERF as a function of time for each 
spatial factor. The subject loadings modulate the magnitude 
of these spatiotemporal patterns, representing the pattern’s 
activation strength for the specific subject. We categorized 
the components as functional MEG ERF components that 
correspond to prominent spatiotemporal peaks (Stephen 
et al., 2013), and the spatiotemporal variance explained ( R2 ), 
which was determined by the repeated measures correlation 
analyses.

Fig. 6 depicts the extracted temporal and spatial com-
ponents time-locked to the target stimuli after CP tensor 
decomposition on the sensor-level MEG data (magnetom-
eter view), and the ERF components gradiometer view is 
presented in Supplementary Fig. S.6. The temporal ERF 
components generated from individual sensor data aver-
aged across subject ERF components are shown. The MEG 
topographic maps show the density of spatial patterns that 
correspond to prominent time peaks. The average ERF 
component (average across sensors, in cyan) and average 
ERF timecourse (in yellow) for each stimulus condition are 
plotted. The ERF components are well-matched to distinct 
peaks present on the average ERF timecourses. The temporal 
evolution of the MEG ERF topographic maps is shown in 
Supplementary Fig. S5.

The repeated measures correlation analyses (see Supple-
mentary Methods Sect. 3.2) found significant correlations 
( p < 0.001 ) between ERF components and the original data 
(VIS, AUD, and AV conditions) for the overall common 
slope (Supplementary Table S.3). The ERF components 
(Supplementary Table S.3) accounted for 72% , 76% , and 
74% of the spatiotemporal variance ( R2 ) in the VIS, AUD 
and AV conditions, respectively.

Occipital Component/M150

The occipital component was found in the VIS and AV con-
ditions, as shown in Fig. 6a–b. This component was asso-
ciated with the first prominent visual peak at a latency of 
130–150 ms. The spatial distribution map at 145–149 ms 
(see Fig. 6a–b) shows that the positive deflection reflects 
MEG activity in the bilateral occipital sensors. The posi-
tive deflection resembles the visual P100 wave described in 
previous MEG/EEG studies which could reflect the alloca-
tion of attentional resources (Boehler et al., 2008; Zhang & 
Luck, 2009).
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Right Temporal Component/M300a

The right temporal component with the peak 280–300 ms 
was consistently found in the AUD and AV conditions in 
the right temporal and inferior left/right frontal sensors (see 
Fig. 6c–d). The positive deflection at a latency of 280–300 
ms corresponds to the early phase of the P300a component, 
which has been linked to different processes, such as detect-
ing and evaluating novel and orienting responses (Polich, 
2007; Pfefferbaum et al., 1985; Vogel et al., 1998).

Fig. 6   Tensor decomposition 
results of sensor-level MEG 
data for target stimuli. Temporal 
and spatial patterns from the 
components of the CP model. 
Top: The topographic maps 
(magnetometers view) show the 
density of spatial patterns that 
correspond to prominent time 
peaks denoted with red and blue 
arrows. Bottom: ERF compo-
nent with signal traces from 
all individual MEG sensors 
averaged across subject ERF 
components. The shaded areas 
around each line depict the 
standard error of the mean. The 
average stimulus-related ERF 
timecourse is shown in yellow, 
and the average ERF (average 
across sensors) component is 
plotted in cyan. a–b Occipital 
130–150 ms component in 
the VIS and AV conditions. 
c Right temporal 280-300 ms 
component in the AUD and AV 
conditions. e–i Late central 350-
430 ms component in the VIS, 
AUD, and AV conditions

Table 1   Summary of MEG ERF components

ERF Component

Stimulus condi-
tion

Occipital/M150 Right Temporal/
M300a

Late 
Central/
M400

VIS
√

-
√

AUD -
√ √

AV
√ √ √
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The M300a component revealed two separate early 
latency subcomponents at about 53–56 ms (M50) and 82–86 
ms (M100). These early subcomponents were found in the 
right temporal sensors in the AUD and AV conditions. In 
addition, the M100a component followed the M100 com-
ponent in the AV condition and peaked around 148 ms. We 
show a zoomed version of the M300a component within 
0–150 ms time window in Fig. 7. Figure 7 depicts the peak 
latencies of the M50 and M100 subcomponents after the 
onset of a stimulus and the topographic scalp distribution of 
these early latency components. The M50 and M100 com-
ponents exhibit much smaller amplitudes compared to the 
later M300a amplitude. It was noted that the amplitude of 
the M100 component was more robust and more evident 
than the M50 amplitude.

Late Central Component/M400

The late central component was extracted for all stimuli con-
ditions (AUD, VIS, and AV), as shown in Fig. 6e–i. This 
component consists of a sequence of negative (VIS and AV) 
and positive peaks (AUD) at approximately 126–134 ms 
and a prominent peak at 350–430 ms. Figure 6e-i show that 
this component is primarily distributed in the left temporal-
parietal and right prefrontal sensors. The prominent negative 
deflection resembles the late phase of the parietally distrib-
uted N400 component (Halgren et al., 2002; Marinković, 
2004).

Additionally, the M400 component explained early 
latency M100a subcomponent peaked around 126–148 ms 
and was identified in the VIS, AUD and AV conditions.

Subject Subgroup Identification

In this section, we present the clustering analysis results for 
identifying subgroups described in “Clustering Analysis for 
Subject Subgroup Identification”. The hierarchical cluster-
ing results using Ward’s D2 (Murtagh & Legendre, 2014) 
distance are shown in the dendrogram in Fig. 8a, with the 
height of the branches indicating the distance or dissimilar-
ity between clusters. As depicted in Fig. 8a, two signifi-
cant clusters were selected according to the approximately 
unbiased probability (AU) (Efron et al., 1996) p-values with 
p < 0.05 . The clustering solution projected on the PCs is 
shown in Fig. 8b. We used the HCPC clustering output to 
identify two subgroups with distinct distributions of mean 
PCA scores and categorized them as high ( n = 89 ) or low 
( n = 81 ) performance. The distribution of mean PCA scores 
shown in Fig. 8c indicates that subjects in the HP group have 
higher PCA loading factors than the subjects in the LP group 
in all six cognitive domains except for the Conners 3 inatten-
tion and hyperactivity scores where a higher score implies 
greater inattention and hyperactivity.

We evaluated the effect of the subject group (HP vs. LP) 
on the cognitive assessments using independent samples 
two-tailed t-tests with unequal variances corrected for mul-
tiple comparisons using FDR ( p < 0.05 ). We present the 
summary statistics of the neuropsychological (T) score dis-
tribution according to subject subgroup in Supplementary 
Table S.1. The groups did not differ significantly in terms of 
gender ( 𝜒2 = 0.00, p = 0.99 ), age ( t167 = 0.03, p = 0.97 ) or 
parental SES ( t167 = 0.517, p = 0.61 ). However, the WASI-
II FSIQs differed significantly ( t167 = 9.16, p < 0.0001 ), 
with higher FSIQ scores in the HP group than in the LP 
group. Similarly, the language (PICVOCAB, ORRENG), 
memory (PSM, LSWM), and executive function (DCCS, 
FICA) (T) scores differed significantly by group (Supple-
mentary Table S.1; Fig. 8d; p < 0.0001 ), with cognitive 
(T) scores higher in the HP group than in the LP group. 

Fig. 7   Early latency M50 and M100 subcomponents within 0–150 ms 
time window of the right temporal 280–300 ms ERF component for 
the AUD (Fig.  6c) and AV (Fig.  6d) conditions are shown. a  AUD 
subcomponents. b AV subcomponents
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The Conners 3 hyperactivity score differed significantly by 
group ( t167 = −2.17, p = 0.031 ), with lower scores in the HP 
group than in the LP group. The Conners 3 inattention score 
did not differ significantly between the HP and LP groups 
( t167 = 0.52, p = 0.61 ). Fig. 8d shows the subject subgroup 
distribution of standard age-adjusted cognitive (T) scores.

Statistical Group‑Level Analysis

In this section, we present the group-level analysis results 
described in “Group-Level Statistical Inference of CP 
Component Matrices” and “Correlation Analysis between 
Component Loading Factors and Neuropsychological (T) 
Scores”. This section has two subsections. The first subsec-
tion evaluates the statistical significance of the ERF compo-
nents (see “Multi-Subject MEG Tensor Analysis Using the 
CP Model”) to differentiate between the subgroups identi-
fied in “Subject Subgroup Identification”. The second sub-
section assesses the covariant relationships between ERF 
components and neuropsychological measures to correlate 
brain responses with cognitive performance. The compo-
nent loading factors in subject mode (columns of matrix 
� ) and neuropsychological (T) scores were evaluated for 
normality. All analyses were corrected for multiple com-
parisons using FDR with a significance level of � = 0.05 
unless stated otherwise.

Prior to performing the group-level statistical (see 
“Group-Level Discriminative Components”) and compo-
nent-cognitive scores correlation analyses (see “Analysis of 
ERF Component Association with Cognitive Domains”), 
we analyzed pairwise component correlations (corrected 
for multiple comparisons using FDR ( p < 0.05 ) for the 

VIS, AUD, and AV conditions). There were no significant 
correlations between the CP components ( p > 0.05 for all 
tests; see Supplementary Table S.6). These findings suggest 
that there is no need to adjust planned group-level statistical 
(see “Group-Level Statistical Inference of CP Component 
Matrices”) and partial correlation analyses (see “Correla-
tion Analysis between Component Loading Factors and Neu-
ropsychological (T) Scores”) for the presence of other CP 
components as model covariates. It should be noted that the 
CP model produces unique components so that the specific 
component or its factors are not associated with any other 
factors or other components (Kruskal, 1977; Kolda & Bader, 
2009).

Group‑Level Discriminative Components

We applied mixed measures two-way ANCOVA (see “Group-
Level Statistical Inference of CP Component Matrices”) on 
the component loading factors in subject mode of each ERF 
component and stimulus condition to determine significant 
effects after controlling for the covariates. The mixed meas-
ures two-way ANCOVA comparison of the component load-
ing factors showed a statistically significant stimulus condi-
tion × group interaction (see Table 2) for the Occipital/M150 
( F1,336 = 28.73, p < 0.0001, 𝜂2

G
= 0.101 ) and R.Temporal/

M300a components ( F1,336 = 6.82, p = 0.03, �2
G
= 0.098 ). 

There was no significant stimulus condition × 
group interaction for the L.Central/M400 compo-
nent ( F2,494 = 0.79, p = 0.982, �2

G
= 0.004 ). The main 

effect of the subject subgroup was statistically sig-
nificant for each component (Table  2; Occipital/M150: 
( F1,336 = 33.96, p < 0.0001, 𝜂2

G
= 0.113 ; R.Temporal/M300a: 

(a) (b) (c) (d)

Fig. 8   Results of the hierarchical clustering on the principal com-
ponents. a  Dendrogram of hierarchical clustering based on Ward’s 
D2 criterion. The height of the branches indicates the dissimilarity 
between clusters. The number of retained clusters was chosen using 
an approximately unbiased probability measure (AU) (Efron et  al., 
1996). The significant clusters were selected based on unbiased 
probability p-values with p < 0.05 corrected for multiple compari-
sons using FDR. The final clustering solution was obtained with the 
K-means algorithm. b Clustering solution projected on the principal 

components. (c)-(d) Subgroup associations with neuropsychologi-
cal (T) scores. c  Distribution of mean PCA scores averaged across 
subject subgroups. d Main effect of subject subgroup on neuropsy-
chological (T) score. Independent samples two-tailed t-test (FDR 
corrected, p < 0.05 ) showed statistically significant differences in 
the WASI-II FSIQ, language, memory ( p < 0.0001 ) and inattention 
scores ( p < 0.01 ) between the LP and HP groups. Details can be 
found in Supplementary Table S.1. **** p < 0.0001 , ** p < 0.01
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( F1,336 = 101.35, p < 0.0001, 𝜂2
G
= 0.281 ; L.Central/M400: 

F1,494 = 176.73, p < 0.0001, 𝜂2
G
= 0.311 ). Post hoc analyses 

with two-tailed t-tests corrected for multiple comparisons 
using FDR ( p < 0.05 ) revealed six components with signifi-
cant group differences (HP vs. LP) in the component loading 
factors. The details are shown in Table 3 and Fig. 9. Figure 10 
depicts the group ERF components as solid lines (blue for HP 
and red for LP). The group ERF components peaked at the 
same time as the average group ERF timecourses, drawn in 
dashed lines (blue for HP and red for LP).

Occipital Component/M150  The Occipital/M150 (130–150 
ms) group component is shown in Fig. 10a–b. The activity 
was concentrated in the left and right occipital sensors. The 
HP group demonstrated a higher activation strength than LP 
group in the VIS condition (see Fig. 10a). The main effect 
of the group ( N = 170 , HP vs. LP) on the component load-
ing factors was statistically significant for the VIS condi-
tion (Table 3; Figs. 9 and 10a; VIS: t165 = 7.86, p < 0.0001 , 
HP > LP, post hoc two-tailed t-test). However, there were 
no significant differences in the component loading factors 
of the Occipital/M150 component between the HP and LP 
groups for the AV condition (Table 3; Figs. 9 and 10b; AV: 
t165 = 0.166, p = 0.864 , post hoc two-tailed t-test).

Right Temporal Component/M300a  The R.Temporal/M300a 
group component is shown in Fig. 11a–b. The component 
was associated with the peak at 280–300 ms and accounted 
for the activity in the right temporal and inferior left/right 
frontal sensors. Post hoc two-tailed t-tests found a significant 
main effect of group ( N = 170 , HP vs. LP) on the compo-
nent loading factors for both the AUD and AV conditions 
(Table 3; Figs. 9 and 11a–b; AUD: t165 = 7.31, p < 0.0001 , 
HP > LP; AV: t165 = 5.65, p < 0.001 , HP > LP).

Late Central Component/M400  The L.Central/M400 group 
component is shown in Fig. 11c–e. This component was 
associated with activity in the left temporal-parietal and 
right prefrontal sensors. Two-tailed t-tests identified a signif-
icant main effect of group ( N = 170 , HP vs. LP) on the com-
ponent loading factors for the VIS, AUD and AV conditions 
(Table 3; Figs. 9 and 11c–d; AUD: t165 = −8.5, p < 0.0001 , 
HP < LP; VIS: t165 = −7.22, p < 0.0001 , HP < LP; AV: 
t165 = −7.20, p < 0.0001 , HP < LP).

Group‑Level Sensitivity Analyses

In this section, we evaluate the discriminative performance 
of the CP decomposition and the nonparametric method 
based on the permutation statistics of the ERF in sensor 
space. Previous studies have shown that statistical non-
parametric mapping (SnPM) is a robust approach that can 
reliably detect ERF activity in sensor space (Pantazis et al., 
2003; Nichols & Holmes, 2002).

To quantify differences between subject subgroups, group 
amplitudes were compared by running time-point by time-
point nonparametric permutation two-tailed t-tests (Nichols 
& Holmes, 2002; Maris & Oostenveld, 2007) assessed at 
each sensor from 0 to 800 ms poststimulus. The nonparamet-
ric statistical threshold tmax from the pseudo t-distribution 
was calculated to establish timepoint/sensor significance at 
the p < 0.05 level. The sensors and timepoints identified by 
these t-tests denoted spatiotemporal regions where statisti-
cally significant differences in group amplitudes occurred.

Table 2   Summary of ERF 
components loading factor 
ANCOVA results

a p values from ANCOVAs adjusted for age, gender and parental SES (FDR corrected, p < 0.05)

Effect Occipital/M150 R.Temporal/M300a L.Central/M400

F(1, 336) p value F(1, 336) p value F(2, 494) p value

Condition 0.05 0.996a 0.01 0.999a 0.22 0.969a

Group 33.96 < 0.0001a 101.35 < 0.0001a 176.73 < 0.0001a

Condition × Group 28.73 < 0.0001a 6.82 0.031a 0.79 0.982a

Fig. 9   Main effect of the subject group ( N = 170 , HP vs. LP) on 
component loading factors in subject mode for each stimulus condi-
tion. Boxplots summarize the distribution of the mean values of the 
component loading factors in subject mode for the HP and LP groups. 
Median values are represented by black lines inside the boxplot, with 
the top of the whisker lines indicating the 25th and 75th percentile 
values. Mean values are plotted in white circles. Error bars represent 
the standard error of the mean. Six components were statistically 
significant in the post hoc two-tailed t-test results (FDR corrected, 
p < 0.05 ), except for the occipital component/M150 in the AV condi-
tion, which did not differ between the HP and LP groups ( p = 0.864 ). 
The post hoc t-tests results are shown in Table  3. ****p < 0.0001 , 
***p < 0.001 (post hoc and FDR corrected p < 0.05 ), which means 
significantly different
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To compare the group-level sensitivity of the CP 
decomposition and SnPM, we computed timepoint/
sensor-wise t-statistics from a two-tailed nonparametric 
permutation t-test and determined the significance of 
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Fig. 10   Discriminative group MEG ERF components from the CP 
decomposition for the VIS and AV conditions are shown. The ERF 
components are indicated by solid lines (HP: high performance 
– blue, LP: low performance – red). The average group ERF time-
courses are indicated by dashed lines. Main effect of the subject 
group (HP vs. LP, N = 170 ) on the component loading factors in 
subject mode is summarized in the boxplots. The boxplots summa-
rize the distribution of the mean values of component loading factors 
in the subject mode for the HP and LP groups. The median values 
are represented by black lines inside the boxplot, and the tops of the 
whisker lines indicate the 25th and 75th percentile values. The mean 
values are plotted in dark grey. The error bars represent the standard 
error of the mean. Post hoc analyses with two-tailed t-tests (FDR 
corrected, p < 0.05 ) indicate that the mean value of the component 
loading factors of the HP group was significantly different than for LP 
group with p < 0.001 for six ERF components except for the occipi-
tal/M150 component in the AV condition (AV/M150: p = 0.864 ). a-
b Occipital M150 component. **** p < 0.0001 , *** p < 0.001 indi-
cate significant differences (FDR corrected, p < 0.05 ). The post hoc 
t-tests results are shown in Table 3
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the group-level mean amplitudes between subject sub-
groups, taking into account the covariates. We evaluated 
the group-level sensitivity by investigating the SnPM 
method’s ability to discriminate between subject sub-
groups. We present group-level ERF components and 
the statistical images (T-maps) after the CP and SnPM 
in Fig. 12 and Supplementary Figs. S.8-S.13. The SnPM 
identified five significant components: Occipital/M150 
in the VIS condition (Supplementary Table S.4; VIS: 
p < 0.001;t165 = 6.32 ), R.Temporal/M300a component in 
the AUD and AV conditions (Supplementary Table S.4; 
AUD: p = 0.022;t165 = 2.31 , AV: p = 0.038;t165 = 2.09 ), 
and L.Central/M400 in the VIS, AUD and AV conditions 
(Supplementary Table S.4; VIS: p = 0.001;t165 = −3.76 ; 
AUD: p = 0.002;t165 = −3.41).

The ERF components and T-maps generated after the 
CP and SnPM methods for the Occipital/M150 component 
in the VIS condition at 144-145 ms are shown in Fig. 12. 
The results illustrate that the CP decomposition provided a 
higher number of significant sensors than the SnPM method. 
We note a similar observation for the other ERF compo-
nents presented in Supplementary Figs. S.8-S.13. It is evi-
dent from Fig. 12 and Supplementary Figs. S.8-S.13 that the 
number of adjacent sensors is smaller for the ERF compo-
nents produced by the SnPM. We quantify the performance 
of each component estimation method by using Cohen’s d 
effect size (the standardized magnitude difference between 
groups (Sullivan & Feinn, 2012)) and p-values. Fig. 13 and 
Table 4 show that the CP decomposition resulted in a higher 
magnitude of the group differences and higher p-values com-
pared with the SnPM method. In summary, the results pre-
sented in Table 4; Figs. 12, Supplementary Figs. S.8-S.13 
and Fig. 13 demonstrate that the t-statistics and the magni-
tude of the effect are higher for the CP decomposition, sug-
gesting better sensitivity over the nonparametric statistical 
approach.

The effect size results are listed in Table 4

Analysis of ERF Component Association 
with Cognitive Domains

To correlate neuropsychological scores with ERF com-
ponents, we performed two-tailed partial Pearson’s cor-
relation tests between component loading factors in sub-
ject mode (columns of matrix � ) for the nine cognitive 
age-adjusted neuropsychological (T) scores in each sub-
ject group (HP: n = 89 ; LP: n = 81 ) and the full sample 
( N = 170 ) (see detailed protocol in “Correlation Analysis 

Fig. 11   Discriminative group MEG ERF M300a and M400 compo-
nents from the CP decomposition for the VIS, AUD, and AV condi-
tions are shown. a-b Right temporal M300a component. c-e Late cen-
tral M400 component. See full caption and legend in Fig. 10

▸
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between Component Loading Factors and Neuropsycho-
logical (T) Scores”). The partial correlation analyses were 
controlled for age, gender and parental SES. The correla-
tions between component loading factors and cognitive 
scores were corrected for multiple comparisons using FDR 
with significance threshold p < 0.05.

The correlation analyses indicated that three functional 
ERF components were significantly associated with the 
language, episodic memory and attention cognitive 
domains (see Table. 5). The results of two-tailed partial 
Pearson’s correlation analyses are summarized in Table 5, 
Figs. 14 and 15.

Among the nine cognitive variables, the PICVOCAB 
(T), PSM (T), DCCS (T), and Connors 3 hyperactivity 
scores were significantly correlated with ERF components. 
We present significant functional association patterns 
between the ERF components and the cognitive scores 
in Table 5.

The Occipital/M150 component in the VIS condition (Figs. 6a 
and 10a) was negatively correlated with the hyperactivity score 
in the HP group ( rVIS−HYPERACTIVITY(86) = −0.233, p = 0.03 ; 
Table 5; Fig. 15b). However, the correlation was not significant 
( rVIS−HYPERACTIVITY(167) = −0.194, p = 0.051 ; Fig. 14a) in 
the full sample. The correlation was consistent with large group 
differences (HP > LP; p < 0.0001 ) in the occipital component 
loading factors identified by two-tailed t-tests (see Table 3).

The R.Temporal/M300a component (Figs.  6c–d and 
11a–b) had a statistically significant positive correlation with  
the PSM (T) score in both groups (Table 3; Fig. 15c–d; HP:  
rAUD-PSM(86) = 0.342, p = 0.003 , rAV-PSM(86) = 0.364, p = 0.001 ; LP:  
rAUD-PSM(78) = 0.291, p = 0.039 , rAV−PSM(78) = 0.297, p = 0.016 ) 

(a) (b)

(c)

Fig. 12   Sensitivity analysis of the ERF components generated with 
different group imaging methods. Top row: Estimation of the Occipi-
tal/M150 component for the VIS condition by the CP decomposition 
and SnPM methods. Bottom row: The group-level T-maps between 
HP and LP groups for the CP and SnPM methods are shown. The 
T-maps (nonparametric permutation two-tailed t-test with a maxi-
mum t-statistics) are thresholded at p < 0.05 . The yellow circles on 
scalp maps show the location of significant sensors. a CP VIS M150 
component. b  SnPM VIS M150 component. The significant time 
interval of group differences (140-150 ms) is depicted in the shaded 
area. e  Left: CP VIS M150 T-map at 145 ms. Right: SnPM VIS 
M150 T-map at 144 ms

Fig. 13   Effect size comparison of the ERF components generated 
with different group imaging methods. The error bars represent the 
standard error of the mean. Cohen’s d effect size of group-level dis-
criminative (HP vs. LP) components using the CP decomposition and 
SnPM method for the AUD, AV, and VIS conditions.

Table 4   Effect size comparison of group-level discriminative compo-
nents after the CP and SnPM methods

a p values (FDR corrected, p < 0.05 ) from post hoc two-tailed t-tests 
adjusted for age, gender, and parental SES
bthe corresponding data are shown in Fig. 13

Component Method

SnPM CP

Cohen’s d 
(SEM)

p value Cohen’s d 
(SEM)

p value

Occipital/M150
VIS 1.09(0.18) p < 0.001a,b 1.63(0.20) < 0.0001a,b

AV 0.11 (0.17) 0.851a,b 0.10 (0.17) 0.864a,b

R.Temporal/M300
AUD 0.41(0.17) 0.022a,b 1.47(0.19) < 0.0001a,b

AV 0.36(0.17) 0.038a,b 0.69(0.18) < 0.001a,b

L.Central/M400
VIS -0.59(0.17) 0.001a,b -1.2(0.18) < 0.0001a,b

AUD -0.65(0.17) 0.002a,b -1.52(0.19) < 0.0001a,b

AV -0.31(0.17) 0.07a,b -1.27 (0.18) < 0.0001a,b
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and the full sample ( rAUD−PSM(167) = 0.239, p = 0.004 ; 
rAV−PSM(167) = 0.303, p = 0.001 ; Fig. 14c–d).

Additionally, the correlation tests revealed significant 
associations between the R.Temporal/M300a component 
and DCCS (T) score (see Table 3 and Fig. 15e–f) in the 

HP group (AUD: rAUD−DCCS(86) = 0.267, p = 0.018 ; AV: 
rAV−DCCS(86) = 0.277, p = 0.014 . The correlations between 
the R.Temporal/M300a component and PSM/DCCS scores 
were consistent with group differences (HP > LP; p < 0.001 ) 
in the component loading factors for the AUD and AV condi-
tions (see Table 3).

The L.Central/M400 component in the VIS con-
dition (Figs.  6e and 11c) was negatively corre-
lated with the PICVOCAB (T) score in the HP group 
( rVIS−PICVOCAB(86) = −0.242, p = 0.013 ; Table 5; Fig. 15a) 
and the full sample ( rVIS−PICVOCAB(167) = −0.208, p = 0.017 ; 
Fig. 14b).

No significant associations were found in the HP group, 
LP group or full sample for the other cognitive scores in the 
component loading factors ( p > 0.05 all tests). There were 
no significant differences in partial correlations between the 
groups (HP vs. LP) or stimulus conditions (VIS vs. AUD vs. 
AV) within subject groups ( p > 0.05 all tests).

Discussion

This paper presents a tensor analysis-based model of MEG 
multi-subject data for identifying ERF components repre-
sentative of typical brain developmental patterns in a healthy 
population of children and adolescents. The tensor analyses 
and tensor-based group-level statistical inferences outlined 
in this paper establish a foundational framework for extract-
ing latent factors associated with children’s brain develop-
ment from MEG datasets.

We contribute to the developmental neuroscience litera-
ture on the relationship between MEG activity and cognition 
by correlating ERF components from a healthy pediatric 
population with neuropsychological age-adjusted cognitive 
(T) scores and attentional indices.

Table 5   Component loading 
factor and cognitive (T) score 
associations

a p values (FDR corrected, p < 0.05 ) from two-tailed partial Pearson’s correlation tests adjusted for age, 
gender and parental SES

Cognitive (T) score

PSM
Component Condition HP ( n = 89) LP ( n = 81)

r t(86) p value r t(78) p value
Right Temporal AUD 0.342 3.33 �.��� a 0.291 2.65 �.��� a

AV 0.364 3.59 �.��� a 0.297 2.71 �.��� a

PICVOCAB
Late Central VIS -0.242 -2.29 �.��� a -0.12 -1.051 0.295 a

DCCS
Right Temporal AUD 0.267 2.42 �.��� a -0.017 -0.161 0.873 a

AV 0.277 2.51 �.��� a -0.071 -0.564 0.561 a

HYPERACTIVITY
Occipital VIS -0.233 -2.21 �.��� a -0.086 -0.685 0.992 a

(a) (b)

(c) (d)

Fig. 14   Significant (FDR corrected, p < 0.05 ) two-tailed partial 
Pearson’s correlations (correlation coefficient, r) between ERF com-
ponents and neuropsychological (T) scores in the full sample. The 
linear fit and 95% confidence intervals (CIs) are shown. The blue 
dots denote HP group, and red dots denote LP group. a The occipi-
tal component was negatively correlated with the hyperactivity score 
in the VIS condition. b  The late central component was negatively 
correlated with the PICVOCAB score in the VIS condition. c-d The 
right temporal component was positively correlated with the PSM (T) 
score in the AUD and AV conditions
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ERF Components Extraction

To the best of our knowledge, this is the first study that mod-
eled event-related field MEG data as a low-rank third-order 
tensor. We demonstrated that CP factorization could produce 
latent factors that result in functionally relevant ERF compo-
nents and reveal meaningful spatiotemporal brain patterns. 
The CP model was shown to be highly effective in captur-
ing informative data representation. For example, Fig. 6 and 
Supplementary Table. S.2 illustrate that ERF components 
were well-matched with the average ERF waveforms and 
demonstrated significant correlations ( p < 0.001 ) with the 
original datasets (see Supplementary Methods Sect. 3.2; 
Supplementary Table. S.3). The tensor analysis successfully 
identified latent brain developmental patterns across sub-
jects for each stimulus condition. As expected, the Occipital/
M150 component similar to the visual P100/M100 wave, 
was extracted from the VIS and AV conditions, as shown in 
Fig. 6a–b. We observed P300 component in the R.Temporal/
M300a component (see Fig. 6c–d) extracted from the AUD 
and AV conditions. The absence of the visual Occipital/

M150 component in the AUD condition and the absence 
of the R.Temporal/M300a component in the VIS condition 
confirms that the CP model can extract meaningful patterns 
corresponding to expected ERF responses. The L.Central/
M400 component (Fig. 6e–i) was extracted from the AUD, 
VIS, and AV conditions, representing activity in the left 
temporal-parietal sensors and likely capturing the motor 
response required in all three conditions.

In the present study, we found the M50/M100 subcompo-
nents less dominant in terms of amplitude for the AUD and 
AV conditions. Our results agree with previous MEG studies 
(Kotecha et al., 2009; Edgar et al., 2014; Cardy et al., 2004), 
which reported that children do not show the M50/M100 
adult-like waveforms until early adolescence. It was shown 
in (Kotecha et al., 2009; Bruneau et al., 1997; Ponton et al., 
2000) that the amplitude of the auditory component becomes 
more prominent with increasing and remains stable through 
adulthood. Our future work may include longitudinal studies 
of the same MEG dataset where we can explore the latency 
and amplitude-age dependencies on the characteristics of the 
early auditory components.

(a) (b) (c)

(d) (e) (f)

Fig. 15   Significant (FDR corrected, p < 0.05 ) two-tailed partial 
Pearson’s correlations (correlation coefficient, r) between ERF com-
ponents and neuropsychological (T) scores in the HP and LP groups 
(HP: blue dots, LP: red dots). The group linear fit and 95% CIs are 
shown (HP: blue line, LP: red line). a The late central (VIS) compo-
nent was negatively correlated with the PICVOCAB score and sig-
nificant in the HP group. b The occipital (VIS) component was neg-

atively correlated with the hyperactivity score and significant in the 
HP group. c-d The right temporal component (AUD/AV) was posi-
tively correlated with the PSM score and significant in both groups. 
e-f  The right temporal component (AUD/AV) was positively corre-
lated with the DCCS score, significant in the HP group and showed 
a negative trend in the LP group. The correlation results are listed in 
Table 5
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Comparison of Group‑Level Sensitivity Analyses

A significant problem in MEG research involves the detec-
tion of significant effects while controlling the FWER rate. 
In “Group‑Level Sensitivity Analyses”, we compared the 
sensitivity and statistical power of the CP tensor decom-
position model and conventional statistical nonparametric 
approach based on permutation testing. We have demon-
strated that the CP model provides 1.5–2 times higher effect 
sizes and lower p-values (see Fig. 13). The lower sensitivity 
of the SnPM method is most likely caused by a higher sig-
nificance threshold required to control the FWER. Evidently, 
better performance of the CP model is associated with a 
lower rate of false negatives. Thus, tensor-based group-level 
inference alleviates the multiple comparison problem due 
to dimensionality reduction and provides higher statistical 
power.

Functional Associations of Group‑Discriminating 
Components

The CP decomposition of the multi-subject MEG data pro-
vides insight into how tensor analysis can be used to explore 
relationships between brain patterns and cognitive function 
in high- and low-performance subjects. The statistical tests 
confirmed the effect of the cognitive group on the relation-
ship between the component loading factors and designated 
pediatric subgroups (see “Statistical Group-Level Analy-
sis”). We showed that children in the HP group were sig-
nificantly different from those in the LP group (HP vs. LP; 
Table 3) in terms of the six components, with large effect 
sizes ( 𝜂2

G
> 0.113 , see “Group-Level Discriminative Com-

ponents”). The group differences (HP > LP) were consist-
ent with the neuropsychological (T) score t-tests, with the 
HP group scoring significantly higher than the LP group on 
all cognitive and behavioral tests, except for the Connors 
3 inattention and hyperactivity scores. The subjects in the 
HP and LP groups did not show differences in the spatial 
distributions of all components; however, they demonstrated 
significant differences in the spatial activation strength and 
timecourse amplitude.

To identify ERF components as informative signatures of 
cognitive function, we correlated the ERF components with 
neuropsychological (T) scores in the full sample and each 
subject group. In the full sample, we found statistically sig-
nificant correlations between neuropsychological (T) scores 
and specific ERF components (see details in “Analysis of 
ERF Component Association with Cognitive Domains”), 
namely, the PSM (T), PICVOCAB (T) and Connors 3 hyper-
activity scores.

The correlation analyses between the ERF components 
and neuropsychological scores revealed significant associa-
tions between ERF components and PSM (T) score in both 

the HP and LP pediatric groups, whereas the PICVOCAB 
(T), DCCS (T) and hyperactivity scores were significantly 
correlated with ERF components only in the HP group.

It was shown in the literature that the PSM test meas-
ures episodic memory (Dikmen et al., 2014), and the DCCS 
test measures cognitive flexibility and executive function 
(Weintraub et al., 2013). The PICVOCAB test measures ver-
bal ability and language comprehension (Weintraub et al., 
2013), and the Connors 3 hyperactivity score is an atten-
tional index (Conners, 2008). These cognitive indices are 
foundational cognitive processes that change rapidly during 
development and vary across individuals.

Early Latency Components

The hyperactivity score was negatively correlated with the 
Occipital/M150 component in the VIS condition using the 
full sample data. In addition, the analyses revealed a sig-
nificant negative correlation between the hyperactivity score 
and the Occipital/M150 component in the HP group. Finally, 
as shown in Supplementary Table S.1, the hyperactivity 
score was significantly lower in the HP group than in the 
LP group. These findings suggest that the Occipital/M150 
component patterns were consistent between the correlation 
results and ERF component group-level analyses (HP > LP; 
Table 3), as well as with the group-level neuropsychological 
(T) score analyses (Supplementary Table S.1). It was shown 
in the literature (Sokhadze et al., 2017; Ghani et al., 2020) 
that early and mid-latency ERP components (N100, N200, 
and P200) are related to involuntary attention selection 
mechanisms. Our findings are consistent with the literature 
on healthy individuals (Kramer et al., 1995; Ghani et al., 
2021; Allison & Polich, 2008) and children with ADHD 
(Liotti et al., 2010; van Meel et al., 2007), which reported 
lower early latency component amplitudes with increasing 
cognitive workload in patients relative to healthy controls.

Late Latency Components

The right temporal/M300a component in the AUD and AV 
conditions was positively associated with the PSM (T) score 
( p < 0.01 ) in the HP group, LP group, and the full sample. 
The partial correlation analyses for the PSM (T) score shown 
in Figs. 14c–d and 15c-d suggest that the increase in the 
value of the component loading factors was associated with 
a better PSM (T) score. Additionally, the right temporal/
M300a component was significantly positively correlated 
with the DCCS (T) score in the HP group, which is con-
sistent with the component loading factor group difference 
(HP > LP; Table 3). Similarly, the correlation analyses for 
the DCCS (T) score shown in Fig. 15e–f and Table 5 sug-
gest that the increase in value of the component loading 
factors associated with a higher DCCS (T) score. The HP 
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group scored significantly higher (Supplementary Table S.1; 
p < 0.0001 ) than the LP group in terms of both the PSM 
(T) and DCCS (T) scores. According to the literature, the 
P300a/M300a component amplitude represents an orient-
ing response, reflecting involuntary orientations to atten-
tion-catching changes (Sur & Sinha, 2009). Additionally, the 
P300a/M300a component was categorized as an indicator of 
implicit memory and item familiarity (Friedman & Johnson, 
2000; Graf & Schacter, 1985; Rugg et al., 1998). The exist-
ing literature shows that the P300a/M300a component could 
indicate sustained attention and decreases in P300a ampli-
tude with increasing cognitive workload (Berti & Schröger, 
2003; Dyke et al., 2015; Horat et al., 2016).

The late central/M400 component showed a significant 
negative correlation with the PICVOCAB (T) score in the 
HP group and full sample. Similar to the N400 (Kutas & 
Federmeier, 2000) ERP component, the spatial scalp dis-
tribution was maximally concentrated in the left temporal-
parietal sensors.

The association of the late central/M400 component with 
the PICVOCAB (T) score (see Figs. 14b and 15a) demon-
strated that the reduced M400 component amplitude results 
in a higher PICVOCAB (T) score. The literature indicates 
(Fitz & Chang, 2019) that N400 component ERPs may 
reflect prediction error signals needed for learning; thus, 
larger ERP amplitudes could be correlated with errors.

Comparison of Group‑Level Imaging Methods

In group-level brain imaging studies, the goal is to deter-
mine spatiotemporal patterns of variability between/among 
groups or conditions. The sensitivity and statistical power 
of group-level inferences is dependent on the stability and 
unique presentation of these patterns to determine where and 
when a specific brain activity occurs.

In MEG research, the most common approach to identify 
a location of brain activity is to employ mass-univariate 
hypotheses testing methods (Groppe et al., 2011). Mass-
univariate hypothesis testing is based on executing multiple 
tests, which most often involves computing a parametric or 
nonparametric t-test for each timepoint/sensor. However, 
mass-univariate analyses in MEG have many shortcom-
ings, such as (1) the high dimensionality of data requires a 
large number of tests corrected for multiple comparisons; 
(2) potentially overlapping sources of brain activity; (3) not 
taking into account interactions between timepoints/sen-
sors; and (4) sensitivity of peak/mean amplitude measures 
to the analysis window (Luck & Gaspelin, 2017). Nonpara-
metric approaches based on randomized permutation and 
cluster-based permutation tests (Groppe et al., 2011; Maris 
& Oostenveld, 2007) have been developed that inherently 
address multiple comparison problems (Westfall & Young, 

1993) and locate the spatiotemporal effect of interest. How-
ever, the important drawback of nonparametric statistics is 
that with the increase in the number of tests, the power of 
the permutation test is diminished due to an overly con-
servative estimate of the significance threshold (Groppe 
et al., 2011). Thus, with an increase in the dimensionality 
of multi-subject MEG data, the strong FWER control of 
the permutation method may impact the sensitivity of the 
analyses, resulting in Type II error.

A more promising approach to overcome the shortcom-
ings of mass univariate approaches is to use an effective 
multivariate approach to summarize the data. Group-level 
tensor decomposition is a multivariate latent space group-
analysis technique that has been shown to be capable of (1) 
localization of common unique patterns of brain activity 
for a group of subjects in a data-driven way (Cong et al., 
2012; Wang et al., 2018; Tangwiriyasakul et al., 2019; (2) 
dimensionality reduction (Cichocki et al., 2016; (3) extrac-
tion of region-of-interest independent signatures for group-
level inferences (Cong et al., 2012; Tangwiriyasakul et al., 
2019; Acar et al., 2017; (4) inherent alleviation of multiple-
comparison problem; and (5) higher sensitivity by captur-
ing complex spatiotemporal interactions (Acar et al., 2019; 
Kinney-Lang et al., 2017, 2019).

As we show next, we discuss the differences in statisti-
cal assessments of the CP model and conventional sensor/
source level imaging methods. For the further discussion 
below, we assume that the time-frequency source recon-
struction where subject datasets � ∈ ℝ

C×T×F joined in the 
subject mode forming a fourth-order tensor X ∈ ℝ

K×T×C×F 
( ℝsubject×time×sensor×frequency).

Tensor Analysis in the Sensor/Source Level Space

After the MEG/EEG data are factorized by the CP model, 
the underlying component matrices can be readily analyzed 
by group-level statistical inference algorithms (Cong et al., 
2015). Since the CP model performs simultaneous factori-
zation and is fully multivariate, each factor of the latent CP 
component is identified at all levels of other factors.

Hence, the magnitude of the underlying CP component 
is quantified at each timepoint and sensor in the sensor-level 
space, which eliminates the necessity of selecting specific 
timepoints and sensor sites (timepoint, sensor and frequency 
at the source level) for the group amplitude extraction in 
the group-level inferences. Thus, statistical inference can be 
directly applied to the selected component signatures. For 
example, as shown in Fig. 3c, to determine the discrimina-
tive groups in the subject mode, the rth subject loading fac-
tor �r ∈ ℝ

K is used in multifactorial ANCOVAs to evaluate 
the experimental conditions. Similarly, the spatial �r ∈ ℝ

C , 
temporal signatures �r ∈ ℝ

T or frequency signatures �r ∈ ℝ
F 
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can be statistically evaluated to determine the significance of 
the spatiotemporal extent or frequency bands. Notably, due 
to dimensionality reduction, the required number of tests to 
reach statistical significance is dramatically reduced since 
only the limited number of samples (order of 102 ) is used 
from each signature instead of all spatiotemporal/space-
time-frequency features (order of 106 or higher).

Thus, the CP model reduces the problem of multiple 
comparisons in the group-level analyses since the extracted 
component signatures are used to determine discrimina-
tory ERF components. As a result, the CP model could 
provide a higher sensitivity by reducing Type II error. In 
contrast, the univariate and nonparametric tests may fail 
to find a significant effect if they are applied to the full 
subject × time × sensor data cube.

In summary, the CP tensor decomposition offers the fol-
lowing advantages compared with univariate parametric 
and nonparametric statistical methods, such as data-driven 
source separation, a region-of-interest independent measure 
for group-level analyses, identification of common spati-
otemporal patterns for a group of subjects, and alleviation 
of multiple comparison problems due to dimensionality 
reduction, which could result in higher statistical power 
and better sensitivity as shown in “Group-Level Sensitiv-
ity Analyses” and “Comparison of Group-Level Sensitivity 
Analyses”.

Tensor Analysis for Source Localization

The localization of brain sources based on MEG/EEG 
recordings has been an ongoing topic of active research due 
to increased demand in clinical applications (Asadzadeh 
et al., 2020).

In the past decade several works have proposed tensor-
based preprocessing (De Vos et al., 2007; Mørup et al., 2006; 
Becker et al., 2014a, b) for source localization. Primarily, 
the proposed tensor-based source localization approaches 
are based on the transformation of the evoked field data in 
the sensor space using a space-time-frequency (STF) or 
space-time-wave-vector (STWV) transform and subsequent 
application of the CP decomposition using the STF or the 
STWV transformed data. The details of transformations are 
described in (Becker et al., 2014b). The tensor group-level 
analysis in the source space would be similar to the tensor 
analysis in the sensor space (see “Multi-Subject MEG Ten-
sor Decomposition”, “Statistical Group-Level Analysis” and 
“Tensor Analysis for Source Localization”). As suggested 
in (Becker et al., 2014b) in order to fit the dipole model, 
the STF data tensor of each subject should be constructed 
with one source per time and frequency under the hypothesis 
of oscillatory signals. We further refer our readers to the 

existing key papers (Becker et al., 2014a; Asadzadeh et al., 
2020) for the history, and various applications.

Limitations and Future Work

The proposed generative model using CP decomposition 
implies that all subjects have the same number of latent com-
ponents R, and all subjects share the common matrices � and 
� . In other words, the CP model imposes strict assumptions 
such that the underlying brain patterns have identical time-
courses and spatial maps across subjects. However, with real 
ERF MEG data, individual differences may exist in the timing 
and origin of the subject’s neural responses to the stimuli. For 
example, individual differences in the cognitive processing 
of the stimuli would result in differences in the timing and 
spatial distribution in MEG. To allow a variable number of 
components and spatiotemporal variability of brain patterns 
across subjects, a more flexible model can be used, such as 
constrained PARAFAC2 (Parallel Factor Analysis) (Afshar 
et al., 2018; Helwig & Snodgress, 2019; Chatzichristos et al., 
2019), or higher-order block term decomposition (BTD2) 
(Chatzichristos et al., 2019). It has been shown in (Harshman 
et al., 1972; Helwig & Snodgress, 2019) that PARAFAC2 can 
handle the heterogeneity of subject’s responses and allows 
a variable number of latent components per subject (Afshar 
et al., 2018) via sparsity constraints. To address this limita-
tion, our future work may include using the PARAFAC2 or 
BTD2 models to account for subject’s individual differences.

Another limitation of our generative model is fitting each 
stimulus condition as a separate CP decomposition. Alter-
natively, the multi-task multi-subject MEG data could be 
modeled as a coupled tensor–tensor decomposition (CTTD) 
(Chatzichristos et al., 2022; Jonmohamadi et al., 2020), 
where each stimulus (VIS, AV, and AV) represented as a 
third-order tensor and coupled in the subject mode. The 
multi-task joint learning enables the use of the complemen-
tary information (Lahat et al., 2015; Acar et al., 2013) from 
multiple stimuli and thus could result in the latent compo-
nents with a higher discriminative power.

The extracted ERF components could be used as bioimag-
ing markers for classification or prediction. Specifically, the 
subject loading factors found from MEG data using the CP 
model can be interpreted as feature extraction. The combi-
nation of machine learning techniques and multi-task tensor 
decomposition of MEG data could identify more reliable bio-
imaging markers that may enable the exploration of neurolog-
ical differences associated with symptom onset, enabling early 
intervention. Thus, the application of multi-subject MEG ten-
sor decomposition in context of machine learning is a promis-
ing direction for future research in cognitive neuroscience.
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Conclusion

We demonstrated that CP decomposition can be used for the 
effective identification and characterization of latent spa-
tiotemporal components of multi-subject MEG data. We 
described the generative model for the multidimensional 
representation of multi-subject MEG data, latent compo-
nent extraction and group-level statistical inference meth-
odologies. We demonstrated that the group-level tensor 
decomposition recovers meaningful distinct brain patterns 
of varying spatiotemporal brain activity across subjects in 
healthy population of children/adolescents and in subgroups. 
The advantages of the proposed method include success-
ful identification of the underlying latent brain patterns in 
the form of factor matrices via tensor factorization to allow 
for statistical assessment of the identified sources. The pre-
sented tensor-based group-level inference using CP compo-
nent matrices eliminates the need to select specific regions 
of interest, such as time windows or specific sensor sites.

Using the proposed approach, we show that the tensor 
group-level analyses and tensor-based feature extraction 
allow us to investigate differences in brain activity between 
different subject groups. Given the importance of group-
level inferences in neuroimaging studies, the extracted latent 
ERF components could be used to study differences in brain 
patterns across groups and aid in understanding how spati-
otemporal brain activity can explain cognitive function and 
developmental changes directly from electrophysiological 
measurements. The application of MEG tensor decomposi-
tion used in this study is a promising direction for future 
research on other populations with different age ranges or 
developmental disorders.
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