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Abstract
In the present study, quantitative relations between Cognitive Emotion Regulation strategies (CERs) and EEG synchronization 
levels have been investigated for the first time. For this purpose, spectral coherence (COH), phase locking value and mutual 
information have been applied to short segments of 62-channel resting state eyes-opened EEG data collected from healthy 
adults who use contrasting emotion regulation strategies (frequently and rarely use of rumination&distraction, frequently 
and rarely use of suppression&reappraisal). In tests, the individuals are grouped depending on their self-responses to both 
emotion regulation questionnaire (ERQ) and cognitive ERQ. Experimental data are downloaded from publicly available data-
base, LEMON. Regarding EEG electrode pairs that placed on right and left cortical regions, inter-hemispheric dependency 
measures are computed for non-overlapped short segments of 2 sec at 2 min duration trials. In addition to full-band EEG 
analysis, dependency metrics are also obtained for both alpha and beta sub-bands. The contrasting groups are discriminated 
from each other with respect to the corresponding features using cross-validated adaboost classifiers. High classification 
accuracies (CA) of 99.44% and 98.33% have been obtained through instant classification driven by full-band COH estima-
tions. Considering regional features that provide the high CA, CERs are found to be highly relevant with associative memory 
functions and cognition. The new findings may indicate the close relation between neuroplasticity and cognitive skills.
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Introduction

Cognitive Emotion Regulation strategies (CERs) enable us 
to control our emotional responses by means of both face/
body expression and cognitive functions. Therefore, both 
daily and business life are highly oriented by cognitive skills 
on regulation of emotions (Ochsner & Gross, 2008). Four 
different strategies can be defined in CERs: Rumination 
(RU) is characterized by negative and depressive thoughts 
(Gross, 2002). Cognitive Distraction (CD) is the opposite 
of RU such that; The person can orient his/her attention to 
pleasant thoughts to avoid the depressed mood and tends 
to move away from the negative matter (Phan et al., 2005; 
Webb et al., 2012). Expressive Suppression (ES) is intended 
to regulate the outward, or behavioral, emotional response, 
however, it is paradoxical in regulating internal emotional 

response. In detail, ES suppresses negative emotions, such 
as sadness or anxiety, with positive behavioral body/face 
expressions. Thus, using SE increases the felt intensity of 
negative emotions. During positive emotions, such as hap-
piness, using ES reduces the experience of positive emo-
tions (Gross & Jazaieri, 2014). Cognitive Reappraisal (CR) 
reflects an effort to change the subjective evaluation of an 
emotion-generating situation to modify its emotional impact 
(Gross & Jazaieri, 2014). Both self- and peer-reports show 
that controlling emotions with CR yields affective benefits 
in comparison to ES. Using CR is associated with more 
internally felt and outwardly expressed positive emotion as 
well as less internally felt and outwardly expressed negative 
emotion (Kalokerinos et al., 2014).

Mainly, neuro-cognitive studies have focused on the neu-
roimaging analysis in individuals who frequently use one of 
these CERs so far. In particular, structural and functional 
brain differences have been shown in between two contrast-
ing CERs, i.e. RU vs CD in response to emotional stimuli 
(Goldin et al., 2008). Regarding gray matter volume and 
surface thickness in resting state functional MRI studies, 
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structural variations have been found to be associated with 
both ES (Giuliani et al., 2011a; Wang et al., 2017) and CR 
in mostly prefrontal cortex (Giuliani et al., 2011b). As well, 
task-based functional MRI studies reveal the close correla-
tion of brain structure with both ES (Goldin et al., 2008; Lee 
et al., 2008) and CR (Diekhof et al., 2011; Buhle et al., 2014) 
in prefrontal cortex, insula and amygdala.

In the present study, as anew perspective, it is aimed to 
understand the inter-hemispheric functional dependency 
managed by cognitive functions in adults who tend to use 
two opposite ER strategies, one of which decreases emo-
tional intensity and the other increases emotional intensity. 
Inter-hemispheric functional connectivity levels have been 
estimated from eyes-opened EEG measurements that provide 
prompt and objective information about the neuro-cortical 
activations. However, it is crucial to use domain-specific 
variety of the approaches in estimating characteristic indi-
cators of brain network. Thus, spectral coherence (COH), 
phase locking value (PLV), mutual information (MI) and 
wavelet coherence (WCOH) have been compared to each 
other to find the association between cognitive abilities and 
electro-chemical activities underlying use of opposite CERs 
simultaneously. For this purpose, raw EEG data collected 
from healthy adults, demographic info as well as psycho-
logical test scales of the participants were obtained from 
publicly available data-set, LEMON described in reference 
(Babayan et al., 2019).

Among inter-hemispheric EEG dependency approaches, 
COH can be considered as computationally fast and rela-
tively robust method over relevant coherent frequencies in 
EEG measurements in neuroscience. Therefore, COH has 
been frequently used to detect and quantify coupling between 
brain oscillations generated by neuronal populations at two 
different cortical regions (Ray & Maunsell, 2010; Saalmann 
et al., 2012; Bosman et al., 2012; Roberts et al., 2013). Since, 
COH value means linear phase-consistency of cross-spectral 
densities originated from neuro-electrical functions over a 
limited time windows. Besides, examining COH requires 
an assumption on EEG stationarity. Thus, short duration 
EEG segments of 2 sec were analyzed in the present study 
in order to overcome the possible drawbacks of stationary 
assumption.

PLV has been implemented to estimate quantitative phase-
locking between brain oscillations based on the instantane-
ous phase independently stationarity assumption. Its main 
challenge is to decompose complex multi-components 
through Hilbert Transform (Le Van et al., 2001). However, 
PLV has been found to be useful in analysis of EEG record-
ings computed by averaging over multiple trials in response 
to external stimuli or cognitive task (Aydore et al., 2013). 
Different from both COH and PLV, MI quantifies the infor-
mation gained about one system from the measurement of 
another through detecting linear and nonlinear statistical 

dependencies between these two systems. Thus, MI has been 
used in diverse fields as a measure of coupling or informa-
tion transmission between two systems. MI is notably intro-
duced to describe neuronal transmission of post-synaptic 
potentials across different cortical regions in detecting sleep 
states (Ramanand et al., 2001) and sleep disorders (Aydin 
et al., 2015). As well, MI has been used to obtain electro-
physiological indicators of Alzheimer Jeonga et al. (2001) 
and schizophrenia Na et al. (2002) in diagnose. WCOH is 
relatively a new dependency metric that is proposed to quan-
tify neural coupling of cortical regions (Lachaux et al., 2002). 
In particular, research studies use WCOH in analysis of func-
tional Near Infra-Red Spectroscopy (f-NIRs) measurements 
based on an assumption that specific cross-brain systems 
share processes through temporally synchronous activities 
(Zhang et al., 2015, 2020).

The motivation of the present study is to show the close 
association of resting-state healthy neuro-transmission 
mechanism with cognitive skills linked to mood with respect  
to quantitative dependency metrics with optimal arrange-
ment of parameters and variables in examining inter- 
hemispheric connectivity approaches. The innovation of the 
present study is to use both linear and non-linear dependency  
methods in discriminating the healthy adults in accordance 
with their cognitive and behavioural emotion regulation 
strategies. The new findings reveal that high cortical func-
tions emerged from frequently use of opposite ERs can be 
characterized by full-band ( 0.5 − 40.5 Hz ) inter-hemispheric 
dependency estimations in cortical regions responsible for 
cognition, attention and associative motor functions. In par-
ticular, the corresponding results clearly show the specified 
Brodmann Areas (BAs) of 5, 6, 9, 10, 18, 37, 39, 40, 47 are 
responsible for cognitive skills. The corresponding contri-
butions are to propose the useful and optimal arrangements 
on the configuration of filters, segmentation of resting-state 
EEG series, identification of the individuals and computa-
tion of power spectral density estimations in short EEG seg-
ments in obtaining quantitative indicators that refer cognitive 
abilities. The proposed parameters and application procedure 
can also be used in detecting cognitive decline and/or cog-
nitive disorders, since resting-state functional connectivity 
estimations with electrophysiological measurements is an 
attractive research topic in studying intrinsic brain activity.

In following sections, the groups including the adults who 
use opposite CERs simultaneously (frequently and rarely 
use of both RU and CD, frequently and rarely use of both 
ES and CR) are introduced. A sub-section presents both 
instrumentation and recording principle of resting-state EEG 
series collected from heir scalp surface. Inter-hemispheric 
dependency approaches (COH, PLV, MI, WCOH) are briefly 
defined in separate section. The use of Adaboost classifica-
tion is mainly described in sub-section. The results include 
detailed applications of the dependency methods to both 
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full-band ( 0.5 − 40.5 Hz ) and sub-band (Alpha:7.5 − 12 Hz , 
Beta:12.5 − 30 Hz ) frequency intervals of short EEG seg-
ments in eyes-opened resting state. Overall results are dis-
cussed and concluded in accordance with Broadmann areas 
and recent research studies that use inter-hemispheric coher-
ence estimations in cognitive science in the last section.

Methods

The Participants

Surface EEG measurements and the psychometric test scores 
of the participants were obtained from an internationally 
validated, accessible database, LEMON introduced in refer-
ence (Babayan et al., 2019). In collecting data, primary step 
was to complement cognitive test batteries lasting about 4 
hours of duration each at first day. Resting-state EEG series 
were recorded from participants who completed both Emo-
tion Regulation Questionnaire (EQR) and Cognitive EQR 
(CEQR) at second day. As well, psychiatric interview was 
done by experts with the participants to decide the healthy 
status of them. So, hypertensive patients and those with car-
diological and neurological diseases are not included.

The corresponding CEQR scores shows how often the 
individuals use rumination and cognitive distraction strate-
gies (Garnefski et al., 2001; Loch et al., 2011). Besides, the 
resulting EQR scores shows how often the individuals use 
cognitive reappraisal and expressive suppression strategies 
(Gross & John, 2003; Abler & Kessler, 2009). Therefore, 
the participants were firstly clustered into following groups: 

GP1  The individuals use both strategies Rumination and 
Distraction frequently (the quantitative rumination 
sub-scale is higher than mean = 5.40 , std = 2.62 
and the positive refocusing sub-scale is higher than 
mean = 4.90 , std = 2.58),

GP2  The individuals rarely use any of the strategies Rumi-
nation and Distraction (the quantitative rumination 
sub-scale is lower than mean = 5.40 , std = 2.62 
and the positive refocusing sub-scale is lower than 
mean = 4.90 , std = 2.58),

GP3  The individuals use both strategies Expressive Sup-
pression and Cognitive Reappraisal frequently (the 
quantitative suppression sub-scale is higher than 
mean = 2.92 , std = 1.02 and the reappraisal sub-
scale is higher than mean = 4.99 , std = 0.89)

GP4  The individuals rarely use any of the strategies 
Expressive Suppression and Cognitive Reappraisal 
frequently (the quantitative suppression sub-scale 
is lower than mean = 2.92 , std = 1.02 and the 
reappraisal sub-scale is lower than mean = 4.99 , 
std = 0.89)

In defining GP1 and GP2, the sub-scales of RU and positive 
refocusing into 27 questions in CEQR on a 5-point Likert scale 
(1 refers ’almost never’ to 5 refers ’almost always’), while the 
sub-scales of ES and CR into 10 items in EQR on a 7-point 
Likert scale (1 refers ’strongly disagree’ to 7 refers ’strongly 
agree’) in defining GP3 and GP4. Organization of four groups 
was graphically described in Fig. 1.

Considering the whole database, the RU threshold scale 
was obtained by adding and subtracting half the standard 
deviation to average sample of rumination sub-scale among 
the participants’ scales of CERQ, and then, high/low RU 
tendency was decided into GP1 and GP2. Similarly, high/
low CD tendency was determined by adding and subtracting 
half the standard deviation to the average sample of positive 
refocusing sub-scales in these groups. The identical proce-
dure was also followed in deciding high/low tendency of SE 
and CR in GP3 and GP4. Each group included 15 adults.

EEG Data Collection and Pre‑Processing

Resting-state EEG series were recorded from scalp sur-
face of the awake participants seated in front of a computer 
screen. 61-channel surface EEG recordings and VEOG 
recordings (61 scalp electrodes plus 1 electrode recording 
the VEOG below the right eye) are provided into 16 blocks 
of 60 sec in eyes-opened (8 blocks) and eyes-closed (8 
blocks) states that interleaved to each other in data repository 
(Babayan et al., 2019). These recording blocks are organized 
with presentation software (Neurobehavioral Systems Inc., 
Ver16.5, Berkeley, USA).

Fig. 1  Group organization with respect to individual’s scores into 
questions in CERQ and ERQ
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The artifacts originated from eye blink have spikes shape 
with the frequency lower than 4 Hz. While, the artifacts 
originated from the eye movements have square shape with 
high propagation (Crespel et al., 2005). In the clinical inter-
pretation these artifacts should be removed from EEG data. 
These physiological artifacts are removed from raw data, 
i.e. contaminated surface EEG measurements as described 
in reference (Vigon et al., 2000).

The participants looked at computer screen to arrange 
eyes-opened state (black cross presented on a white back-
ground). The recording equipment of Brain Products Acti-
Caps (GmbH, Gilching, Germany) is used to measure 
surface EEG series with international 10–20 extended elec-
trode placement system. The reference electrode is linked 
to FCz and VEOG is placed below the right eye, while the 
ground is located at the sternum. The amplitude resolution is 
0.1 �Volt , electrode impedance is kept below 5 kΩ . The sam-
pling frequency is 2500 Hz, however, the raw EEG data is 
down-sampled to 250 Hz. Eyes-opened surface EEG record-
ings were analyzed int he present study. Un-processed raw 
data was firstly extracted from the database.

Schematic representation of EEG analysis procedure 
is shown in Fig. 2. Considering each electrode pair, short 

EEG segments of 2 sec were filtered by using an Infinite-
Impulse-Response (IIR) filter with order of 35 in order to 
remove network noise at 60 Hz (Notch filtering). Later, 
three separate Finite Impulse Response (FIR) filters were 
used to obtain full-band, Alpha-band and Beta-band fre-
quency intervals of short segments. Applied IIR filter 
specifications are given in Table 5 in Appendix. More 
detailed optimization on IIR filter parameters can also be 
obtained by using optimization algorithms as described in 
reference (Mohammadi et al., 2021).

The frequency intervals were arranged as follows: In 
extracting full-band EEG segment, 1st stop-band and pass-
band frequencies are 0.5 Hz and 1 Hz, 2nd pass-band and 
stop-band frequencies are 40 Hz and 40.5 Hz. In extracting 
Alpha-band interval of an EEG segment, 1st stop-band 
and pass-band frequencies are 7.5 Hz and 8 Hz, 2nd pass-
band and stop-band frequencies are 11.5 Hz and 12 Hz. In 
extraction Beta-band interval of an EEG segment, 1st stop-
band and pass-band frequencies are 12.5 Hz and 13 Hz, 
2nd pass-band and stop-band frequencies are 29.5 Hz and 
30 Hz. The obtained results confirm the use of mean alpha 
level as a measure of resting-state arousal under eyes-
closed and eyes-open conditions (Barry et al., 2007).

Fig. 2  Schematic representation of EEG analysis in computing inter-hemispheric neuro-functional dependency estimations
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Inter‑Hemispheric Neuronal Dependency Estimators

Scalp EEG series capture postsynaptic voltage variations 
in the cortex through surface electrodes in accordance with 
the standardized guideline of international 10–20 electrode-
placement system. In the present study, neuro-electrical 
dependency between symmetric cortical regions (frontal, 
central, temporal, parietal and occipital) has been quanti-
fied in order to understand the brain network mechanism 
emerged from individual cognitive skills in terms of cog-
nitive emotion regulation strategy. For this purpose, inter-
hemispheric neuronal dependency between electrode pairs 
placed on scalp symmetrically in a specified cortical region 
as shown in Fig. 3.

Four dependency approach are examined to estimate 
inter-hemispheric EEG connectivity between right and left 
cortical neural populations in full-band ( 0.5 − 40.5 Hz ), 
Alpha-band ( 7.5 − 12 Hz ) and Beta-band ( 12.5 − 30 Hz ) 
frequency components.

In quantifying the functional relationships between two 
EEG segments recorded from right and left cortical sites, 
COH function is based on cross-spectral analysis. COH 
gives magnitude-squared coherence as the normalization 
of the cross-power spectrum as follow,

(1)COHxy =

���
Pxy

���
√
Pxx.Pyy

Here, the magnitude squared of the power spectral den-
sity estimations in accordance with band specific intervals 
of two EEG segments, x and y, are given by Pxx and Pyy . In 
addition, Pxy refers cross-power spectral density estimation 
between x and y. The increased functional connectivity 
is indicated by the high COH value. In other words, high 
EEG coherence implies dependent activation characterized 
by well-synchrony between symmetric neuronal popula-
tions at the cerebral cortex while low coherence indicates 
independence. COH is a frequency-dependent measure of 
the degree of linear relatedness between two-symmetric 
cortical locations. In detail, the resulting COH values indi-
cate the magnitude of correlation between the respective 
amplitudes derived for a given frequency interval of two 
EEG segments.

In contrast to coherence, PLV is nonlinear inter-hemispheric 
dependency approach (Aviyente et al., 2011). The phase time 
courses of two time series, x and y (i.e. short segments of EEG 
series recorded from right and left cortical regions) are referred 
by �x and �y in estimating PLV as follow,

Thus, the corresponding phase difference is 
Δ� = �x − �y . In case of well-synchrony between x and y 
(rise and fall together or with a certain lag), PLV is equal 
to 1, since Δ� will be consistent. In case of no relationship 
between x and y, PLV is equal to zero, since Δ� will be 
random. Therefore, PLV can be considered as a measure of 
segment-to-segment variability in terms of relative phase 
difference between x and y.

Comparing COH and PLV, COH may also be interpreted 
as a measure for stability of phase difference between identi-
cal frequency components of two simultaneously recorded 
EEG segments. Therefore, the higher COH values mean 
high cooperation and/or synchronization between underly-
ing EEG recording sites.

Additionally, further knowledge on the dynamic behavior 
of synchronization processes assessed by the measurement 
of direction (time delay) and speed of information trans-
fer between brain areas is significant. Information on these 
parameters can be obtained by the calculation of phase rela-
tions between oscillatory components of two signals. Phase 
and coherence are, mathematically, closely connected spec-
tral parameters, and interpretation of phase is only sensible 
with sufficiently high coherence values. The cross-phase 
spectrum provides information on the time relationships 
between two EEG signals as a function of frequency.

Information Theory introduces MI to quantify the statisti-
cal correlation between two time series based on information 
transfer. Its algorithm can estimate how much information 
one of these two series will have about how the other series 
will change depending on this information. MI estimates the 

(2)PLVi
xy
=

1

N
exp j

(
�x − �y

)

Fig. 3  The right (in red) and left (in blue) electrode placements over 
62-channel EEG recording system
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information gained about x by measuring the y with proba-
bility distribution of amplitudes given by Pxi

 and Pyi
 , respec-

tively (David et al., 2004). Then, it is possible to obtain the 
probability that the instantaneous values of x and y from two 
sources, related to each other, occur relative to the other as 
follow,

where H(.) denotes average amount of information derived 
from Shannon information theory in form,

If there is no relative relation between x and y, the result-
ing value of MI is equal to zero, while MI is equal to 1 in 
case of high relative behavior between x and y.

WC is defined as cross-coherence between two short EEG 
segments (x and y) in units of normalized variance (Chang 
& Glover, 2010). Wavelet Transform (WT) is applied to time 
series in computing WC as follow,

Here, WTx and WTy refer WT representations of x and y, 
respectively. Scaled versions of a mother wavelet denoted by 
Ψ(t) = �−1∕4ejwte−0.5t

2 is convolved by time series (x or y) in 
obtaining WT in form,

Here, the parameters of � and s denote the scale and trans-
lation. The wavelet function, Ψ ∈ L2(R) implies a zero aver-
age ∫ +∞

−∞
Ψ(t)dt = 0 and ∗ refers complex conjugation. Dif-

ferent frequency components of x is extracted via adjusting 
the scale, while translation (�) correspond to time variations 
(Sankari et al., 2012).

Classification of Groups: Adaptive Boosting

Adaptive Boosting (Adaboost), is an ensemble method in 
supervised machine learning. The weights are re-assigned 
to each instance with higher weights to incorrectly 

(3)MIx,y = H(X) + H(Y) − H(X, Y)

(4)H(X) =
∑

xi

Pxi
log

(
Pxi

)

(5)WCx,y(�, s) = WTx(�, s)WTy(�, s)
∗

(6)WTx(�, s) =
1
√
s ∫

+∞

−∞

x(t)Ψ∗ t − �

s
ds

classified instances in Adaboost. The bias and variance are 
both reduced through boosting principle with high perfor-
mance of decision trees on binary classification problems. 
Except for the first learner, each subsequent learner is con-
verted as strong learners. For implementation of Adap-
tive Boosting, Statistics and Machine Learning Toolbox 
was used in MATLAB-2020a. 5-fold cross-validation was 
implemented with learning rate of 0.01. The number of 
learning cycles was empirically chosen as 30. In gener-
ating decision tree, 4 surrogate splits is used to improve 
the tree accuracy. In particular merge-leave is also used in 
generating decision tree (the decision tree merges leaves 
that originate from the same parent node, giving the sum 
of risk values equal to or greater than the risk associated 
with the parent node).

Due to low relatively low number of features in groups, 
deep learning models have not been used in the present 
study, although their popular use in both emotion rec-
ognition (Aydın,  2020; Chen & Hao,  2021; Oliveira & 
Praça, 2021) and object recognition in image processing 
(Yan et al., 2020a; Yan et al., 2020b; Yan et al., 2021).

Results

In each group, four approaches (COH, PLV, MI, WCOH) 
were examined for estimation of inter-hemispheric depend-
ency features from 60 non-overlapped EEG segments of 
2 sec over a trial of 2 min (Fig. 2) for 27 electrode pairs 
(Fig. 3) for 15 individuals. Then, the feature dimension was  
commonly 27 in both instant classification and subject- 
classification steps with respect to specified frequency interval.  
However, individuals were identified by ensemble averaging 
of dependency estimations from short segments in subject-
classification for each frequency specification.

Regarding classification of GP1 and GP2 in accordance 
with dependency estimators in frequency specifications, 
5-fold cross-validated adaboost classification provided 
performance variations as listed Table 1 in terms of Clas-
sification Accuracy (CA) in percent. Instant classification  
provided the higher performance in comparison to subject- 
classification in each frequency specification for each  
dependency estimator. The best results were obtained by 

Table 1  Classification Accuracy 
(%) in classifying GP1 and 
GP2 with respect to inter-
hemispheric connectivity 
estimations

GP1 vs GP2

instant classification subject classification

full-band Alpha Beta full-band Alpha Beta

COH 99.44 66.67 90.00 63.33 64.44 68.88
PLV 97.22 90.00 83.33 80.00 63.33 83.33
MI 80.00 90.00 86.67 74.44 89.44 87.22
WCOH 74.11 69.33 64.22 60.00 53.33 53.33
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using COh and PLV, however the highest CA of 99.44% was 
provided by full-band specific COH estimations in instant 
classification.

Table 2 includes the classification performance list result-
ing from 5-fold cross-validated adaboost classifications of 
GP3 and GP4 in accordance with dependency estimators 
in frequency specifications. Relatively better results were 
obtained through instant classification in comparison to 
subject-classification. Both COH and PLV provided high 
performance in full-band intervals, while MI provided con-
siderable high performance in each frequency specification. 
Besides, the highest CA of 98.33% was obtained by full-band 
specific COH estimations in instant classification. Compar-
ing Tables 1 and 2, relatively better classification perfor-
mances were observed in classifying G3 and G4 for each 
frequency specification.

Since the best results were obtained for non-averaged 
full-band specific COH estimations, the statistical error-
bars of COH estimations in groups were shown in Figs. 4 
and 5 in order to observe the difference between contrasting 
groups by visual inspection. The electrode pairs refer the 
cortical regions as given in Fig. 3. Graphical representations 
of full-band COH estimations showed that both GP1 and 
GP2 provided the higher values with the larger variations. 
In particular, GP3 provided the relatively lower values in 
comparison to GP4.

Considering full-band specific non-averaged COH esti-
mations, one-way Anova test was used to quantify the sta-
tistically meaningful and significant differences between 
groups in terms of p-values (p < 0.05) . As well, both spear-
man correlation coefficients (scc) and pearson correlation 
coefficients (pcc) was also computed for each electrode pair. 

Table 2  Classification 
Accuracy (%) in classifying 
G3 and G4 with respect to 
inter-hemispheric connectivity 
estimations

GP3 vs GP4

instant classification subject classification

full-band Alpha Beta full-band Alpha Beta

COH 98.33 80.00 96.67 56.67 62.22 62.22
PLV 95.55 84.44 88.88 66.67 80.00 73.33
MI 96.67 96.67 93.33 71.11 83.33 84.44
WCOH 68.39 75.28 72.94 53.33 56.67 56.67

Fig. 4  Statistical error-bars in full-band COH estimations in GP1 and GP2: Electrode pairs are marked by cortical regions as Frontal (F), Central 
(C), Parietal (P), Occipital (O) and temporal (T)
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The resulting statistical parameters were given in Table 3. A 
value of 0 implies that there is no linear correlation between 
the variables.

The value of p.c. can range from −1 to +1 . Its negative 
value refers anti-linear-correlation between the groups at 
specified cortical regions. In detail, the stronger is either ten-
dency, the larger is the absolute value of pcc. Thus, Table 3 
showed that there was no strong correlation between the 
groups at most EEG recording sites. In particular, in both 
comparisons (GP1 vs GP2, GP3 vs GP4), negative p.c. val-
ues referred weak and anti-correlation between the groups. 
These results may indicate that full-band COH estimations 
of the contrasting groups may tend to be in the opposite 
direction relative to each other (the group provides relatively 
high COH estimations where the opposite group provides 
the relatively lower COH estimations). These quantitative 
results as listed in Table 3 were compatible with visual 
representation of statistical full-band COH estimations in 
groups as shown in Figs. 4 and 5.

Statistical one-way Anova test results in addition to pear-
son correlation and spearman correlation estimations were 
listed in Table 3 in comparing the groups: Mostly frontal, 
central and parietal regions provide meaningful and sig-
nificant differences between GP1 and GP2. Regarding GP3 
vs GP4, the lower number of regions provided statistically 
significant group differences at frontal, central and parieto-
occipital regions. In detail, particular Brodmann areas of 

1, 2, 5, 6, 7, 8, 9, 10, 18, 19, 20, 37, 39, 40, 41, 42, 46, 47 
showed full-band coherence changes dependent on using 
rumination and distraction (GP1 vs GP2). The particular 
Brodmann areas of 2, 5, 6, 8, 9, 18, 20, 21, 37, 39, 40, 41, 
42, 44, 47 and Broca showed full-band EEG coherence vari-
ations dependent on using suppression and reappraisal (GP3 
vs GP4). Those differences were shown in Fig. 6 where the 
particular BAs that provided statistical differences between 
two-groups were coloured.

Discussion

In the present study, eyes-opened resting state surface EEG 
measurements were analyzed in order to investigate the 
possible cross-relation between inter-hemispheric neuronal 
coherence levels and contrasting cognitive emotion manage-
ment skills. For this purpose, the features were computed 
by applying four different functional connectivity metrics 
to full-band, Alpha-band and Beta-band intervals of EEG 
series.

Regarding the use of spectral COH in comparison to PLV 
in discrimination of diversity between individuals having 
diverse cognitive skills or mental well-being, the applica-
tion parameters as well as dta collection procedures differ 
from each other as listed in Table 4. The highest number of 
EEG recording channels are considered in the present study 

Fig. 5  Statistical error-bars in full-band COH estimations in GP3 and GP4: Electrode pairs are marked by cortical regions as Frontal (F), Central 
(C), Parietal (P), Occipital (O) and temporal (T)
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for classification of contrasting cognitive abilities in healthy 
individuals. Raw data is primarily filtered by an IIR-Notch 
filter and short non-overlapped EEG segments are filtered by 

three FIR filters in extracting full-band (0.5-40.5 Hz), alpha-
band and beta-band in EO state, while BP is the mostly used 
pre-filter in other studies in Table 4. The largest recording 

Table 3  Statistical test results 
in p-value, scc and pcc in 
comparing the groups in 
accordance with full-band COH 
estimations with respect to 
both electrode pairs (e.p.) and 
Brodmann Areas (BAs)

GP1 vs GP2 GP3 vs GP4

BAs e.p. p-value scc pcc p-value scc pcc

10/10 (1) Fp1-2 0.6e-10 0.191 -0.027 0.7540 0.010 -0.021
09/09 (2) AF3-4 0.1e-5 0.210 -0.043 0.0470 0.321 -0.013
46/46 (3) AF7-8 0.0035 0.275 -0.009 0.0004 0.302 -0.009
47/45 (4) F7-8 0.8521 -0.327 -0.067 0.0038 -0.056 -0.065
46/46 (5) F5-6 0.0987 -0.285 -0.026 0.0705 0.022 0.003
08/08 (6) F3-4 0.0201 0.232 0.253 0.3204 -0.140 -0.001
08/08 (7) F1-2 0.4604 0.126 -0.020 0.0354 -0.080 0.078
06/06 (8) FC1-2 0.0164 -0.072 -0.002 0.0121 -0.180 -0.026
06/06 (9) FC3-4 0.1e-10 0.047 -0.085 0.6869 -0.089 -0.067
Broca/44 (10) FC5-6 0.5252 -0.360 -0.106 0.1e-4 0.328 0.052
47/47 (11) FT7-8 0.3e-5 0.319 -0.073 0.0002 -0.144 -0.037
42/21 (12) T7-8 0.5400 0.133 -0.056 0.4449 -0.138 -0.053
42/41 (13) C5-6 0.0001 0.171 0.029 0.1e-6 0.135 -0.046
02/01 (14) C3-4 0.1e-10 0.382 -0.040 0.2010 -0.105 -0.024
05/05 (15) C1-2 0.0291 0.152 -0.031 0.2883 0.161 0.051
05/05 (16) CP1-2 0.0016 -0.123 -0.033 0.0293 -0.075 -0.016
02/40 (17) CP3-4 0.1304 0.117 -0.029 0.0042 0.091 -0.030
40/40 (18) CP5-6 0.5e-7 0.274 -0.015 0.0453 -0.073 -0.011
21/21 (19) TP7-8 0.3683 0.154 -0.054 0.0192 0.106 -0.003
37/37 (20) P7-8 0.0789 -0.136 -0.022 0.0751 0.126 -0.004
39/39 (21) P5-6 0.0001 0.084 -0.024 0.2560 0.195 -0.013
39/39 (22) P3-4 0.5e-9 0.149 -0.041 0.0026 -0.499 -0.066
07/07 (23) P1-2 0.2e-5 0.007 0.004 0.2010 -0.111 -0.043
19/19 (24) PO3-4 0.6e-5 0.115 -0.044 0.1561 -0.052 -0.053
19/19 (25) PO7-8 0.1e-8 -0.094 -0.074 0.0731 -0.089 0.009
20/37 (26) P9-10 0.6e-7 -0.090 -0.057 0.7e-4 -0.074 -0.024
18/18 (27) O1-2 0.0068 -0.037 -0.024 0.0081 -0.009 0.215

Fig. 6  Particular BAs provided 
clear statistical differences 
between contrasting groups in 
accordance with full-band COH 
estimations
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interval (120h) and the largest EEG segments are examined 
in reference study to estimate the outcome of postanoxic coma 
(Gomez et al., 2021). In this study, the dependency metrics 
(COH, PLV, MI) are combined to determine a huge feature 
set, then, classifiers are trained with non-averaged estimations 
from segments of 5min over 120h. In both Handayani et al., 
2018 and Zhang et al., 2014, the individuals are identified by 
the grand averaged estimations from 50% overlapped long 
segments (8sec and 10sec). As well, inter-hemispheric func-
tional indicator is defined as he grand averaged dependency 
estimations from 75% overlapped shorter segments (4sec) 
in (Dell’Acqua et al., 2021). In the present study, cognitive 
abilities are identified by non-averaged dependency estima-
tions from non-overlapped short segments (2sec) over 2min 
rather than the identification of individuals with averaged 
estimations from overlapped longer segments. In computing 
spectral COH values, most the studies commonly use WM in 
combination with PM (Handayani et al., 2018; Dell’Acqua 
et al., 2021; Zhang et al., 2014), while the others use either FT 
(Gomez et al., 2021; Mezeiova & Palus, 2012) or WT (Bob 
& Palus, 2008; Hussain et al., 2018). In the present study, 
BM is used to estimate spectral COH values based on the 
assumption that short EEG segments can be modeled by an 
Auto-Regressive model. So, the COH estimations provided 
the best results in classification of contrasting cognitive skills.

In analysis of resting-state surface EEG measurements, 
the following specifications can be proposed:

– the length of EEG segment should be short as 2sec due to 
nerve action potential generation and propagation mecha-
nism in addition to post-synaptic neurotransmitter transi-
tion during rest without any stimulus.

– FIR filter should be used to extract specific frequency 
interval with sensitive and realistic filtering parameters

– Short EEG segments can be assumed to be modeled by 
Auto-Regressive model

– Averaging process cause loss of information in long EEG 
measurements due to time-varying post-synaptic poten-
tial variations across the cortex. Therefore, non-averaged  
inter-hemispheric dependency estimations should  
be used as indicators in detecting specific cognitive or 
mental states.

Conclusion

The functional connectivity approaches are as follow: 1. 
coherence based on power spectral density estimation, 2. 
PLV based on phase difference between neuro-electrical 
activities generated by neuronal populations at right and left 
hemispheres, 3. MI based on statistical alterations through-
out time instants in those neuro-electrical activities, and 4. 
WCOH based on wavelet transformed coefficients of those 
neuro-electrical activities.

Two groups include the individuals who use frequently 
and rarely use of both rumination and distraction (GP1 and 
GP2), the other groups include the individuals who use 
frequently and rarely use of both expressive suppression 
and reappraisal (GP3 and GP4). Thus, the groups (GP1 vs 
GP2, GP3 vs GP4) were classified by examining Adaboost 
classifiers with respect to non-averaged inter-hemispheric 

Table 4  Brief review on the studies that analyze resting-state or sleep 
EEG without any stimulus by examining both spectral COH and 
PLV in discriminating cognitive or mental diversity in subjects with 
respect to sampling frequency (s.f.) in Hz, number of recording chan-
nels (n.c.), analyzed frequency interval (f.i.), pre-filtering of raw data, 

subject state (eyes-opened, eyes-closed, sleep, coma), the length of 
analysis interval and segment, the method used in computing spectral 
coherence and quantitative indicator as non-averaged (na.) or grand-
averaged (ga.) estimations from non-overlapped epochs (no.e) or 
overlapped epochs (o.e.)

ref. content n.c. s.f. pre-filtering state length method indicator

current cognitive 62 250 IIR, FIR EO 2min, 2sec BM na., no.e
Handayani et al. (2018) cognitive 14 128 BP EC 20min, 8sec WM, PM ga., 50% o.e.
Bob and Palus (2008) cognitive 32 1000 BP EC 5min, 16sec WT ga, no.e
Dell’Acqua et al. (2021) mental 32 500 BP EO 4min, 4sec WM, PM ga, 75% o.e.
Zhang et al. (2014) mental 32 250 BP EC 1min, 10sec WM, PM, ga, 50% o.e.
Gomez et al. (2021) coma 19 256 BP coma 120h, 5min FT na., no.e
Hussain et al. (2018) eyes-state 19 200 LP EC, EO 2.5min WT absolute wavelet power
Mezeiova and Palus (2012) sleep-stage 6 256 HP, LP sleep 5h, 30sec FT ga, no.e

Table 5  IIR filtering specifications with variables

Variables Meaning Value

Q the quality factor 35
den density factor 20
wo the notch frequency 60/Fs/2
BW band width wo/35
r pass-band ripple 0.05750
�
1

1st stop-band attenuation 0.001
�
2

2nd stop-band attenuation 0.0001
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connectivity estimations from short-segments of 2 sec as 
well as ensemble averaged of the estimations over a trial of 
2 min for 27 electrode pairs excluding middle-line sites and 
reference points as shown in Fig. 3. The resulting Classifica-
tion Accuracies reveal that full-band coherence estimations 
provide the most meaningful and discriminative indicators in 
quantifying inter-hemispheric neuro-electrical synchronicity 
in resting state. Besides, ensemble averaging connectivity 
estimations over a trial of 2 min did not provide clear differ-
ence between contrasting groups. Due to nature of ongoing 
EEG series originated from spontaneous and time-varying 
brain functions, it is superior to determine a collection of 
coherence estimations as the large number of features in 
association with consecutive small-windows of 2 sec in a 
recording interval of 2 min.

GP1 and GP2 were successfully classified with high CA 
of 99.44%, GP3 and GP4 were successfully classified with 
high CA of 98.33% by using Adaboost classifiers driven 
by non-averaged full-band ( 0.5 − 40.5 Hz ) EEG coher-
ence estimations. Regarding the statistical test results and 
corresponding EEG recording sites, more cortical regions 
are affected by ruminative thoughts by means of inter-
hemispheric EEG coherence in comparison to optimistic 
thoughts. However, the findings reveal that particular BAs 
of 2, 5, 6, 8, 9, 18, 20, 37, 39, 40, 41, 42, 47 were commonly 
found to be sensitive to cognitive emotion management strat-
egies in healthy adults. The main functions of these BAs are 
as follow: 

2  sensory perception, motor learning (primary soma-
tosensory cortex)

5  working memory, language processing, visuo-motor 
attention, pain perception, tactile localization, motor 
execution, bimanual manipulation, (somatosensory 
association cortex)

6  memory-language-motor functions, planning and 
sensory guidance of both muscle movement and 
complex motor movements (premotor cortex and 
supplementary motor cortex)

8  spatial memory, memory-guided saccades (prefrontal 
cortex)

9  working memory, planning, organization, and regula-
tion of motor functions, sustaining attention (dorso-
lateral prefrontal cortex)

18  visual depth perception through receiving input from 
primary visual cortex, (secondary visual cortex).

20  visual fixation, identify intention (Inferior temporal 
gyrus)

37  processing of color information, recognition of face/
body/word/numbers through visual perception, 
(occipito-temporal cortex)

39  speech fluency, language comprehension, (Angular 
gyrus, part of Wernicke’s area)

40  speech fluency, language comprehension, (Supramar-
ginal gyrus, part of Wernicke’s area)

41/2  auditory working memory, Visual speech perception, 
(primary and secondary auditory cortex)

47  working and episodic memory, management of reward 
and conflict, spoken language, language semantics, 
identifying semantics, processing of linguistic infor-
mation, (orbital part of inferior frontal gyrus).

In conclusion, overall results reveal that CERs are highly 
correlated with main associative brain functions such as 
working memory, visual/sensory perception and cognition. 
As well, expressive suppression cause decrease in full-band 
EEG coherence at mostly fronto-central regions. The reason 
of this findings may originated from lack of experience of 
positive emotions, since frequently use of SE increases the 
felt intensity of negative emotions, while reduces the felt of 
positive emotions, such as happiness as discussed in refer-
ence (Gross & Jazaieri, 2014).

Information Sharing Statement

Raw data is openly available and is distributed along with 
the a data repository so called LEMON described in refer-
ence (Babayan et al., 2019).

Abbreviations EEG: Electro-Encephalo-Gram; CERs: Cognitive Emo-
tion Regulation strategies; ERQ: Emotion Regulation Questionnaire; 
CERQ: Cognitive Emotion Regulation Questionnaire; RU: Rumination 
(an emotion regulation strategy identified through CERQ); CD: Cog-
nitive Distraction (an emotion regulation strategy identified through 
CERQ); ER: Expressive Suppression (an emotion regulation strategy 
identified through ERQ); CR: Cognitive Reappraisal (an emotion 
regulation strategy identified through ERQ); IIR: Infinite Impulse 
Response; FIR: Finite Impulse Response; FCz: Reference electrode 
placed on the midline sagittal plane of the skull as Fronto-Central-zero; 
VEOG: Vertical Electro-Oculo-Gram in recording electrical activity, 
i.e. artifacts produced by eye blinks or eye movement; COH: Spec-
tral COherence based on spectral density estimation by using Burg 
Method; WCOH: Wavelet Transform based COherence based on Wave-
let Transform; PLV: Phase Locking Value; MI: Mutual Information; 
Fs: Sampling Frequency; CA: Classification Accuracy; WM: Welch’s 
Method; PM: Periodgram Method; WT: Wavelet Transform; FT: Fou-
rier Transform; Hz: Hertz in frequency; sec: second in time; min: min-
utes in time; BAs: Brodman Areas; E.O: eyes-opened; r.s.: resting-
state; s.l.: segment length; n.c.: number of EEG recording channels; 
e.p.: electrode placement; scc: statistical spearman correlation coef-
ficient; pcc: statistical pearson correlation coefficient; BP: band-pass 
filtering; LP: low-pass filtering; HP: high-pass filtering

Data Availability EEG data was downloaded from a publicly available 
data-set at following web page: http://fcon_1000.projects.nitrc.org/indi/
retro/MPI_LEMON/downloads/download_EEG.html. As well, the par-
ticipants’ scores in both ERQ and CERQ are available at the following 
web-page under the title of ’Behavioural Data’ https://www.fcon_1000.
projects.nitrc.org/indi/retro/MPI_LEMON.html.

637Neuroinformatics (2022) 20:627–639



1 3

Declarations 

Conflict of Interest The author declares that she has no conflict of in-
terest.

References

Abler, B., & Kessler, H. (2009). Emotion Regulation Questionnaire - 
Eine deutsche Version des ERQ von Gross and John. Diagnostica, 
55(3), 144–152. https:// doi. org/ 10. 1026/ 0012- 1924. 55.3. 144.

Aviyente, S., Bernat, E. M., et al. (2011). A phase synchrony measure for 
quantifying dynamic functional imntegration in the brain. Human 
Brain Mapping, 32(01), 80–93.

Aydın, S. (2020). Deep learning classification of neuro-emotional 
phase domain complexity levels induced by affective video film 
clips. IEEE Journal of Biomedical and Health Informatics, 24(6), 
1695–1702. https:// doi. org/ 10. 1109/ JBHI. 2019. 29598 43.

Aydin, S., Tunga, M. A., & Yetkin, S. (2015). Mutual Information analysis 
of sleep EEG in detecting psycho-physiological insomnia. Journal of 
Medical Systems. https:// doi. org/ 10. 1007/ s10916- 015- 0219-1.

Aydore, S., Pantazis, D., Leahy, R. M. (2013). A note on the phase locking 
value and its properties. NeuroImage, 74, 231–244, https:// doi. org/ 
10. 1016/j. neuro image. 2013. 02. 008.

Babayan, A., Erbey, M., Kumral, D., et al. (2019). Data Descriptor: A 
mind-brainbody dataset of MRI&nbsp;EEG, cognition, emotion, 
and peripheral physiology in young and old adults. Scientific Data, 
6(1), 180308.

Barry, R., et al. (2007). EEG differences between eyes-closed and 
eyes-open resting conditions. Clinical Neurophysiology, 118(12), 
2765–73. https:// doi. org/ 10. 1016/j. clinph. 2007. 07. 028.

Bob, P., & Palus, M. (2008). EEG phase synchronization in patients 
with paranoid schizophrenia. Neuroscience Letters, 447(1), 73–7. 
https:// doi. org/ 10. 1016/j. neulet. 2008. 09. 055.

Bosman, C. A., Schoffelen, J.-M., Brunet, N., Oostenveld, R., Bastos, 
A. M., Womelsdorf, T., et al. (2012). Attentional stimulus selection 
through selective synchronization between monkey visual areas. 
Neuron, 75, 875–888. https:// doi. org/ 10. 1016/j. neuron. 2012. 06. 037.

Buhle, J. T., Silvers, J. A., Wager, T. D., et al. (2014). Cognitive reappraisal 
of emotion: a meta-analysis of human neuroimaging studies. Cerebral 
Cortex, 24, 2981–2990. https:// doi. org/ 10. 1093/ cercor/ bht154.

Chang, C., & Glover, G. H. (2010). Time-frequency dynamics of resting- 
state brain connectivity measured with fMRI. Neuroimage,  
50(1), 81–98. https:// doi. org/ 10. 1016/j. neuro image. 2009. 12. 011.

Chen, M., & Hao, Y. (2021). Label-less Learning for Emotion Cognition. 
IEEE Transactions on Neural Networks and Learning System, 31(7), 
2430–2440. https:// doi. org/ 10. 1109/ TNNLS. 2019. 29290 71.

Crespel, A., Gelisse, P., et al. (2005) Atlas of Electroencephalography, 
vol.1, J. Libbey Eurotext, Paris, France, 1st ed.

David, O., Cosmelli, D., & Friston, K. J. (2004). Evaluation of different meas-
ures of functional connectivity using a neural mass model. Neuroimage, 
21(02), 659–673. https:// doi. org/ 10. 1016/j. neuro image. 2003. 10. 006.

Dell’Acqua, C., et al. (2021). Increased functional connectivity within 
alpha and theta frequency bands in dysphoria A resting-state EEG 
study. Journal of Affective Disorders. https:// doi. org/ 10. 1016/j. jad. 
2020. 12. 015.

Diekhof, E K., Geier, K., et al. (2011). Fear is only as deep as the 
mind allows. Neuroimage, 58, 275–285, https:// doi. org/ 10. 
1016/j. neuro image. 2011. 05. 073.

Garnefski, N., Kraaij, V., Spinhoven, P. (2001). Negative life events, 
cognitive emotion regulation and emotional problems. Personality 
and Individual differences, 30(8), 1311–1327. https:// doi. org/ 10. 
1016/ S0191- 8869(00) 00113-6.

Giuliani, N. R., Drabant, E. M., et al. (2011). Emotion regulation and 
brain plasticity: expressive suppression use predicts anterior 
insula volume. Neuroimage, 58, 10–15. https:// doi. org/ 10. 1016/j. 
neuro image. 2011. 06. 028.

Giuliani, N. R., Drabant, E. M., & Gross, J. J. (2011). Anterior cingulate 
cortex volume and emotion regulation: is bigger better? Biologi-
cal Psychology, 86, 379–382. https:// doi. org/ 10. 1016/j. biops ycho. 
2010. 11. 010.

Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural 
bases of emotion regulation: reappraisal and suppression of negative 
emotion. Biological Psychiatry, 63, 577–586.

Gomez, M. C., Kejyer, H. M., et al. (2021). EEG functional connectivity 
contributes to outcome prediction of postanoxic coma. Clinical 
Neurophysiology. https:// doi. org/ 10. 1016/j. clinph. 2021. 02. 011.

Gross, J. J. (2002). Emotion regulation: affective, cognitive, and social 
consequences. Psychophysiology, 39(3), 281–91.

Gross, J. J., & Jazaieri, H. (2014). Emotion, emotion regulation, and psy-
chopathology: An affective science perspective. Clinical Psychologi-
cal Science, 2, 387–401. https:// doi. org/ 10. 1177/ 21677 02614 536164.

Gross, J. J., & John, O. P. (2003). Individual differences in two emotion 
regulation processes: implications for affect, relationships, and 
well-being. Journal of Personality and Social Psychology, 85(2), 
348. https:// doi. org/ 10. 1037/ 0022- 3514. 85.2. 348.

Handayani, et al. (2018). Coherence and phase synchrony analyses of 
EEG signals in Mild.

Hussain, L., Aziz, W., Saeed, S., Idris, A., Awan, I. A., Shah, S. A., ... & 
Rathore, S. (2018). Spatial wavelet-based coherence and coupling 
in EEG signals with eye open and closed during resting state. IEEE 
Access, 6, 37003–37022. https:// doi. org/ 10. 1109/ ACCESS. 2018. 
28443 03

Jeonga, J., Goreb, J. C., & Petersona, B. S. (2001). Mutual information 
analysis of the EEG in patients with Alzheimer’s disease. Clinical 
Neurophysiology, 112, 827–835.

Kalokerinos, E. K., Greenaway, K. H., & Denson, T. F. (2014). Emotion 
reappraisal but not suppression down regulates the experience of 
positive and negative emotion. Emotion, 15, 271–275. https:// doi. 
org/ 10. 1037/ emo00 00025.

Lachaux, J. P., Lutz, A., Rudrauf, D., et al. (2002). Estimating the time-
course of coherence between single-trial brain signals: an introduc-
tion to wavelet coherence. Neurophysiologie Clinique, 32(3), 157–74. 
https:// doi. org/ 10. 1016/ s0987- 7053(02) 00301-5.

Le Van, Quyen M., Foucher, J., Lachaux, J., Rodriguez, E., Lutz, A., 
Martinerie, J., et al. (2001). Comparison of Hilbert transform and 
wavelet methods for the analysis of neuronal synchrony. Journal 
of Neuroscience Methods, 111, 83–98. https:// doi. org/ 10. 1016/ 
S0165- 0270(01) 00372-7.

Lee, T. W., Dolan, R. J., & Critchley, H. D. (2008). Controlling emo-
tional expression: behavioral and neural correlates of nonimitative 
emotional responses. Cerebral Cortex, 18, 104–113. https:// doi. 
org/ 10. 1093/ cercor/ bhm035.

Loch, N., Hiller, W., Witthoeft, M. (2011). The Cognitive Emotion 
Regulation Questionnaire (CERQ). Psychometric evaluation of a 
German adaptation. Zeitschrift fr Klinische Psychologie und Psy-
chotherapie, 40(2), 94–106. https:// doi. org/ 10. 1026/ 1616- 3443/ 
a0000 79.

Mezeiova, K., & Palus, M. (2012). Comparison of coherence and phase 
synchronization of the human sleep electroencephalogram. Clini-
cal Neurophysiology. https:// doi. org/ 10. 1016/j. clinph. 2012. 01. 016.

Mohammadi, A., Zahiri, S. H., et al. (2021). Design and modeling of 
adaptive IIR filtering systems using a weighted sum - variable 
length particle swarm optimization. Applied Soft Computing, 109, 
107529. https:// doi. org/ 10. 1016/j. asoc. 2021. 107529.

Na, S. H., Jin, S. H., Kim, S. Y., & Ham, B. J. (2002). EEG in schizophrenic 
patients: mutual information analysis. Clinical Neurophysiology, 
113(12), 1954–1960. https:// doi. org/ 10. 1016/ S1388- 2457(02) 00197-9.

638 Neuroinformatics (2022) 20:627–639

https://doi.org/10.1026/0012-1924.55.3.144
https://doi.org/10.1109/JBHI.2019.2959843
https://doi.org/10.1007/s10916-015-0219-1
https://doi.org/10.1016/j.neuroimage.2013.02.008
https://doi.org/10.1016/j.neuroimage.2013.02.008
https://doi.org/10.1016/j.clinph.2007.07.028
https://doi.org/10.1016/j.neulet.2008.09.055
https://doi.org/10.1016/j.neuron.2012.06.037
https://doi.org/10.1093/cercor/bht154
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1109/TNNLS.2019.2929071
https://doi.org/10.1016/j.neuroimage.2003.10.006
https://doi.org/10.1016/j.jad.2020.12.015
https://doi.org/10.1016/j.jad.2020.12.015
https://doi.org/10.1016/j.neuroimage.2011.05.073
https://doi.org/10.1016/j.neuroimage.2011.05.073
https://doi.org/10.1016/S0191-8869(00)00113-6
https://doi.org/10.1016/S0191-8869(00)00113-6
https://doi.org/10.1016/j.neuroimage.2011.06.028
https://doi.org/10.1016/j.neuroimage.2011.06.028
https://doi.org/10.1016/j.biopsycho.2010.11.010
https://doi.org/10.1016/j.biopsycho.2010.11.010
https://doi.org/10.1016/j.clinph.2021.02.011
https://doi.org/10.1177/2167702614536164
https://doi.org/10.1037/0022-3514.85.2.348
https://doi.org/10.1109/ACCESS.2018.2844303
https://doi.org/10.1109/ACCESS.2018.2844303
https://doi.org/10.1037/emo0000025
https://doi.org/10.1037/emo0000025
https://doi.org/10.1016/s0987-7053(02)00301-5
https://doi.org/10.1016/S0165-0270(01)00372-7
https://doi.org/10.1016/S0165-0270(01)00372-7
https://doi.org/10.1093/cercor/bhm035
https://doi.org/10.1093/cercor/bhm035
https://doi.org/10.1026/1616-3443/a000079
https://doi.org/10.1026/1616-3443/a000079
https://doi.org/10.1016/j.clinph.2012.01.016
https://doi.org/10.1016/j.asoc.2021.107529
https://doi.org/10.1016/S1388-2457(02)00197-9


1 3

Ochsner, K. N., & Gross, J. J. (2008). Cognitive emotion regulation: 
insights from social cognitive and affective neuroscience. Current 
Directions in Psychological Science, 17, 153–158.

Oliveira, J., & Praça, I. (2021). On the usage of pre-trained speech 
recognition deep layers to detect emotions. IEEE Access, 9, 9699–
9705. https:// doi. org/ 10. 1109/ ACCESS. 2021. 30510 83.

Phan, K. L., Fitzgerald, D. A., et al. (2005). Neural substrates for voluntary 
suppression of negative affect: a functional magnetic resonance imag-
ing study. Biological Psychiatry, 57, 210–219.

Ramanand, P., Bruce, M. C., & Bruce, E. N. (2001). Mutual information 
analysis of EEG signals indicates age-related changes in cortical 
interdependence during sleep in middle-aged versus elderly women. 
Journal of Clinical Neurophysiology, 27(4), 274–284. https:// doi. 
org/ 10. 1097/ WNP. 0b013 e3181 eaa9f5.

Ray, S., & Maunsell, J. H. R. (2010). Differences in gamma frequencies 
across visual cortex restrict their possible use in computation. Neu-
ron, 67, 885–896. https:// doi. org/ 10. 1016/j. neuron. 2010. 08. 004.

Roberts, M. J., Lowet, E., Brunet, N. M., Ter Wal, M., Tiesinga, P., Fries, 
P., et al. (2013) Robust gamma coherence between macaque V1 and 
V2 by dynamic frequency matching. Neuron, Elsevier Inc., 78, 523–
36, https:// doi. org/ 10. 1016/j. neuron. 2013. 03. 003.

Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X., Kastner, S. (2012). The 
pulvinar regulates information transmission between cortical areas 
based on attention demands. Science, 753–756,&nbsp;&nbsp;https:// 
doi. org/ 10. 1126/ scien ce. 12230 82.

Sankari, Z., Adeli, H., & Adeli, A. (2012). Wavelet coherence model for 
diagnosis of Alzheimer disease. Clinical EEG and Neuroscience, 
43(4), 268–78. https:// doi. org/ 10. 1177/ 15500 59412 444970.

Vigon, L., Saatchi, M.R., et al. (2000). Quantitative evaluation of tech-
niques for ocular artefact filtering of EEG waveforms, IEE Proc.of 
Science, Measurement and Tech., 147(5):219–228, 2000.

Wang, K., Huang, H., et al. (2017). MRI correlates of interaction between 
gender and expressive suppression among the Chinese population. 
Neuroscience, 347, 76–84. https:// doi. org/ 10. 1016/j. neuro scien ce.

Webb, T. L., Miles, E., & Sheeran, P. (2012). Dealing with feeling: a meta-
analysis of the effectiveness of strategies derived from the process 
model of emotion regulation. Psychological Bulletin, 138(4), 775–808.

Yan, C., Gong, B., et al. (2020). Deep multi-view enhancement hashing for 
image retrieval. IEEE Transactions on Pattern Analysis and Machine 
Intelligence. https:// doi. org/ 10. 1109/ TPAMI. 2020. 29757 98.

Yan, C., Li, Z., et al. (2021). Depth image denoising using nuclear 
norm and learning graph model. ACM Trans on Multimedia 
Comp: Comm. & Apps. https:// doi. org/ 10. 1145/ 34043 74.

Yan, C., Shao, B., et al. (2020). 3D Room layout estimation from a 
single RGB image. IEEE Transactions on Multimedia. https:// doi. 
org/ 10. 1109/ TMM. 2020. 29676 45.

Zhang, C., Yu, X., et al. (2014). Phase synchronization and spectral 
coherence analysis of EEG activity during mental fatigue. Clinical 
EEG and Neuroscience, 45(4), 249–256. https:// doi. org/ 10. 1177/ 
15500 59413 503961.

Zhang, X., Noah, J. A., Dravida, S., & Hirsch, J. (2020). Optimization of 
wavelet coherence analysis as a measure of neural synchrony during 
hyperscanning using functional near-infrared spectroscopy. Neuro-
photonics, 7(1), 016004. https:// doi. org/ 10. 1117/1. NPh.7. 1. 015010.

Zhang, X., Yu, J., Zhao, R., Xu, W., et al. (2015). Activation detection 
in functional near-infrared spectroscopy by wavelet coherence. 
Journal of Biomedical Optics, 20(1), 016004. https:// doi. org/ 10. 
1117/1. JBO. 20.1. 016004.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

639Neuroinformatics (2022) 20:627–639

https://doi.org/10.1109/ACCESS.2021.3051083
https://doi.org/10.1097/WNP.0b013e3181eaa9f5
https://doi.org/10.1097/WNP.0b013e3181eaa9f5
https://doi.org/10.1016/j.neuron.2010.08.004
https://doi.org/10.1016/j.neuron.2013.03.003
https://doi.org/10.1126/science.1223082
https://doi.org/10.1126/science.1223082
https://doi.org/10.1177/1550059412444970
https://doi.org/10.1016/j.neuroscience
https://doi.org/10.1109/TPAMI.2020.2975798
https://doi.org/10.1145/3404374
https://doi.org/10.1109/TMM.2020.2967645
https://doi.org/10.1109/TMM.2020.2967645
https://doi.org/10.1177/1550059413503961
https://doi.org/10.1177/1550059413503961
https://doi.org/10.1117/1.NPh.7.1.015010
https://doi.org/10.1117/1.JBO.20.1.016004
https://doi.org/10.1117/1.JBO.20.1.016004

	Cross-validated Adaboost Classification of Emotion Regulation Strategies Identified by Spectral Coherence in Resting-State
	Abstract
	Introduction
	Methods
	The Participants
	EEG Data Collection and Pre-Processing
	Inter-Hemispheric Neuronal Dependency Estimators
	Classification of Groups: Adaptive Boosting

	Results
	Discussion
	Conclusion
	Information Sharing Statement
	References


