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Abstract
Electro- and magneto-encephalography are functional neuroimagingmodalities characterised by their ability to quantify dynamic
spatiotemporal activity within the brain. However, the visualisation techniques used to illustrate these effects are currently limited
to single- or multi-channel time series plots, topographic scalp maps and orthographic cross-sections of the spatiotemporal data
structure. Whilst these methods each have their own strength and weaknesses, they are only able to show a subset of the data and
are suboptimal at articulating one or both of the space-time components.

Here, we propose Porthole and Stormcloud, a set of data visualisation tools which can automatically generate context
appropriate graphics for both print and screen with the following graphical capabilities:

• Animated two-dimensional scalp maps with dynamic timeline annotation and optional user interaction;
• Three-dimensional construction of discrete clusters within sparse spatiotemporal volumes, rendered with ‘cloud-like’ appear-

ance and augmented by cross-sectional scalp maps indicating local maxima.

These publicly available tools were designed specifically for visualisation of M/EEG spatiotemporal statistical parametric
maps, however, we also demonstrate alternate use cases of posterior probability maps and weight maps produced by machine
learning classifiers. In principle, the methods employed here are transferrable to visualisation of any spatiotemporal image.
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Introduction

The ability to effectively communicate experimental findings
is central to any scientific endeavour. As the complexity of our
research increases, there is an inherent tradeoff between the
time investment necessary for the author to explain their ideas

and for the audience to understand them (Olah and Carter
2017). Data visualisation is a critical, yet often overlooked
mode of communication with the potential to bridge this gap
by accentuating or summarising the author’s key messages in
a clear and efficient manner. However, whilst there are a num-
ber of generic visualisation tropes that the reader has grown
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accustomed to, we suggest that these are largely suboptimal at
articulating the necessary context surrounding the data in
some domain-specific subfields of neuroscience.

Electroencephalography (EEG) and magnetoencephalog-
raphy (MEG) are functional neuroimaging modalities which
measure fluctuations in electrical and magnetic components of
the electromagnetic field, respectively, as generated by the
brain in action. Bothmethods are characterised by an excellent
temporal resolution and a high density of sensors or channels,
often providing whole-scalp coverage. Whilst M/EEG data
can be analysed on a discrete single-channel basis (Fig. 1a),
these channels can also be interpolated to create a two-
dimensional map (Fig. 1c) of brain activity over the full sur-
face of the scalp (Koles and Paranjape 1988). As such, the
time series data from these recordings can be processed as a
three-dimensional volume, comprising the two spatial dimen-
sions on the surface of the scalp over time. We refer to these
volumes as spatiotemporal or scalp-time images. In terms of
analysis, transforming the data in this manner is particularly
useful for computational modelling, enabling us to obtain spa-
tiotemporal statistical parametric maps (SPM; Friston et al.
2011; Litvak et al. 2011) and inquire about regionally specific
statistical effects across the dataset as a whole, without bias or
making any a priori assumptions, i.e. pre-selecting a subset of
the data, such as specific channels and/or time components of
the event-related potential/field (ERP/ERF).

Spatiotemporal images are by no means a new construct,
nor specific to neuroscience. The generalist three-dimensional
space model, representing a two-dimensional space over time
is more commonly referred to as a space-time cube, originally
devised by Torsten Hägerstrand (1970) for analysing social
interactions on a geographical map. This model has since been
applied to many other domains, each with their own specific
visualisation challenges and solutions, enabling the most im-
portant information within the volume to be easily interpret-
able by the intended audience. These challenges primarily
stem from the fact that by presenting three-dimensional data
on a two-dimensional medium, whether this be in print or on
screen, we are only able to accurately represent a subset of the
data. These two-dimensional visualisations can all be
expressed in terms of the operations which are applied to
the space-time cube to extract these data. For a comprehensive
review of these operations, refer to Bach et al. (2016). Here,
we critique the core visualisation methods currently being
used for presenting M/EEG analysis; single- or multi-
channel plots, serial topographic scalp maps and orthographic
projections, and later propose alternatives that we believe cap-
ture more information from the data.

A single-channel time series (as shown in Fig. 1a) can be
described as a vector extracted from a single point on the
spatial x-y plane and parallel to the t-axis, an operation referred
to as time drilling (Bach et al. 2016). The responses measured
simultaneously from all sensors can also be overlaid onto a

multi-channel or ‘butterfly’ plot (Fig. 1b, or repeated drilling
in multiple spatial locations). Whilst this representation of the
data is useful for understanding how the signal recorded from
one channel evolves over time, it provides no information on
the spatial profile.

Another conventional way of displaying M/EEG data is
through topographic scalp maps (Fig. 1c), which typically
display ERP/ERF activity spatially interpolated over channels
at a given time point, a range of time points, or the average
over all time points. In other words, this data representation
can be obtained by slicing a spatiotemporal volume of data
across the x-y plane for a range of time points, t, a process
otherwise referred to as time cutting (Bach et al. 2016).
Topographic scalp maps are often presented at specific time
points of interest, or as a sequence at set intervals over the
length of the t-axis, akin to small multiples, described by
Tufte (2001) as a set of small figures on shared axes for direct
comparison. However, as the amount of paper required to
display the full sequence of scalp maps at the native sampling
frequency is prohibitive, typically only a subset of these time
points are shown. As such, presenting the data in this manner
is able to provide high spatial resolution, but low temporal
resolution.

An orthographic projection (Fig. 1d) comprises a set of
three planar cross-sections which intersect orthogonally
through a single point within the spatiotemporal volume,
denoted here as (x,y,t). In addition to a topographic scalp
map (i.e. cutting across the x-y plane at time t), temporal
slices are made perpendicular to both spatial axes in the x-
t and y-t planes, an operation referred to as space cutting
(Bach et al. 2016). These projections offer high temporal
resolution and moderate spatial resolution with respect to
the point of interest but mask all other information as a
result. Such operations may be useful when the volume
can be navigated by moving the point of interest via user
interaction, but are less than ideal for a static two-
dimensional medium.

It is worth noting that here, we refer to M/EEG sensor time
series data as ‘volumetric’ simply because they can be proc-
essed as such, resulting in spatiotemporal images which are
three-dimensional and can be fully described by the space-
time cube model. It is also possible to reconstruct the sources
of activity within the brain which give rise to the measures
observed on the scalp. The visualisation methods for this type
of image, as well as those acquired natively as a three-
dimensional volume, such as magnetic resonance imaging
(MRI) or positron emission tomography (PET), fall outside
the scope of this paper.

Although M/EEG are able to capture spatial and tem-
poral changes in brain activity, all of these visualisation
techniques currently being employed are limited in their
ability to articulate one, if not all space-time components
of the data. Over-reliance on these methods may be due to
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Fig. 1 Examples of existing M/
EEG visualisation methods. a
Time drilling - Single channel plot
of grand-average brain responses
evoked by attended standard
(blue) and deviant (red) stimuli,
recorded from fronto-central
(FCz) channel. Standard error
shown as shaded areas, star indi-
cates time points of significant
different responses (p < 0.05,
paired t-test, FDR corrected). b
Repeated drilling - Butterfly plot
of grand-average response to
attended deviant stimuli. Each
line indicates the ERP measured
at one of 64 channels. c Time
cutting - Topographic scalp maps
of grand-average response to
attended deviant stimulus, sam-
pled at 20 ms intervals from 0 to
400 ms. d Space cutting -
Orthographic projection of grand-
average response to attended de-
viant stimulus, sectioned through
the FCz channel at time 250 ms.

Neuroinform (2020) 18:351–363 353



a dearth of freely available user-friendly tools which can
be used by both programmers and non-programmers alike,
designed specifically for these modalities and spatiotem-
poral data structures.

In this paper, we introduce Porthole and Stormcloud
(https://github.com/JeremyATaylor/Porthole), a set of
visualisation tools designed to address these shortcomings,
demonstrating improvements in the illustration of sparse
spatiotemporal data through interactive two-dimensional ani-
mations and three-dimensional rendering. In the Software
Overview and Implementation section, we break down each
individual component of the visual environment and outline
the operations performed in generating the visualisations. In
the Exemplar Applications section, we provide examples of
figures produced when applying these tools to outputs from
three different analyses on empirical data (https://github.com/
JeremyATaylor/Porthole/Datasets); namely statistical
parametric maps, posterior probability maps, and machine
learning weight maps. Finally, we discuss the key
advantages, limitations, and possible future directions for
this work.

Overview of Data Properties

The visualisation methods employed here were developed
specifically for use with scalp-time images generated
using Statistical Parametric Mapping (SPM; Friston
et al. 2011), a univariate modelling technique commonly
used for analysing neuroimaging data, as implemented
within a freely available software package (Litvak et al.
2011). In the following section, we provide a brief over-
view of the SPM operations and terminology, the types of
images produced and the effects of interest within these
images. Using this framework as a basis allowed us to
make some reasonable assumptions about the data, as
outlined in the Data Characteristics section, and directly
informed our design approach, detailed under Software
Overview and Implementation.

Statistical Parametric Mapping

SPM assumes that the distribution of values contained within
the image voxels are members of a known probability density
function, namely Student’s t orF distributions with mean zero.
Any values considered unlikely to be drawn from this distri-
bution are interpreted as effects resultant from the experimen-
tal conditions.

To make such inferences, a mass-univariate approach is
employed by independently estimating general linear
models (GLM) at each individual voxel by regressing all
of the experimental variables across all participants. The
resulting coefficients, or β parameters from these models

represent the proportion of signal that can be explained by
the experimental conditions (Friston et al. 2011). To test
hypotheses about these conditions, t- or F-statistics and
their associated p-values are obtained for each voxel as
a linear combination of the β parameters and residual
variance, also known as a contrast (Poline et al. 2007).
t- or F-contrasts differ in the types of questions they can
answer: the SPM t-test uses a single-tail and is only able
to test for positive effects (whether the response to one
condition is greater than another), whereas the F-test is
unsigned and can test for both positive and negative ef-
fects (whether the responses to conditions differ).

We therefore arrive at a corresponding three-
dimensional map of t- or F-values and wish to consider
the volume as a whole. However, as the spatiotemporal
volume can comprise in the order of 100,000 voxels, it
becomes increasingly likely to make false discoveries
when performing a large number of statistical tests simul-
taneously. To determine where the effects of interest are
localised, the statistic map is thresholded at a given level
of confidence, and any groups of voxels, or clusters of
activity above this threshold are examined. This threshold
level can be computed using random field theory and
family-wise error (FWE) correction for multiple compari-
sons over all voxels (Brett et al. 2004; Worsley 1995,
1996), or remain uncorrected at the discretion of the user.
We can then draw conclusions about this thresholded data
at the cluster-level (the chance of finding another cluster
containing this number of voxels) or at the peak-level (the
chance of finding another single voxel of this value).
Below, we propose techniques to visualise these three-
dimensional t-/F-maps in a way which preserves both
the higher temporal resolution of the data and the spatial
topology of the activation clusters.

Data Characteristics

Using this SPM framework as a basis, we are able to make a
number of key reasonable assumptions about the data and use
these to directly inform our design approach:
& Sparsity. By thresholding the data at high statistical sig-

nificance, the volume will have high sparsity; the number
of elements which are insignificant (NaN, or below thresh-
old) will vastly outweigh those elements which contain
numeric, non-zero values.

& Smoothness. As each element shares a contiguous rela-
tionship with its neighbours in both the spatial and time
dimensions, the volume as a whole, as well as the clusters
of significant activity within the volume will have an in-
herent smoothness.

& Unipolarity. The statistical t- and F-tests performed on
the data only result in positive real numbers.
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Software Overview and Implementation

Programming Language

We chose to write these tools for MATLAB (The Mathworks
Inc., Natick, Massachusetts), given that it is currently the pri-
mary software used by the neuroimaging community. In this
way, the user does not need to leave their existing workflow or
install additional software. This also avoids potential compat-
ibility issues, as any operating system and hardware configu-
ration currently runningMATLAB should be able to use these
visualisation tools.

Porthole

Porthole (porthole.m) is our toolset for visualisation of spatio-
temporal statistics as animated scalp maps. As shown in Fig.
2, the main display window comprises a two-dimensional car-
tesian grid system, overlaid with a scalp outline with nose and
ears used to indicate head orientation. The user also has the
option for a secondary channel coordinate overlay for inter-
pretation in sensor space. Iterating through each time slice, the
animation is performed by assigning variations in colour to
each element in the grid.

Visual Components

The display window is also framed by a number of additional
objects which provide the necessary contextual information to
gain a full appreciation for the data.

The legend (bottom left corner, ph_get_legend.m) is a gen-
eral point of reference, summarising the contents of the dataset
as a whole. This indicates the type of data being shown, the
criteria used to threshold the data, the global maxima and
minima within the dataset, and the colour mapping between
them. Our default colour mapping transitions from red to yel-
low, which denotes an increase in statistical significance with
a lower bound (Christen et al. 2013).

The timeline (right, ph_get_timeline.m) gives the user a
sense of the overall response and distribution of data along
the t-axis. The length of the timeline is coloured by extracting
the local maxima within each time bin (non-planar drilling in
Bach et al. 2016). This also serves a similar purpose as the
single channel asterisk annotation as shown in Fig. 1a, indi-
cating the time windows of statistical significance and associ-
ated level of confidence. An arrowhead (ph_get_arrow.m) is
translated along the timeline with the animation, indicating the
current position within the volume and forms a key naviga-
tional tool when using the interactive mode.

The information readout (top left corner) displays the nu-
merical data relating to the current time slice. Parameters listed
are the image index, peri-stimulus time, the local maxima and
the size and spatial location of peak local significance, shown

in cartesian coordinates. For example, in Fig. 2, we show
image number 100 of the total 101 images referring to time
t = 395 ms, with peak significance of t-value = 6.0576 spatial-
ly located at voxel (18,21) on the x-y plane.

Importing Data

For the visualisations to run independently of the SPM envi-
ronment, we import these datasets from the universal NIfTI-1
format (.nii) into generic three-dimensional arrays and save in
MATLAB format (.mat) via the nii2ph function.

Initialising the Visual Environment

Each dataset also requires specification of metadata and user
preferences via graphical user interface (ph_gui.m, shown in
Appendix A), which are appended to the data structure.

The data type, the p-value and correction associated with
the SPM thresholding are shown in the legend. By default, the
colour mapping is autofit to the global minimum and maxi-
mum values within the dataset. The user can also specify their
preferred thresholds, which may be useful in defining a com-
mon legend to be shared by a series of visualisations, enabling
direct comparison between them, or lowering the precision of
these extrema.

In order to annotate the timeline and readout, the epoch
timing is defined by the sampling frequency and pre-
stimulus interval. As the effects of interest may occur late
within the epoch, the bounds of the animation loop can be
controlled by specifying the desired start and finish time.

The display window can be customised by setting the scalp
shape to be circular or oval (0.8 width × 1 height voxel di-
mensions), with options to overlay channel locations and/or
channel labels (ph_channel_plot.m) using the 10–10 or 10–20
international standard template for EEG electrode placement
(Oostenveld and Praamstra 2001).

Animating the Display Window

To perform the animation process, the face colours of each
element in the display grid are reset according to the changes
in data values read across time slices. The range of colours
able to be displayed on-screen are defined in a three-
dimensional RGB (or red, green and blue additive)
colourspace, packaged as a three element vector or triplet.
As such, we are able to perform standard linear algebra oper-
ations on this colour space. Should the user wish to display the
image sequences at slower speeds, additional frames can be
generated by performing a sinusoidal interpolation between
the colour triplets assigned to elements (x,y,t) and (x,y,t + 1)
through vector calculus.

Two different modes are provided for the user to display
their datasets in the desired manner; animation mode and
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interactivemode. In animation mode, the image sequences are
played automatically. Interactive mode pauses the animation
and enables the user to iterate between images manually, with-
out interpolation, using the arrow keys. Animation mode is the
default setting upon startup and the display mode can be tog-
gled at any time by pressing the space bar.

Stormcloud

Stormcloud (stormcloud.m) is an extension of the
Porthole framework used for rendering the full spatiotem-
poral data as a volume, containing discrete cloud-like
clusters with scalp map annotations referring to peaks
within those clusters and are intended for publishing in
print. Stormcloud uses a shared data structure with
Porthole (see Importing Data section) and a similar graph-
ical user interface (sc_gui.m, shown in Appendix B).

Fig. 2 Example frame from Porthole visualisation. Scalp map animation
is performed by iteratively assigning colours to each element in the
display window. The timeline summarises the overall response and
indicates current temporal position within the volume. The display
window is framed by contextual metadata in the legend and information

readout. Animation can also be controlled manually via user interaction.
Data shown is a statistical parametric map, illustrating the main effect of
surprise, contrasting standard and deviant evoked responses to an
auditory oddball paradigm.

�Fig. 3 Examples of Stormcloud visualisations. 3D spatiotemporal
clusters rendered from dual isometric perspectives with spatial
dimensions on x-y plane, time domain along z-axis, and voxel
transparency mapped to level of statistical significance. Peaks within
clusters of interest are annotated by cross-sectional 2D scalp maps. a
Statistical parametric map - main effect of surprise, computed via t-con-
trast between standard and deviant responses, thresholded at p < 0.001
(uncorrected). b Machine learning feature importance map - weights
obtained from binary support vector machine classification between un-
attended standard and attended deviant responses, multiplied by grand
mean image and thresholded at top 5% highest contribution to model
predictions. c Posterior probability map - evidence that attention boosts
the evoked responses to both standard and deviant stimuli, computed via
Bayesian model selection and thresholded at 90% posterior probability. d
Time-frequency - alpha band phase coherence for main effect of surprise,
computed via t-contrast between standard and deviant responses,
thresholded at p < 10−6 (FWE corrected). The images and metadata used
to create these figures are available at https://github.com/JeremyATaylor/
Porthole/Datasets

b
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Rendering the Volume

To model the data volumetrically (as illustrated in Fig. 3), we
first create a set of small cubic objects with unitary vertices for
each voxel above threshold within the dataset. Rather than
mapping colours to the data points using RGB components
as in Porthole, the voxel face colour is here set to a constant
mid-grey and the appearance is instead controlled by manip-
ulating transparency (or opacity) using a fourth component,
alpha. These alpha values control whether a surface appears
fully transparent (α = 0), opaque (α = 1), or at infinitely many
levels of semi-transparency (0 < α < 1). By normalising the
dataset, we can therefore perform a direct mapping such that
the significance level for each voxel is proportional to its
transparency. When the collective set of voxels are rendered
in this manner, the clusters have a cloud-like appearance,
where highly significant elements appear darker, less signifi-
cant elements are lighter and insignificant voxels are invisible.

The volume is presented in isometric perspective, defined
in spherical coordinates as azimuth angle of 45° (rotated in the
x-y plane around the z-axis), and elevation angle of 35.264°
(i.e. arctan(1/√2), rotated from the x-y plane toward the z-axis).
In isometric perspective, the angles between the x, y and z--
axes appear equal (120°), providing a level of spatial accuracy
which is more directly interpretable than other methods of 3D
projection — parallel lines appear parallel, lines of the same
length appear to have the same length, and surfaces with the
same area appear to have the same area.

However, although we are rendering the volume in three-
dimensions, through the printing process we are ultimately
presenting the volume on a two-dimension surface from a
single viewpoint. As many datasets contain irregular shapes,
a single viewpoint can obfuscate some of the data in the back-
ground. There are four possible isometric viewing angles to
choose from, which we describe in terms of the scalp orienta-
tion and which quadrant is closest to the observer; right-pos-
terior, right-anterior, left-anterior, and left-posterior. We rec-
ommend rendering the volume from all four of these different
viewpoints and selecting those which best articulate the effects
to be conveyed.

Annotating the Volume

Whilst loading the dataset, Stormcloud automatically iden-
tifies the discrete clusters of activity within the volume, as
well as the number of voxels and points of peak significance
within these clusters. Using these criteria as a guide, the author
can then specify which clusters they wish to annotate, such
that they can be explicitly referred to within the text. Using the
ph_draw_scalp function, scalp outlines are drawn around the
volume at the time points when these peaks occur and a com-
panion two-dimensional scalp map can be displayed next to
these points of interest.

The set of scalp maps is obtained from given time indices
using the ph_export_maps function, which generates high-
resolution images akin to the Porthole display window and
saves them in the working directory. Like the Porthole
customisation options, scalp shape can be specified as a circle
or oval, and custom colour map thresholds can also be
adjusted.

Exemplar Applications

In this section, we present three examples which highlight the
strengths of these visualisation tools and possible applications.
The experimental effect being analysed is known asMismatch
Negativity (MMN; Näätänen 1990), which can be simply de-
scribed as sensory prediction error, the difference between
responses to predictable and unpredictable stimuli, or the
brain’s response to surprise. The dataset used was provided
by Harris et al. (2018) and is freely available at https://
figshare.com/s/1ef6dd4bbdd4059e3891. Each of these
examples operates on a basis set of pre-processed spatiotem-
poral images and returns a single thresholded image
summarising the results. These thresholded images are then
imported to Porthole and Stormcloud frameworks as per
Section 3.2.2, which in turn generate the visualisations.
Porthole video screen captures corresponding to each of these
examples are available in the supplementary materials. Pre-
alpha versions of the Stormcloud toolset have also been used
previously by Garrido et al. (2016), Timmermann et al. (2017)
, Larsen et al. (2018) and Garrido et al. (2018).

Dataset

Experimental Design

A group of 21 healthy adults underwent EEG recording
whilst listening to auditory stimuli with two overlaid com-
ponents; Gaussian white noise, which was played binau-
rally, and an auditory oddball paradigm that used pure
tones, played monaurally. The oddball paradigm com-
prised a sequence of pure sinusoidal tones, 50 ms in du-
ration, presented at 500 ms intervals and occasionally de-
viating in frequency in 15% of trials. Silent intervals or
‘gaps’ were also embedded within the white noise, which
could be singular or repeated. In a given block, partici-
pants were asked to pay attention to these gap stimuli in
one ear whilst ignoring those in the other ear and report
the number via button press. All participants provided
wri t ten and verbal informed consent and were
compensated for their time in accordance with guidelines
set by the University of Queensland Human Research
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Ethics committee. For more information regarding the
task, refer to Garrido et al. (2018) and Harris et al. (2018).

Data Collection and Pre-Processing

Continuous EEG data were recorded using a 64 channel
BioSemi ActiveTwo system (Amsterdam, Netherlands) with
electrode placement in accordance with the international 10–
10 standard at a sampling frequency of 1024 Hz. Offline sig-
nal processing was performed using SPM12 (http://www.fil.
ion.ucl.ac.uk/spm/). Data were re-referenced to the scalp av-
erage, high-pass filtered using a Butterworth filter with cutoff
frequency at 0.5 Hz, downsampled to 200 Hz and low-pass
filtered at 40 Hz. Experimental trials were epoched with −100
to 400 ms peri-stimulus window and baseline corrected to the
−100 to 0 ms pre-stimulus interval. Trials with signal ampli-
tudes exceeding a ± 80 μV threshold were excluded from the
analysis and ERPs for each condition were obtained by aver-
aging across trials. ERPs were converted to a set of four spa-
tiotemporal NIfTI images per subject, interpolating scalp data
into a spatial 32 × 32 matrix for each time bin (101 samples
from −100 to 400 ms, 5 ms increments), then smoothed using
a Gaussian filter with FWHM 8 × 8 × 8 voxels.

Statistical Parametric Maps

Using the mass-univariate general linear modelling approach
outlined in the previous Data Properties section, we analysed
these spatiotemporal images using a 2 × 2 design with surprise
and attention as factors, specifying four regressors: standard
and deviant under attended and unattended conditions. We
then computed t-contrasts across the group with a cluster
forming threshold at p < 0.001 (uncorrected). As illustrated
in Fig. 3a, there are two large clusters for the main effect of
surprise, peaking at 160 ms (cluster-level p = 8.76 × 10−4,
FWE corrected) and 400 ms (cluster-level p = 6.99 × 10−4,
peak-level p = 6.51 × 10−5, FWE corrected), both located in
fronto-central scalp regions.

Machine Learning Weight Maps

Machine learning methods are being increasingly applied to
neuroimaging data as a means of decoding multivariate pat-
terns of neural activity associated with a given experimental
condition. In this example, we used the Pattern Recognition
for Neuroimaging Toolbox (PRoNTo; Schrouff et al. 2013).
Given a set of images in NIfTI format, individual voxels with-
in each image are considered features. By assigning each im-
age a label, machine learning models can be trained to predict
these labels, with model performance tested through cross-
validation. In contrast with the mass-univariate approach,
these multivariate techniques instead jointly consider pairwise

similarities between all voxels in the image (kernel method;
Schölkopf and Smola 2000).

We first defined our basis dataset as the mean spatiotem-
poral images, with one image for each participant and condi-
tion. Using the Support Vector Machine algorithm (SVM;
Burges 1998), we trained a model to classify images accord-
ing to the labels ‘unattended standard’ and ‘attended deviant’
as a proof of concept, noting that the differences in ERP were
maximised between these two conditions. Considering each
image as a datapoint in a high-dimensional space, SVM gen-
erates a hyperplane which best separates the two conditions by
maximising the margin between them (we use the default soft-
margin hyper-parameter, C = 1). This hyperplane then serves
as a binary decision boundary. As part of this training process,
each voxel within the image is assigned a weighting, which
represents the relative contribution of that voxel toward clas-
sification. Predictions for new test images are then made via
multiplication with the weight map, returning a signed scalar
value indicating which side of the hyperplane the image lies
(in this instance, positive and negative values are classified as
‘standard’ and ‘deviant’, respectively). To assess the perfor-
mance of the model, we employed a 10-fold cross-validation
scheme (Hastie et al. 2001) and were able to discriminate
between the two experimental conditions with 80.95% accu-
racy (p = 0.001, permutation test).

Once we have established the model can predict accurately,
we often want to know which features inform the predictions,
or in this case points in space and time. Although it is com-
monplace to inspect the resulting weight maps and intuit
which features are driving the model performance, direct in-
terpretation is not straightforward (Haufe et al. 2014). As all
voxels contribute to the predictions, we cannot fully compre-
hend the interactions between them on face value. For exam-
ple, given that the original images and the weight map both
contain signed values, a negative weight applied to a negative
feature has a net positive influence on the model prediction.
Similarly, a large weight can also be applied to a small feature,
or vice versa, although when the data has adequate signal-to-
noise ratio, a large weight assignment is unlikely to be a false
positive (Schrouff and Mourão-Miranda 2018).

For visualisation purposes, we devised a simple method to
summarise and better understand the spatiotemporal feature
contributions, referred to here as an ‘importance map’.
Focusing on ‘standard’ predictions, we first computed the
element-wise multiplication between the mean weight map
(averaged across folds) and the grand mean image (averaged
across participants). From the resulting distribution of voxels,
the image was then thresholded at the top 5% largest values, as
shown in Fig. 3b. Although we only display a subset of the
voxels, this importance map summarises 88.79% of the total
net contributions toward a ‘standard’ classification, with the
remaining voxels likely suppressing noisy or irrelevant
information.
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It is worth noting that the mass univariate and multivariate
approaches, displayed in Fig. 3a and b, respectively, are con-
sistent both in terms of the temporal and spatial extent of the
significant clusters. However, as expected, the multivariate
approach is much more sensitive than the univariate approach,
thereby revealing a greater number and extent of clusters.

Posterior Probability Maps

Another means of analysing spatiotemporal images is through
probabilistic Bayesian inference. By placing a prior assump-
tion on the general effects we expect to see in the data, we can
then update the likelihood of this assumption being true, given
the data we actually observe. Such testable assumptions can
range from a simple null effect (or null model that is reminis-
cent of the frequentist approach in used SPMs), to more so-
phisticated alternative assumptions (or models) about what
has generated the data. This is formally known as Bayesian
model selection (BMS) and is particularly useful for compar-
ing computational models at the group level.

The input for the BMS framework is a set of spatiotemporal
images for each trial, condition and participant. Conditions are
then assigned model weightings based on the hypothesised rela-
tionship between them. In this example, we focus on one model
in particular proposed by Garrido et al. (2018), which suggests
that attention boosts the evoked responses to both standard and
deviant stimuli. This implies that, across the four conditions,
activity evoked by unattended standard stimuli has the lowest
amplitude, attended deviant is greatest, with attended standard
and unattended deviant approximately equivalent.

At each voxel, we compute the model evidence, or the
likelihood of the observed data from individual participants
under the assumption that the model is true. The evidence for
the model is then converted to a posterior probability map at
the group level, which forms the output and can be manually
thresholded at the discretion of the user. For more detail on the
methodology behind these computations, refer to Harris et al.
(2018) and Rosa et al. (2010). For visualisation purposes, the
probability map supporting this model shown in Fig. 3c (also
described in Harris et al. 2018) was thresholded at 90% pos-
terior probability.

Time-Frequency Domain

The high temporal resolution of M/EEG data also facilitates
analysis in the time-frequency domain. Event related oscilla-
tions are widely studied with respect to specific frequency
bands of interest known as theta (4-7 Hz), alpha (8-12 Hz),
beta (15-25 Hz) and gamma (greater than 30 Hz). Using a
Morlet wavelet transformation with window length of seven
cycles, we computed instantaneous power and phase coher-
ence for the ERP in the time-frequency domain. Frequencies
ranging from 4 to 40 Hz were extracted from the full epoch,

−100 to 400 ms, for each channel and trial. The resulting four-
dimensional spectrograms (space × time × frequency) were
then rescaled relative to the average power in the baseline
pre-stimulus interval, −100 to 0 ms. To obtain spatiotemporal
data in the time domain, the power was averaged across trials
for each experimental condition, then collapsed over each of
the frequency bands; theta, alpha, beta and low gamma (30-
40 Hz). As the phase data are imaginary numbers, this process
was repeated using circular averaging to obtain the phase-
locking values. We therefore arrive at one spatiotemporal im-
age for each condition, frequency band and participant.

The data shown in Fig. 3d is an SPM of the alpha phase
coherence for the main effect of surprise. In order to fulfil the
assumption of sparsity required by Porthole and Stormcloud,
the results are thresholded at 10−6, FWE corrected.

Discussion

M/EEG data can be represented volumetrically as a three-
dimensional space-time construction. Using computational
modelling techniques such as statistical parametric mapping,
we are able to analyse the rich spatiotemporal data as a whole,
rather than selecting subsets of channels and/or time windows
by a priori assumption regarding the effects we expect to see.
The resulting images output from this modelling contain a set
of discrete internal clusters with an inherent smoothness.
Although the conventional methods of M/EEG visualisation
each have their own strengths, they are only able to present a
subset of the data, focusing primarily on articulating one of the
space-time components. These visualisation techniques can be
categorised as single channel time series, topographic scalp
maps and orthographic cross-sections. Single channel plots,
obtained from a given point in space on the x-y plane, have a
high temporal resolution, but little to no spatial information.
Conversely, topographic scalp maps extracted from a given
time point t, have very high spatial resolution, but do not
capture temporal information. Although a sequence of scalp
maps can be presented in grid format, these are often grossly
downsampled, hence dramatically comprising the temporal
resolution. Orthogonal cross-sections are able to provide high
spatiotemporal resolution with respect to a given point (x,y,t),
but are unable to provide a full appreciation of the cluster
shape and extent without interactive user navigation.

In this paper, we introducedPorthole and Stormcloud, a set of
visualisation tools which enable in print and on screen visualisa-
tion of M/EEG statistics across the whole spatiotemporal topog-
raphy in a more comprehensive, informative and efficient man-
ner using a combination of two-dimensional scalp animation and
three-dimensional rendering techniques. In addition, we suggest
that these methods offer improved resolution of all three space-
time components and also demonstrate their intended application
in the context of our own empirical work.
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Porthole centres around two-dimensional topographic scalp
animation, which can be described as an iterative slicing opera-
tion across the spatiotemporal volume at each individual time
point. However, passively watching an animation necessitates
that the viewer retains information in working memory, which
may not suffice in gaining a full appreciation of the data— they
must be aware of the current time point within the epoch, the
spatial effects that have occurred previously, and potentially an-
ticipate the spatial effects that will occur in the future. As a
countermeasure, we frame the display window with a dynamic
timeline, colour coded by the local maxima extracted from each
scalp map. This is akin to the asterisk annotation from the single
channel plots shown in Fig. 1a, indicating the time windows of
statistical significance and associated level of confidence. We
also provide the option for user interaction to pause the animation
sequence and navigate the volume manually. Collectively, these
methods provide high resolution in both spatial and temporal
components of the data.

Kristensson et al. (2009) suggest that space-time cube
visualisation systems similar to those presented here are
more effective at communicating complex spatiotemporal
information. In that study, users answered a series of
questions by interpreting spatiotemporal data from either
a static two-dimensional map with time-related annota-
tions, or a three-dimensional space-time cube representa-
tion which could be navigated interactively. Whilst the
two-dimensional map provided significantly lower error
rate for questions involving interpretation of the whole
space at a single time point, the space-time cube resulted
in halved response time (down from 121 to 60 s) for more
complex questions involving the integration of informa-
tion across all space and time.

Stormcloud presents the spatiotemporal data volumetrically,
rendering clusters of statistical significance with a cloud-like ef-
fect by scaling the opacity of individual voxels according to the
level of significance. As these clusters may have irregular shapes
and distributions, rendering the topography in three dimensions
may present problems when depicting the volume from a singu-
lar viewpoint, as some portion of the data can be obfuscated in
the background. As such, we depict the volume in four orthog-
onal views using common axes and select the pair which best
articulates the overall topography. We also annotate the main
clusters of interest using companion topographic scalp maps at
time points of peak statistical significance. As noted by Fuchs
and Hauser (2009), a hybrid of multiple visualisation methods
applied to different subregions of the volume can be especially
useful in providing the necessary context for correct understand-
ing. Stormcloud has moderate spatial and temporal resolution for
the volume as awhole, and high spatial resolution at the specified
time points.

Historically, SPM was developed for analysing neuro-
imaging modalities with true three-dimensional proper-
ties, namely PET and fMRI data, the results of which have

three spatial components. In these instances, the question
of interest is precisely where the effects of interest are
localised in space. M/EEG analysis was introduced in lat-
er versions of the SPM software. In this case, the two
spatial components have lower precision, whereas the
third time component has very high resolution. Whilst
SPM analyses are applicable to all modalities, the way
results are currently presented does not make the distinc-
tion between them. Irrespective of modality or size of the
image, spatiotemporal M/EEG images are rescaled and
presented in a static orthographic template, assuming they
are structural with a given ratio between components. We
argue that these legacy issues with the software call for a
revised visualisation framework which better communi-
cates the temporal component and cluster topology whilst
also providing greater user autonomy.

Whilst these tools were optimised for use with statistical
parametric maps (SPM) and our design process was informed
by the underlying properties of M/EEG neuroimaging data,
we also demonstrated alternate applications with Bayesian
posterior probability maps and feature importance maps de-
rived from machine learning weights. In principle, we envi-
sion that many, if not all of these methods are transferrable to
essentially any spatiotemporal image.

The code, manual and exemplar datasets for Porthole and
Stormcloud are freely available under the Creative Commons
Attribution Non-Commercial (CC BY-NC) licence via
GitHub at https://github.com/JeremyATaylor/Porthole.

Information Sharing Statement The code for Porthole and
Stormcloud is available under the Creative Commons
Attribution Non-Commercial (CC BY-NC) licence via
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available at https://github.com/JeremyATaylor/Porthole/
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available by Harris et al. (2018) at https://figshare.com/s/
1ef6dd4bbdd4059e3891.
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Fig. 4 Graphical user interface for specifying Porthole animation parameters and metadata for annotating the display

Fig. 5 Graphical user interface for specifying Stormcloud preferences for volume orientation and cluster annotation
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