
https://doi.org/10.1007/s12021-019-09424-z

SOFTWARE ORIGINAL ARTICLE

NengoDL: Combining Deep Learning and Neuromorphic Modelling
Methods

Daniel Rasmussen1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
NengoDL is a software framework designed to combine the strengths of neuromorphic modelling and deep learning.
NengoDL allows users to construct biologically detailed neural models, intermix those models with deep learning elements
(such as convolutional networks), and then efficiently simulate those models in an easy-to-use, unified framework. In
addition, NengoDL allows users to apply deep learning training methods to optimize the parameters of biological neural
models. In this paper we present basic usage examples, benchmarking, and details on the key implementation elements of
NengoDL. More details can be found at https://www.nengo.ai/nengo-dl.

Keywords Nengo · TensorFlow · Deep learning · Computational neuroscience

Introduction

Deep learning and neuromorphic modelling share many
methodological similarities: at their core, they are con-
cerned with how groups of neurons, communicating via
connection weights, can carry out some function of interest.
By “neuromorphic modelling” we mean the construction of
models that include increased levels of biological detail, in
an effort to understand or recreate the functionality of the
brain (this is on a continuum with deep learning, rather than
a sharp distinction). Despite these computational similari-
ties, researchers in the respective fields tend to be isolated
from one another. We usually think of deep learning in terms
of abstract nonlinear optimization problems, and practition-
ers are rarely concerned with applying those methods to the
study of the brain (with exceptions, e.g. Kriegeskorte 2015;
Yamins and DiCarlo 2016). Correspondingly, there is a per-
ception among neural modellers that deep learning methods
are limited to abstract applications of artificial neural net-
works, and not of great help to those interested in studying
how the brain works (Kay 2017).

One significant outcome of this divide is that the tools
of the two fields have become quite isolated. Deep learning
researchers use, e.g., TensorFlow (Abadi et al. 2016),

� Daniel Rasmussen
daniel.rasmussen@appliedbrainresearch.com

1 Applied Brain Research Inc., Waterloo, ON, Canada

Theano (Team 2016), Caffe (Jia et al. 2014), or Torch
(Collobert et al. 2011), while neuromorphic modellers use,
e.g., Nengo (Bekolay et al. 2014), Brian (Stimberg et al.
2013), NEST (Gewaltig and Diesmann 2007), NEURON
(Hines and Carnevale 1997), or PyNN (Davison et al. 2009).
There is very little overlap between the two groups of users.

Our aim with NengoDL is to provide a tool that brings
these two worlds together. We want to combine the robust
neuromorphic modelling API of Nengo with the power
of deep learning frameworks (specifically TensorFlow). In
particular, there are three key design goals of NengoDL:

• Allow users to construct neuromorphic models using
Nengo and then optimize model parameters using deep
learning methods

• Improve the simulation speed of neuromorphic models
• Make it easy to construct hybrid models (e.g., inserting

convolutional layers into a neuromorphic model, or con-
verting a deep learning network to use spiking neurons)

In Section “Background” we discuss the two tools that form
the basis of NengoDL (i.e., Nengo and TensorFlow).
Section “Using NengoDL” explains the basic features of Nen-
goDL, with usage examples. Section “Implementation”
dives into the underlying implementation of NengoDL. Finally,
Section “Results” presents some benchmarking data, as well
as results from some more complicated examples.

All of the source code for NengoDL can be found at
https://github.com/nengo/nengo-dl, and installation instruc-
tions, more examples, and API descriptions can be found in
the documentation at https://www.nengo.ai/nengo-dl.

Neuroinformatics (2019) 17:611–628

Published online: 10 April 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-019-09424-z&domain=pdf
http://orcid.org/0000-0003-2454-6553
https://www.nengo.ai/nengo-dl
mailto: daniel.rasmussen@appliedbrainresearch.com
https://github.com/nengo/nengo-dl
https://www.nengo.ai/nengo-dl


RelatedWork

As mentioned, NengoDL sits at the intersection between
deep learning and neuromorphic modelling tools, combin-
ing Nengo (Bekolay et al. 2014) and TensorFlow (Abadi
et al. 2016). The relationship of those tools to their respec-
tive fields is better described in their own papers, so we
do not attempt to reiterate that here. With regards to Nen-
goDL itself, we are not aware of any similar tools that
have attempted to combine deep learning and neuromorphic
modelling methods. There has been work at the intersection
of deep learning and neuromorphic modelling (e.g., Esser
et al. 2015; Hunsberger and Eliasmith 2016; Kriegeskorte
2015; Yamins and DiCarlo 2016; Lee et al. 2016), which
often involves developing specific software or hardware
implementations that combine methods from the two fields.
However, none of these efforts have developed a general
modelling tool for others to use.

The most closely related work is the “SNN Toolbox”
(Rueckauer et al. 2017). The goal of that tool is to take a net-
work constructed and trained using one of the deep learning
packages (e.g., Theano or Caffe), and convert it into a spe-
cial form of spiking neural network that will be able to
match the performance of the source network as closely
as possible. Although this is something a user can do in
NengoDL (e.g., see Section “Spiking MNIST”), the scope
of NengoDL is more general. In addition to supporting
deep learning style networks, with NengoDL we are able
to construct neuromorphic models (including spiking neu-
ral models), and support the simulation and optimization of
both types of model (or mixtures of the two) in a unified
framework.

Background

In this section we give a brief introduction to the two tools
we bring together in this work, Nengo (Bekolay et al. 2014)
and TensorFlow (Abadi et al. 2016). Our goal is not to
give a comprehensive or representative introduction to their
features, but rather to focus on those elements that are
most relevant to the upcoming discussion of NengoDL. The
interested reader can find more information at

• Nengo: https://www.nengo.ai, (Bekolay et al. 2014)
• TensorFlow: https://www.tensorflow.org, (Abadi et al.

2016)

Nengo

Nengo is a software framework designed to enable the
construction and simulation of large-scale neural models.
It has been used to develop, e.g., models of human motor

control (DeWolf et al. 2016), visual attention (Bobier
et al. 2014), inductive reasoning (Rasmussen and Eliasmith
2014), working memory (Choo and Eliasmith 2010),
reinforcement learning (Stewart et al. 2012; Rasmussen
et al. 2017), as well as large integrative models that combine
these systems to produce end-to-end functional models of
the brain (Eliasmith et al. 2012).

There are a number of common characteristics of these
kinds of models, which Nengo is designed to support:

• Temporal dynamics: Nengo models are essentially
temporal; they are simulated over time, and even a con-
stant input (although inputs are rarely constant) will
result in complex internal dynamics (the accumulation
of neuron voltages, post-synaptic filtering, communica-
tion delays, online learning rules, etc.).

• Complex neurons: Nengo models typically use more
complex neuron models than standard deep learning
nonlinearities. In particular, these models are often
simulated using spiking neurons. Managing the param-
eters of these neuron models as well as their internal
simulation is an important element of Nengo’s design.

• Complex network structure: Neural models are often
highly interconnected (e.g., containing large numbers of
lateral and feedback connections), without the regular,
feedforward, layer-based structure common in many
deep learning models. The Nengo model construction
API has been designed to support this style of network.

• Neuromorphic hardware: There are a number of
interesting neuromorphic hardware platforms that are in
development or have been recently released (e.g., Khan
et al. 2008; Benjamin et al. 2014; Davies et al. 2018).
Nengo’s architecture has been designed to allow the
same model to run across diverse hardware backends,
with minimal cognitive load on the user.

Note that none of these issues are exclusive to neuromorphic
modelling. However, they are common or prominent
concerns in that field, which has shaped the design emphasis
of tools such as Nengo. This is why it is important to
combine the strengths of Nengo with the strengths of
TensorFlow, rather than simply choosing one over the other.

Architecture

As mentioned, one of the important design goals of Nengo
is to allow the same model to run transparently (from
the user’s perspective) across a wide range of hardware
platforms. Thus Nengo’s architecture has been designed
to provide a clean separation between the front-end code
(which modellers use to define the structure/parameters
of their network) and back-end implementation (which
handles the simulation of that network on some underlying
computational platform).

612 Neuroinform (2019) 17:611–628

https://www.nengo.ai
https://www.tensorflow.org


Fig. 1 Architecture of the
Nengo ecosystem. The primary
role of NengoDL is as a Nengo
simulator, meaning that it
interfaces between the core
Nengo modelling API and the
underlying hardware. However,
NengoDL spans multiple levels,
as it allows TensorFlow models
to integrate in the same
simulation environment, and
also provides new user-facing
functionality (augmenting the
core framework)

GPUFPGA

Nengo DL simulator
Python

TensorFlow

Nengo GUI

HTML, D3.js, jQuery
Client

Python
Server

Nengo examples
Python
Jupyter

Matplotlib

Visualizations
and models

Core framework
Nengo core

Python
Numpy

Reference simulator
Python
Numpy

Simulation
backends

OpenCL simulator
Python

OpenCL

CPUPhysical
hardware SpiNNaker

SpiNNaker simulator
Python

spinnaker_tools (C)

TensorFlow models

Python
TensorFlow

Users begin by constructing a Network, and populat-
ing it with the objects that define their model. This is then
passed to a Simulator, which encapsulates the back-
end logic required to simulate that Network. For example,
the default nengo.Simulator will simulate a network
on a conventional CPU, or the user can simply replace
nengo.Simulator with nengo ocl.Simulator or
nengo spinnaker.Simulator to run that same
model on a GPU (using OpenCL) or SpiNNaker (custom
neuromorphic hardware; Khan et al. 2008), respectively.

In the case of NengoDL, we provide a
nengo dl.Simulator that will simulate a Nengo net-
work via TensorFlow (Fig. 1). Thus NengoDL resides
primarily on the back-end side of the Nengo architecture
(although it does provide some new user-facing features,
which we discuss later). In other words, the model con-
struction process is largely unchanged from the user’s
perspective when switching from Nengo to NengoDL; any

model constructed for the default nengo.Simulator
will also run on nengo dl.Simulator and produce the
same output (within the bounds of floating point precision).
Thus we give a brief introduction to the front-end side of
Nengo here, but focus primarily on the back-end. More
details on the front-end can be found at https://www.nengo.
ai or Bekolay et al. (2014).

Front-End Objects

A Nengo model is composed of 5 basic objects:

• Network: Acts as a container for other Nengo objects
• Ensemble: A group of neurons
• Node: Used to insert signals into a model (e.g., sensory

input)
• Connection: Used to connect Nodes or Ensembles,

allowing objects to pass information to one another
• Probe: Extracts data from the model for analysis

nengo.Connection

Reset

DotIncinput
Signal

weighted_input
Signal

weights
Signal

SimProcess filtered_output
Signal

Copy sliced_output
Signal

Fig. 2 An example of how a Connection is translated into lower
level Operations and Signals. The DotInc op multiplies the
input signal (the source of the Connection) by the connection
weights, and adds the result to another signal (which is Reset to

zero at the beginning of each timestep). Next a SimProcess op
implements the synaptic filtering. Finally, a Copy op copies the fil-
tered input signal to the appropriate indices of the output signal (the
destination of the Connection)

613Neuroinform (2019) 17:611–628

https://www.nengo.ai
https://www.nengo.ai


We can think of these objects as defining a graph, where
Nodes and Ensembles are the vertices and Connections are
the edges. Each of these objects, in addition to defining
the structure of the graph, stores information about the
parameters of that object (e.g., neuron types and bias values
for the Ensemble, or synaptic filters and connection
weights for the Connection). Thus in the end we can
think of a front-end Nengo network as a large data structure
defining the structure and parameters of a model. It is then
the task of the back-end to take the information encoded
in that data structure and construct an implementation that
matches that specification.

Back-End Objects

In general, a Nengo back-end is free to process the input
Network however it wants. However, Nengo provides a
builder that translates the high-level Nengo objects described
above into a collection of lower-level operations (Fig. 2).
This intermediate representation is often useful when design-
ing a Simulator, as it is closer to the underlying compu-
tational operations that need to be executed on the back-end
platform. This intermediate representation consists of two
basic objects:

• Signals: A Signal is a generic tensor array that stores
internal simulation values

• Operators: An Operator reads data from some num-
ber of input Signals, performs some computation,
and writes the result to some output Signals

There are a number of basic Operator types, such as
Copy (to copy a value from one signal to another),
ElementwiseInc (computes the element-wise multipli-
cation of two input signals and adds the result to some output
signal), or DotInc (computes a matrix-vector multiplication).
There are also Operators for the different neuron types (e.g.,
SimLIF, which reads signals containing the input currents
and internal state values of a group of leaky-integrate-and-fire
neurons and computes output spikes) or online learning rules.

The task of the back-end is then to provide a concrete
implementation for these operations. For example, the default
nengo.Simulator uses the Python numpy library,
where numpy.ndarray is used to represent Signals
and, e.g., numpy.dot is used to implement DotInc. The
first challenge for NengoDL is to do the same, but using
TensorFlow to implement these basic operations.

TensorFlow

TensorFlow is a software framework developed by Google
(Abadi et al. 2016). Its primary use case is deep learning, but
we can think of it more generally as a numeric computation
library that we want to use to run a neural simulation.

TensorFlow uses a declarative programming approach,
meaning that rather than directly specifying the steps of
the program (imperative programming) the user specifies
at a more abstract level the computations they want to
perform. This declarative programming looks a lot like the
Nengo back-end framework described above; at its core it
consists of Tensors, which represent values, and Ops,
which perform computations on some input Tensors to
produce output Tensors. The programmer begins with
some input Tensors, and then builds up a computation
graph by applying different Ops that represent various
transformations. For example, y = tf.matmul(a, b)
adds a Tensor y to the graph that represents the matrix
multiplication of two other tensors a and b. The user can
then ask TensorFlow to compute the value of y (or any other
Tensor in the graph), and TensorFlow will translate that
declarative specification into actual steps that are executed
on the CPU or GPU to compute the value.

There are two key features of TensorFlow that we take
advantage of in NengoDL:

• Automatic differentiation: Specifying our programs
via this declarative graph enables various automated
manipulations of that graph. For example, we can add
an element to the graph that represents the derivative ∂y

∂a
,

and TensorFlow will automatically add all the elements
to the graph required to compute that derivative. This
makes it easy (from a user perspective) to apply gradient
descent-based optimization methods; once we have
specified the structure of our network in TensorFlow,
we get the gradient calculations essentially for free.

• Accelerator abstraction: The term “accelerator” refers
to any under-the-hood tool that allows a TensorFlow
program to run faster. The most common example is
a GPU, but this can also include custom hardware or
software optimizations. The important feature from our
perspective is that with the declarative programming
style we do not need to worry about how our program
will run; once we have defined the structure of the
computation, we can leave it up to TensorFlow to
figure out how to best take advantage of the available
accelerators to run that program.

To summarize, once we are able to accurately translate a
Nengo model into a TensorFlow computation graph, we are
able to automatically differentiate our Nengo models and
get significant improvements in simulation speed.

Using NengoDL

We begin by describing the features and usage of NengoDL
from a user perspective; Section “Implementation” goes into
more detail on how NengoDL is implemented. Our goal

614 Neuroinform (2019) 17:611–628



here is not to provide a manual for NengoDL; that purpose
is better served by the documentation, available at https://
www.nengo.ai/nengo-dl. Instead we focus, at a relatively
high level, on what users can do with NengoDL, in order to
frame the upcoming implementation description.

Running aModel

The primary interface for NengoDL is through the
nengo dl.Simulator class. At its simplest, this is a
drop-in replacement for the default nengo.Simulator.
A very simple model would look something like

This creates a Network to hold our model (line 4),
adds a Node that simply outputs a constant value of 1
(line 5), creates an Ensemble with 100 neurons and 1
represented dimension (line 6), connects the input Node
to the Ensemble (line 7), and adds a probe to the output
of the Ensemble (line 8). Note that this is all front-end
code, which is completely independent of the back-end
being used. We will not go into any detail on how to
construct a Nengo model here; see Bekolay et al. (2014) or
the documentation at https://www.nengo.ai/nengo for more
information in that regard.

We specify the back-end by creating a nengo dl.
Simulator (line 10). We then run the simulation for one
second (line 11) and print the data collected by the probe
(line 12). Although we are using NengoDL here, we could
switch line 10 to nengo.Simulator and everything else
would continue to function in the same way.

However, theNengoDL simulator also adds somenewoptions
for the user. We can usenengo dl.Simulator(net,de
vice=‘/cpu:0’) or nengo dl.Simulator(net,
device=‘/gpu:0’) to run themodel on the CPU or GPU,
respectively. Orwe could use thedtype=tf.float32/tf.
float64 argument to control the floating point precision
of the simulation.

The NengoDL simulator also has a minibatch size
argument, which will configure the simulation to run
multiple inputs in parallel. That is,

is functionally equivalent to

The former will be much faster, as it takes better advan-
tage of parallelism in the computations (see Section “Simu-
lation Speed”).

However, the output is not particularly interesting in this
case, since the input is the same in all 10 instances (the
constant input of 1 we specified when creating the input
Node). To take better advantage of batched simulations we
need to use another new NengoDL feature, input feeds.

Input feeds allow the user to override the default value of
any input Node in the model. This is specified via the data
argument of sim.run. This takes a dictionary mapping
Nodes to arrays, where each array contain the values we
want that node to output at each time step. For example,
we could have the input node output a random number on
each timestep, with different random numbers in each batch
element, via

Note the shape of the input array; the first dimension is
the batch size (10), the second is the number of timesteps
(1000, since we are running for one second with the
default timestep of 0.001s), and the third is the output
dimensionality of the node (1).

Again, this is not an exhaustive description of the
features of the NengoDL simulator, see the documentation
at https://www.nengo.ai/nengo-dl/simulator for more details
and examples. We hope here to convey the basic flavour of
running models with NengoDL; that is, largely the same as
working with the default Nengo simulator, but with a few
extra bonuses.

Training aModel

An entirely new feature of NengoDL is the ability to
optimize parameters of the model via deep learning training
methods. The default Nengo simulator also optimizes model
parameters, but via a least squares optimization method
(Eliasmith and Anderson 2003). The advantage of this
method is that it is fast and flexible (e.g., it does not
require the model to be differentiable). However, it can only
optimize with respect to the inputs and outputs of a single
layer, and is only applied to the output connection weights.

615Neuroinform (2019) 17:611–628

https://www.nengo.ai/nengo-dl
https://www.nengo.ai/nengo-dl
https://www.nengo.ai/nengo
https://www.nengo.ai/nengo-dl/simulator


Deep learning methods allow us to jointly optimize across
all the parameters in a model, allowing for more detailed
fine-tuning. Note that all the standard Nengo optimization
methods are also available and used in NengoDL; we are
simply adding a new set of optimization methods to our
modelling tool set.

These methods are accessed via the new sim.train
method. For example, we could train our example network
from above to compute the square function:1

When performing this style of optimization we need
to specify the input and target values (for each entry
in the input array, we want the network to output the
corresponding value from the target array). In line 3 we
create a random input array; this works much the same as
the data example above, with axes corresponding to batch
size, number of timesteps, and the dimensionality of the
input node, respectively. Note that the batch size is the total
number of elements in the training data set; these will be
split into chunks of minibatch size elements during
training, and the training will run through all 50 items in the
dataset n epochs times (line 11). We pass the inputs to the
train function as a dictionary that maps input nodes to
input arrays (line 8), as we did with data.

Specifying targets works in much the same way, but with
respect to output Probes instead of input Nodes (lines 4
and 9). Semantically, this specifies that when the input node
outputs the values from the inputs array, we expect to
see the corresponding targets values at the output probe.
It is then the goal of the training process to optimize the
parameters in between a and p so as to make that happen.

On line 10 we specify the optimization method that
should be used during the training process. TensorFlow
provides a number of standard optimization methods, any of
which can be used with NengoDL (or any custom optimizer
that conforms to TensorFlow’s optimizer API).

Note that most deep learning optimization methods rely
on some version of gradient descent, which means that the
network needs to be differentiable. In many neuromorphic
models this is not the case (e.g., the spiking LIF neuron

1Note that this code is only intended to introduce the syntax; it would
not result in particularly effective training if we were to run it. Better
performance would require a more complicated Nengo model, which
we are trying to avoid in this description. Various full functional
examples can be found at https://www.nengo.ai/nengo-dl/examples.

model is not differentiable), so applying these optimization
methods restricts the kinds of models that can be studied.
However, in many cases we can achieve good performance
by training with a rate-based approximation of the spiking
neuron model (which is differentiable), and then using
those same trained parameters during inference with the
spiking neuron model (Hunsberger and Eliasmith 2016).
NengoDL will perform these transformations automatically
(swapping between rate and spiking neurons for training and
inference) for neuron types that have a differentiable rate-
based approximation. This allows users to build a spiking
neuron model and then optimize it with gradient-descent
based training methods, with all the underlying details
handled transparently by NengoDL. See Section “Spiking
MNIST” for a demonstration of this idea in practice.

Finally, on line 12 we define the the objective function.
This is the function applied to the output of the given probe
in order to generate an error value, which the optimizer
will then seek to minimize. Passing ‘mse’ will use the
common Mean Squared Error function, or the user can pass
an arbitrary function that maps outputs and targets to an
error value using TensorFlow operations.

More information on the features and usage of the
sim.train function can be found at https://www.nengo.
ai/nengo-dl/training.

Inserting TensorFlow Code

Another key feature of NengoDL is the ability to combine
deep learning-style networks with Nengo neuromorphic-
style networks. For example, we could use a state-of-the-art
convolutional vision network to extract features from raw
input images, and then connect the output of that network
to a spiking neuromorphic model. This gives us the best of
both worlds, allowing us to choose whichever paradigm is
most appropriate for different aspects of a model.

NengoDL translates a Nengo model into a TensorFlow
graph, so once that process is complete the user can, if
they want, add whatever additional elements they want by
working directly with that TensorFlow graph. However, the
underlying TensorFlow graph can be quite complex, and
it may not be obvious how to correctly insert code into
that graph. In addition, such an approach splits the model
definition across two qualitatively different frameworks.
The key goal of NengoDL is to combine methodologies,
so we would like a way to write TensorFlow code that
smoothly integrates with the Nengo model definition.

This is accomplished through the nengo dl.
TensorNode class. TensorNodes are analogous to
standard Nengo Nodes, except they integrate natively
with TensorFlow code. The user writes some TensorFlow
code (or reuses an existing network) that maps some input
Tensor to an output Tensor. They then pass that as a

616 Neuroinform (2019) 17:611–628

https://www.nengo.ai/nengo-dl/examples
https://www.nengo.ai/nengo-dl/training
https://www.nengo.ai/nengo-dl/training


function to a TensorNode, which encapsulates that code
as a Nengo object. The TensorNode can be added to
a Nengo Network and connected to other parts of the
model via Connections, the same as Ensembles and
Nodes. Any values received from input Connections
to the TensorNode will be passed as inputs to the Ten-
sorFlow function, and the output values of that function
will be passed along any outgoing Connections. For
example, we could add a TensorNode to our example
network from Section “Running a Model” that applies a
dense weight layer to the signal from the input node a, and
sends the resulting value to the ensemble b:

First we define the TensorFlow function, which takes two
input variables: the current simulation time, t, and the value
from any incoming Connections to the TensorNode,
x (line 2). Then we apply whatever TensorFlow ops we
would like in order to compute the TensorNode output;
in this case we are applying the tf.layers.dense
function with 100 output nodes, which will create a dense
weight matrix and apply the relu nonlinearity to the output
(line 3). Next we create the TensorNode, passing it the
function we defined and specifying the dimensionality of
the function input x (line 4). Finally we connect up the
inputs (from node a) and outputs (connecting directly to the
neurons of ensemble b) (lines 5-6).

NengoDL also provides the the nengo dl.tensor
layer function, an alternate interface for creating
TensorNodes designed to mimic the familiar layer-based
syntax common to many deep learning packages. This is
simply “syntactic sugar” that combines the creation of a
TensorNode and the Connection from some input
object to that TensorNode in one step. For example, we
could redo the above example using tensor layer:

In these simple examples we could have easily achieved the
same result using normal Nengo objects. However, more
complicated deep learning network architectures may not
be easily expressed through the Nengo API, which is where
the value of TensorNodes becomes more apparent. See
https://www.nengo.ai/nengo-dl/examples/pretrained-model
for a more in-depth example. More details on the features
of TensorNodes can be found at https://www.nengo.ai/
nengo-dl/tensor-node.

Implementation

We now provide more detail on how NengoDL is
implemented. Knowledge of this infrastructure is not
required to use NengoDL, but is helpful for advanced
users who want to do something like add new NengoDL
neuron models. The implementation also showcases some
somewhat esoteric uses of TensorFlow, which may be of
interest to other TensorFlow users.

TensorFlowMapping

As discussed in Section “Background”, Nengo produces
a back-end representation consisting of Signals and
Operators, which we need to map into a TensorFlow
computation graph.

Signals

A seemingly natural solution would be to map Signals
to Tensors. However, in Nengo we often have multiple
Operators that all want to write to the same Signal, or
parts of a Signal, and then other Operators that want
to read the final result of those combined writes (rather than
the output from any individual Operator). Tensors
do not naturally support this style of processing; once a
Tensor has been created it cannot be modified, except
by creating a new Tensor. That is, if three Operators
all increment the same output Signal, that will actually
result in a new output Tensor each time. Thus we need
to think of Signals as a more abstract representation,
where writing to the same Signal may represent writing
to various different Tensors.

To manage this bookkeeping we use a data structure
called SignalDict. This manages the mapping between
Signals and the Tensor representing the current value
of that Signal. For example, imagine we have a Signal
s with current value x. Suppose an Operator wants to
add 1 to the value of s. This will result in a new value
y = x + 1, which will then be stored in the SignalDict
as the current value of s. Then when another Operator
wants to add 2 to the value of s we look up the current
value y, create a new value z = y + 2, and store that again
as the new value of s. Thus all the Operators have the
illusion that they are reading and writing to the same signals,
even though that Signal may actually be represented as
an interconnected graph of Tensors.

A second issue alluded to above is that in Nengo we
often want to write to some subset of the elements in
a Signal array. Tensors are not designed to support
this kind of operation; it is not possible to modify parts
of a Tensor in-place, we can only create entirely new

617Neuroinform (2019) 17:611–628

https://www.nengo.ai/nengo-dl/examples/pretrained-model
https://www.nengo.ai/nengo-dl/tensor-node
https://www.nengo.ai/nengo-dl/tensor-node


Tensors. It is possible to achieve similar effects using
conditional TensorFlow operations, but this is slow and
inefficient (for example, if we wanted to increment just one
element in a 1000-dimensional vector x, we would have to
create a new 1000-dimensional vector y that is just a copy
of x in 999 of its elements).

Fortunately there is another TensorFlow data structure
that does support in-place modification of elements:
Variables. Variables are usually used to represent
things like connection weights, and because we want
optimizers to be able to iteratively update those weights
during the training process (without generating a new copy
of all the model’s parameters each time) they are designed
to support in-place modification. However, more generally
we can just think of Variables as stateful Tensors,
which is exactly what we want for our Signal values.
So in practice the SignalDict will actually maintain a
mapping from Signals to Variables, so every time
an Operator reads or writes to (part of) a Signal,
the SignalDict will direct that information to the
appropriate Variable.2 We still need the SignalDict
bookkeeping because we need to make sure that reads and
writes to the Variable happen in the right order. So, for
example, when an Operator reads from a Variable v

it reads from the version of that variable after any other
Operators have made their updates. The SignalDict
keeps track of those versions, and directs the reads and
writes to the appropriate place.

Operators

With this infrastructure in place, the mapping from Nengo
Operators to TensorFlow Ops is relatively straightfor-
ward. Every Operator implementation follows the same
basic structure:

1. Get the current value of all the input Signals from
the SignalDict

2. Apply TensorFlow ops that implement the desired
computation

3. Use the SignalDict to write the results back to any
output Signals

Thus we can create a small computational subgraph
consisting of reads, transformations, and writes that will
implement each Nengo Operator. The subgraphs for
different Operators are connected via the Signals
(represented as Variables) that they read and write. So
as we iterate through all the Nengo Operators and add

2Note that although we are using Variables for all the Signals,
not all Signals are trainable; we still only optimize the Signals
corresponding to trainable parameters of the model (e.g., connection
weights and biases).

them into the TensorFlow graph, we gradually build up a
complete graph of interconnected Ops that will implement
a single timestep of a Nengo simulation.

The final step is to embed this single timestep within
a framework that will simulate the model over time. For
this we can use TensorFlow’s tf.while loop, which
is a way to represent a loop using TensorFlow’s declara-
tive programming style. Generally speaking this will meet
all of our needs, although some bookkeeping is needed
to make sure that computations from different timesteps
do not overlap incorrectly. The only concern is that
tf.while loop adds a certain amount of overhead to
every iteration, which can slow down the simulation. Thus
NengoDL has an option to unroll the simulation loop by
explicitly building multiple timesteps into the TensorFlow
computation graph. Essentially we go through the same
process as above to build a single timestep, then repeat
that n times so that we end up with n implementations
of every Nengo Operator (all connected together in
the correct order thanks to the SignalDict). We then
embed that whole thing within a tf.while loop, so
that every iteration will execute n timesteps. This results
in a more complicated TensorFlow graph, which increases
the build time and memory usage, but can signifi-
cantly improve the simulation speed. This functionality is
accessed through the unroll simulation parameter
of nengo dl.Simulator, where nengo dl.Simula
tor(net, unroll simulation=10) indicates that
we should unroll the simulation as above with n = 10.

Graph Optimizations

Naively implementing the above process results in a
functional simulator, but a slow one. The core problem
is that every time an Op is executed TensorFlow has to
launch a kernel, and there is a certain amount of associated
overhead (especially when launching kernels on the GPU).
If we have many small kernel launches, any benefits of
the underlying accelerator will be lost in that overhead. So
when building an efficient neural simulator in TensorFlow
it is important that we try to combine operations as much
as possible, so that we end up with fewer, larger kernels.
For example, imagine we have 10 ElementwiseInc
operations, each reading two signals and multiplying them
together. Implemented individually, this would be 20 reads,
10 multiplies, and 10 writes. It would be much better
to combine those operations together into one large op
that would do two reads, one multiply, and one write.
NengoDL automatically applies a number of these kinds of
optimizations to the Operator graph in order to improve
performance. All of these optimizations are transparent to
the end user, neither requiring their input nor modifying the
model’s output (other than making it faster).

618 Neuroinform (2019) 17:611–628



Merging

The first step is to merge Signals, so that we can read
and write larger chunks of data. We do this by concatenating
them along the first dimension, e.g. combining two 10 × 5
arrays into one 20 × 5 array. Note that this requires that the
array shapes match on all dimensions beyond the first (i.e.,
we could not merge a 10×5 with a 10×6 array). The arrays
also need to have the same type (e.g., integer versus float)

and other TensorFlowmeta information, such as trainability.
Thus we will still end up with various different base arrays,
but a much smaller number than we started with.

To track these new data structures NengoDL defines
a new object called a TensorSignal, which stores a
reference to a base array and some indices. We then translate
every Signal into a TensorSignal, which indicates
where the data for that Signal is stored and which
elements in that base array (indexed along the first axis)

ElementwiseInc

ElementwiseInc

ElementwiseInc

Fig. 3 Illustration of operator merging. Signals have been merged into
combined base arrays. We begin with two ElementwiseInc opera-
tors that each read two input signals (subsets within those base arrays),

multiply them together, and write the result to some output signal. To
merge the operators we combine the reads, do a single multiply, and
write the combined result

619Neuroinform (2019) 17:611–628



contain the data for that Signal. So whereas before an
Operator would read/write to some Signal, instead it
will read/write to some subset of the base array, as specified
by the corresponding TensorSignal. Merging multiple
reads into one is then as easy as combining their indices (as
long as all the reads have the same base array).

The next step is to merge the operations themselves
(e.g., combining the ten multiplies into one). Generally
speaking, two operations are mergeable if each of their
inputs and outputs are mergeable (have the same base array).
For example in the ElementwiseInc case, once we are
able to read each input as one large chunk, we can do a
single tf.multiply to multiply them all together at once
(Fig. 3). There are some additional caveats when merging
more complex operators, which depend on the details of
those operators, but we will not go into that here.

The other main concern for merging operators is that
we cannot merge two operators if the input to one depends
on the output of the other. This would introduce a circular
dependency if we tried to compute those two operations
simultaneously. Fortunately, Nengo already organizes all
the Operators into a dependency graph, in order to
schedule their execution (e.g., so that reads and writes
to a Signal happen in the correct order). So we can
use that graph to determine whether or not two operators
depend on each other, and therefore whether or not they are
mergeable.

Planning

When optimizing operator merging we also need to consider
the order in which (groups of) Operators are executed,
because the execution order can affect which operators can

be merged. We can see an example of this in Fig. 4. At first
two Copy operators and one DotInc operator are available
to be scheduled (as they have no incoming dependencies).
One might be tempted to schedule the two Copy operators
first (blue circle), as that allows us to combine the two
Copy ops into one. However, if we schedule the DotInc
operator first then the third Copy operator will be freed
of its dependency, and we will be able to merge all three
Copy operators (green circle). This is a simple example,
but the problem rapidly becomes much more complex, and
efficient merging becomes more important, as the number
of operators increases. Thus the goal of the planning process
is to take an (unordered) list of Operators, and try to
find an order of execution that best promotes the efficient
merging of operators.

NengoDL includes a number of different planning
methods, such as a greedy algorithm that simply selects the
largest available group of operators to be scheduled next,
or a method based on analyzing the transitive closure of
the dependency graph (with some heuristic prioritization),
inspired by Gosmann and Eliasmith (2017). However, the
method that we found to provide the best tradeoff between
plan quality and optimization time, in general, is a bounded
breadth-first tree search. That is, we search through all
possible execution plans up to some length n, and then
schedule the group of operators corresponding to the first
step in the best plan we find (“best” defined as the plan
that schedules the most total operators in n steps). We then
repeat this process on the remaining operators, until all
operators have been scheduled. For n = 1 this corresponds
to the greedy algorithm, and for n = ∞ we find the
optimal plan (the plan with the shortest number of steps).
A reasonable value for n depends on the complexity of the

Copy DotInc

Copy

Copy

... ...
Fig. 4 Example of operator execution order planning. Arrows indicate signal read/write dependencies. By scheduling the DotInc operator first,
we are able to more efficiently schedule the three Copy operators as a single group

620 Neuroinform (2019) 17:611–628



model and the available computational budget; however, we
find that n ≈ 3 works well in practice.

Sorting

Another important optimization concern is the order inwhich the
Signals are arranged in memory. Recall that Signals
are combined into large TensorFlow Variables, and
when we read from a Signal we are reading from some
subset of indices within that Variable. However, it is
faster to read from a contiguous, in-order block of indices
(e.g. 5, 6, 7, 8), rather than an arbitrary set of indices (e.g.,
5, 10, 12, 20, or 5, 8, 7, 6). So we want to try to arrange
the Signals within the Variables such that Signals
that are read by the same group of Operators are
adjacent and in the same order as the Operators (Fig. 5).

The challenge is that we have many different groups
of Operators, reading from possibly overlapping sets
of Signals, such that reordering signals with respect to

one group of Operators may break the contiguity with
respect to a different set of Operators. We also need to
consider the order of the Operators within a group; we
can rearrange the Operators to promote efficient reads,
rather than reordering the Signals. For example, if the
Signals are arranged in the order 4, 1, 2, 3, but we move
the first Operator in the group (which reads from the
Signal with index 4) to the end, then this becomes an
in-order, efficient read. The reason why we might want to
rearrange Operators, rather than just changing the order
of the Signals, is that the 4, 1, 2, 3 order may be an
efficient order for a different group of Operators reading
from an overlapping set of Signals. Yet another issue is
that a single group of Operators can be reading from
multiple blocks of Signals, meaning that if we change
the order of the Operators we change the order of the
reads within all of those Signal blocks (possibly changing
some other block that used to be in-order to now be
out-of-order).

Fig. 5 Illustration of signal
sorting (continuing the example
from Fig. 3). By rearranging the
signals into ordered, contiguous
blocks we can increase the
efficiency of the read operations

ElementwiseInc

ElementwiseInc

621Neuroinform (2019) 17:611–628



We end up with a complex constraint satisfaction prob-
lem, where we are trying to find the Signal/Operator
ordering that will result in the best possible read perfor-
mance. A perfect solution, where every read is a contiguous
block, is usually not possible, nor is there an efficient algo-
rithm for finding an optimal solution (that we know of). We
arrived at a solution that uses some heuristic prioritization
and an iterative settling procedure to try to find an ordering
that works well in practice.

The first step is to sort the Signals into contiguous
blocks, without worrying about order. The Operators
are already arranged into groups by the planning process
described above, so we know all the Signals that will be
read by each group of Operators (which we will call a
read block). We can then group all the Signals according
to which set of read blocks they participate in, which we
will call a meta-block. If all the read blocks were non-
overlapping, then every meta-block would contain a single
read block; however, this is rarely the case. Since the order
of Signals within a meta-block does not matter (yet),
we can reformulate the problem as sorting the meta-blocks
into an order that ensures the underlying read blocks are as
contiguous as possible. Again, an ideal sorting is usually not
possible, so in general we prioritize the contiguity of larger
blocks (as they are the more expensive read operations).

Our meta-block sorting algorithm is shown in Algo-
rithm 1. Broadly speaking, this algorithm tries to find the
next meta-block that best matches the last meta block we

selected. Matching is determined by narrowing down the set
of remaining meta-blocks according to increasingly strict
criteria: 1) any meta-blocks that contain the active read
block (so that we know that at least the active block will
end up being contiguous); 2) any meta-blocks that contain
all the elements in the last meta-block; 3) the meta-blocks
with minimal Hamming distance to the last meta-block; and
4) the meta-block that contains the largest read blocks in the
last meta-block.

After the meta-block sorting process, the Signals are
arranged into (semi-) contiguous blocks of indices within the
base Variables. We then want to sort the Operators
and Signals within each meta-block so that the indices
are in increasing order. Recall that because our Signal
blocks overlap, and because a group of Operators can
read from multiple Signal blocks, there is unlikely to
be an ordering that satisfies all the constraints. Again we
prioritize larger read blocks.

Algorithm 2 cycles between two steps: 1) sort the
Operators to match the order of a given Signal block
b, and 2) sort all the Signal blocks read by that group of
Operators to match the new order of the Operators
(this sorting is restricted such that it cannot change the meta-
block order). The basic idea is that after step 1, we know that b
will be contiguous and in-order (assuming that the meta-
block sorting algorithm was able to make b contiguous). How-
ever, imagine that our Operator group also reads from
another block c. Rearranging the order of the Operators
may have put c out of order, so we fix that in step 2.

Note, however, that there may be some other group
of Operators that also reads from b or c (or some
overlapping set). Thus the sorting we just performed might
have broken an earlier ordering we established for that other
group of Operators. That is why we iterate over the read
blocks in increasing order of size; we know that later sorting
will only break the ordering of earlier, and therefore smaller,
blocks. However, it is possible that after the Signals are
reordered by a larger block (step 2), the Operators in a
smaller block could be reordered to match that new Signal
order (step 1). That is why we perform multiple passes over

622 Neuroinform (2019) 17:611–628



the read blocks, to allow the smaller blocks to settle into
orderings that are consistent with the larger blocks.

Simplification

Another optimizationwe perform is to simplify the Operator
graph by checking for certain special case combinations of
Operators. For example, we can change y += x ∗ 1
to y += x in order to save a multiplication, or if there
is a Copy operation that moves data from x to y, but the
value of x never changes, we can change that to a Reset
operator that directly sets the value of y to that constant
value (saving a read). These optimizations do not have a
large impact relative to the merging and sorting, but they are
also relatively simple and quick to perform.

Results

There are two areas we will focus on in the results: the simula-
tion speed of NengoDL, and some practical demonstrations
of using NengoDL to construct and optimize a neural model.
The code needed to reproduce any of the results presented
here is available at https://github.com/nengo/nengo-dl/tree/
master/docs/whitepaper.

Simulation Speed

We compare the simulation speed of NengoDL to the default
Nengo simulator (which is CPU only) as well as NengoOCL
(a simulator that runs on the GPU using custom OpenCL
kernels). All results are collected using an Intel Xeon E5-
1650 3.5GHz CPU and an Nvidia GeForce GTX Titan X
GPU (in the case of NengoDL and NengoOCL).

Figure 6 shows the relative speed of the simulators on four
different benchmark models. The purpose of themodels is not
particularly important; they were simply chosen to show-
case a range of different models with varying complexities:

• integrator: A single ensemble of recurrently connected
neurons (a common component used to implement a
memory system in Nengo)

• cconv: A network implementing the circular convolu-
tion of two input vectors (commonly used in Nengo
Semantic Pointer Architecture models)

• basal ganglia: A model of basal ganglia circuitry,
commonly used to perform action selection

• pes: An ensemble of neurons with output weights that
are updated as the simulation runs, using the Prescribed
Error Sensitivity learning rule (MacNeil and Eliasmith
2011)

Fig. 6 Comparing simulation
speed of NengoDL versus
NengoOCL versus Nengo on
various benchmark models.
Error bars indicate 95%
confidence intervals on the mean
over 5 runs. We show scaling
with respect to the represented
dimensionality (64, 128, 192)

623Neuroinform (2019) 17:611–628

https://github.com/nengo/nengo-dl/tree/master/docs/whitepaper
https://github.com/nengo/nengo-dl/tree/master/docs/whitepaper


In order to get a better picture how the different backends
compare, we show how the performance scales as we
change a parameter of these model, the represented
dimensionality. This increases the complexity of the model
in a number of ways; for example, it increases the number
of neuron ensembles, the dimensionality of the signals
being transmitted throughout the model, and the number of
parameters (through the size of encoder/decoder matrices).

Overall we can see that the GPU-based simulators
(NengoDL and NengoOCL) offer significant performance
improvements, with NengoOCL or NengoDL offering the
best performance on different benchmarks.

That being said, we can see an important advantage of
NengoDL in Fig. 7. In this case we are running the same
benchmarks, but we are running each model ten times. With
Nengo and NengoOCL this involves serially running the
model ten times in a row, which, unsurprisingly, takes about
ten times as long. However, NengoDL allows models to be
run with batched inputs, so we can simulate the model once
with ten different inputs in parallel. This scales much better
as we increase the batch size, thanks to the parallelism of the
computations. Thus if a modeller wants to test their model
with a range of different inputs, NengoDL will probably
offer the best performance.

Fig. 7 Comparing simulation speed of NengoDL versus NengoOCL
versus Nengo on various benchmark models with 10 batched inputs.
We show scaling with respect to the represented dimensionality (64,
128, 192). Note that we do not get the NengoDL batching benefits on

the PES benchmark, because that network applies an online learning
rule to the weights (meaning that we need a separate weight matrix for
each batch element)

624 Neuroinform (2019) 17:611–628



Finally, it is interesting to explore the effect of the various
graph optimization steps described in Section “Graph
Optimizations”. Figure 8 shows the speed of NengoDL
when simulating the Spaun model (an updated version
of Eliasmith et al. (2012), available at https://github.com/
xchoo/spaun2.0) with 128-dimensional vectors, consisting
of 1.2 million neurons split amongst 21k ensembles with
91k connections. Spaun was chosen because the complexity
of this model provides a good stress test for the graph
optimization methods. We can see that each type of
optimization provides incremental improvements to the
simulation speed. Note that in the “planning” case we
are comparing the tree planner to the greedy planner (see
Section “Planning”), rather than the presence and absence
of planning. That is, in all cases we are performing operator
merging. If we do not perform any merging then the
simulation is extremely slow (after one hour the simulation
had still not finished initializing the TensorFlow graph).

Model Examples

Simulation speed is an important aspect of NengoDL, but
equally important are the novel features NengoDL provides
that are not available in any other Nengo simulator. Specifi-
cally, NengoDL includes the ability to: a) insert Tensor Flow

Fig. 8 Impact of the various NengoDL graph optimization methods
on the simulation speed of the Spaun model. Note that the speed
is being plotted on a logarithmic scale. Merging: multiple operators
of the same type are combined into a single, larger operator of
that type (using a greedy planner). Without this step the simulation
speed is extremely slow, so we include it in all cases. Unrolling:
the simulation loop is unrolled within the TensorFlow computation
graph. Planning: A more advanced planning algorithm is used (the
tree planner) to promote better operator merging. Sorting: Signals are
sorted to promote more efficient reads. Simplifications: Unnecessary
Operations are removed from the Nengo build graph. More details
on all the optimization methods can be found in Section “Graph
Optimizations”

components, such as convolutional layers, into a Nengo
model; b) convert rate-based deep learning networks into
spiking versions; and c) optimize the parameters of a Nengo
model using deep learning training methods. In this section
we will present some basic examples illustrating these
features and the advantages they provide.

Spiking MNIST

In this model we use the TensorNode/tensor layer
syntax to create a simple convolutional network in Nengo,
consisting of three convolutional layers, two average pool-
ing layers, and a dense linear readout. We use the
Leaky Integrate and Fire neuron model, which has both
a rate and spike-based implementation. As described in
Section “Training a Model”, we use NengoDL to automat-
ically swap between the differentiable rate implementation
during training and the spiking model during testing/in-
ference. We also take advantage of NengoDL’s ability to
smoothly combine TensorFlow and Nengo models; we use
TensorNodes to implement convolutional and pooling
layers using TensorFlow, combined with standard Nengo
Ensembles to implement the neural nonlinearities and
Connections to link layers together.

We train the model on the deep learning “hello world”
task, MNIST digit classification (the model receives an
image of a hand-written digit as input and must classify
that digit 0–9). This kind of vision system has been
integrated with cognitive models in, e.g., Eliasmith et al.
(2012), where the model used an MNIST vision system
combined with working memory, inductive reasoning, and
motor control capabilities to perform a range of different
cognitive tasks. However, in that case the vision system was
trained separately using a standard deep learning package,
and then imported into Nengo. Here we show that using
the new features of NengoDL we can directly build and
train these deep learning style networks within the Nengo
framework, making it much simpler to construct integrated,
hybrid cognitive model as in Eliasmith et al. (2012).

After training, the model achieves 99.05–99.09% clas-
sification accuracy (95% confidence intervals), which is
the performance we would expect for MNIST. However,
one of the important features of Nengo, which is retained
in NengoDL, is the ability to smoothly switch between
rate and spiking neuron models. After training the model
using the rate-based implementation of LIF neurons, we can
then run the model using spiking LIF neurons (using the
same trained weights). This spiking version of the network
achieves 98.41–98.87% classification accuracy, only a small
decrease from the rate version. Spiking deep learning is an
interesting and active research field (Hunsberger and Elia-
smith 2016; Lee et al. 2016), and one which NengoDL is
naturally situated to support.

625Neuroinform (2019) 17:611–628

https://github.com/xchoo/spaun2.0
https://github.com/xchoo/spaun2.0


Memory Storage and Retrieval

In the second example we want to explore the application
of the NengoDL training functionality to a more cogni-
tive/neuromorphic style of model, rather than a standard
deep learning vision network. We construct a model using
Nengo’s Semantic Pointer Architecture (SPA), which uses
high-dimensional vectors, encoded in neural activity, to rep-
resent structured symbolic information. We apply the model
to a memory retrieval task: the network is given a sequence
of attribute-value pairs as input (e.g. (colour : red),
(shape : circle), (texture : smooth)) that it must dynami-
cally store in memory using neural activities. At a later point
the network is prompted with one of the attributes (e.g.,
shape), and must respond with the corresponding value
(e.g., circle). Note that we want to perform this task for
arbitrary input sequences, so the solution cannot be directly
built into the connection weights (i.e., we cannot just train
the network to output circle when it gets the cue shape).
We want the network to learn the abstract functions required
to store and retrieve generic items from memory.

The network architecture consists of a circular convo-
lution network (to combine the attribute-value pairs into
a linked representation), a recurrently connected ensemble
of neurons to implement the memory, and a final circu-
lar convolution network to extract the cued attribute from
the memory. In this example we use rectified linear neu-
rons. We can construct this model, without NengoDL, by
using the least-squares-based optimization methods stan-
dard in Nengo. The advantage of these methods is that they
are fast and do not rely on gradient descent (and therefore
do not require the model to be differentiable). However,
these methods can only optimize the output weights of one
ensemble/layer at a time. This means that each layer in the
above model is optimized independently, and there are many
parameters (e.g., input weights, gains, and biases) that are
not optimized (they are typically chosen from some ran-
dom distribution). By using NengoDLwe can begin with the
standard Nengo optimized model, and then apply the deep
learning optimization on top of that. This allows us to jointly
optimize across the layers of the model, and fine tune all the
parameters in the model as well as the output weights.

We train the model by generating a randomized set of
training data, with different sequences of attribute-value
pairs and different vector vocabularies. For each of these
inputs we can specify what the correct model output would
be. We can then use TensorFlow’s gradient-descent based
optimizers (in this case, RMSProp; Tieleman and Hinton
2012) to optimize all the parameters of the model with
respect to those inputs and target outputs. The details of the
training hyperparameters can be found in the code at https://
github.com/nengo/nengo-dl/tree/master/docs/whitepaper.

Fig. 9 Retrieval accuracy on the memory task, before and after
training is applied. Showing 95% confidence intervals (for different
random initializations)

The effect of the training is shown in Fig. 9. This figure
shows the retrieval accuracy of the model (on a separate
set of randomly generated test data), which is computed
by comparing the output of the model (which should be
the value of the cued attribute) to all the vectors in the
vocabulary (e.g., colour , shape, red , circle, etc.). If the
output of the model is most similar to the correct answer,
then that is a successful retrieval. We can see that the
performance of the model is significantly improved after
applying the NengoDL training. In particular we can see
the impact of the training for smaller numbers of neurons.
This makes sense given the random initialization of many
of the neural parameters under the standard Nengo methods.
For larger numbers of neurons that random initialization
is likely to give a good-enough coverage of the parameter
space, but for smaller numbers it is more important
that those parameters be fine-tuned for the problem. In
other words, one important advantage of the NengoDL
optimization features are that they allow us to take better
advantage of limited neural resources.

Conclusion

The goal of NengoDL is to provide a tool that unites
deep learning and neuromorphic modelling methods. It
combines the robust modelling API of Nengo with the
speed and optimization methods of TensorFlow. This allows
the modeller to build complex cognitive/neuromorphic
models, combine them with deep learning elements (such
as convolutional layers), simulate them efficiently, and
optimize their parameters using modern deep learning
training methods.

626 Neuroinform (2019) 17:611–628

https://github.com/nengo/nengo-dl/tree/master/docs/whitepaper
https://github.com/nengo/nengo-dl/tree/master/docs/whitepaper


In this paper we have introduced the features and
some interesting implementation aspects of NengoDL.
Those interested in learning more or using NengoDL in
their own work can find much more information in the
online documentation at https://www.nengo.ai/nengo-dl.
This includes installation instructions, details on all the
novel features of NengoDL and how to access them, as well
as examples illustrating various different styles of models.
All the source code can be found at https://github.com/
nengo/nengo-dl. There is also a forum at https://forum.
nengo.ai where users can get help with specific questions.
Finally, NengoDL is under active development; feel free
to suggest features on the forum or at https://github.com/
nengo/nengo-dl/issues so that we can continue to improve
this tool for the modelling community.

Information Sharing Statement

NengoDL is available online at https://github.com/nengo/
nengo-dl, and all of the code needed to reproduce the
results in this paper is available at https://github.com/nengo/
nengo-dl/tree/master/docs/whitepaper.

Acknowledgments This work was supported by Applied Brain
Research, Inc. and ONR MURI N00014-16-1-2832.

Compliance with Ethical Standards

Conflict of interests DR is an employee/shareholder of Applied Brain
Research, Inc., which owns the Nengo software package (including
NengoDL). Nengo is free for research/personal/non-commercial use,
but ABR charges a license fee for commercial use.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg,
J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P.,
Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X., Brain,
G., Osdi, I., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M.,
Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B.,
Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng,
X. (2016). TensorFlow: a system for large-scale machine learning.
In Proceedings of the 12th USENIX symposium on operating
systems design (pp. 265–283). Savannah, GA, USA.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T.C.,
Rasmussen, D., Choo, X., Voelker, A.R., Eliasmith, C. (2014).
Nengo: a Python tool for building large-scale functional brain
models. Frontiers in Neuroinformatics, 7(48), 1–13.

Benjamin, B.V., Gao, P., Mcquinn, E., Choudhary, S., Chandrasekaran,
A.R., Bussat, J.-M., Alvarez-Icaza, R., Arthur, J.V., Merolla, P.A.,
Boahen, K. (2014). Neurogrid: a mixed-analog-digital multichip
system for large-scale neural simulations. In Proceedings of the
IEEE, Vol. 102(5).

Bobier, B., Stewart, T.C., Eliasmith, C. (2014). A unifying mech-
anistic model of selective attention in spiking neurons. PLos
Computational Biology, 10(6).

Choo, X., & Eliasmith, C. (2010). A spiking neuron model of serial-
order recall. In Cattrambone, R., & Ohlsson, S. (Eds.) Proceedings
of the 32nd annual conference of the cognitive science society.
Portland. Cognitive Science Society.

Collobert, R., Kavukcuoglu, K., Farabet, C. (2011). Torch7: a
Matlab-like environment for machine learning. In Biglearn, NIPS
workshop (pp. 1–6).

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday,
S.H., Dimou, G., Joshi, P., Imam, N., Jain, S., Liao, Y., Lin, C.-
K., Lines, A., Liu, R., Mathaikutty, D., McCoy, S., Paul, A., Tse,
J., Venkataramanan, G., Weng, Y.-H., Wild, A., Yang, Y. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning.
IEEE Micro, 38(1).

Davison, A.P., Brüderle, D., Eppler, J., Kremkow, J., Muller,
E., Pecevski, D., Perrinet, L., Yger, P. (2009). PyNN: a
common interface for neuronal network simulators. Frontiers in
Neuroinformatics, 2, 1–10.

DeWolf, T., Stewart, T.C., Slotine, J.-J., Eliasmith, C. (2016). A
spiking neural model of adaptive arm control. Proceedings of the
Royal Society: Biological Sciences, 283(1843).

Eliasmith, C., & Anderson, C. (2003). Neural engineering: Compu-
tation, representation, and dynamics in neurobiological systems.
Cambridge: MIT Press.

Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T., DeWolf, T., Tang,
Y., Rasmussen, D. (2012). A large-scale model of the functioning
brain. Science, 338(6111), 1202–1205.

Esser, S.K., Appuswamy, R., Merolla, P.A., Arthur, J.V., Modha,
D.S. (2015). Backpropagation for energy-efficient neuromorphic
computing. In Advances in neural information processing systems
(pp. 1–9).

Gewaltig, M.-O., & Diesmann, M. (2007). NEST (NEUral Simulation
Tool). Scholarpedia, 2, 1430.

Gosmann, J., & Eliasmith, C. (2017). Automatic optimization of
the computation graph in the Nengo neural network simulator.
Frontiers in Neuroinformatics, 11, 1–11.

Hines, M.L., & Carnevale, N.T. (1997). The NEURON simulation
environment. Neural Computation, 9(6), 1179–1209.

Hunsberger, E., & Eliasmith, C. (2016). Training spiking deep
networks for neuromorphic hardware. arXiv:1611.05141 (v1):1–
10.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick,
R., Guadarrama, S., Darrell, T. (2014). Caffe: Convolutional
architecture for fast feature embedding. arXiv:1408.5093 (v1).

Kay, K.N. (2017). Principles for models of neural information
processing. NeuroImage, 1–20.

Khan, M., Lester, D., Plana, L. (2008). SpiNNaker: mapping neural
networks onto a massively-parallel chip multiprocessor. In IEEE
joint conference on neural networks (pp. 2849–2856).

Kriegeskorte, N. (2015). Deep neural networks : a new framework
for modeling biological vision and brain information processing.
Annual Review of Vision Science, 1, 417–446.

Lee, J.H., Delbruck, T., Pfeiffer, M. (2016). Training deep spiking neural
networks using backpropagation. Frontiers in Neuroscience, 10.

MacNeil, D., & Eliasmith, C. (2011). Fine-tuning and the stability of
recurrent neural networks. PloS ONE, 6(9), e22885.

Rasmussen, D., & Eliasmith, C. (2014). A spiking neural model applied
to the study of human performance and cognitive decline on
Raven’s advanced progressive matrices. Intelligence, 42, 53–82.

Rasmussen, D., Voelker, A., Eliasmith, C. (2017). A neural model of
hierarchical reinforcement learning. PLoS ONE, 12(7), 1–39.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., Liu, S.-C. (2017).
Conversion of continuous-valued deep networks to efficient

627Neuroinform (2019) 17:611–628

https://www.nengo.ai/nengo-dl
https://github.com/nengo/nengo-dl
https://github.com/nengo/nengo-dl
https://forum.nengo.ai
https://forum.nengo.ai
https://github.com/nengo/nengo-dl/issues
https://github.com/nengo/nengo-dl/issues
https://github.com/nengo/nengo-dl
https://github.com/nengo/nengo-dl
https://github.com/nengo/nengo-dl/tree/master/docs/whitepaper
https://github.com/nengo/nengo-dl/tree/master/docs/whitepaper
http://arxiv.org/abs/1611.05141
http://arxiv.org/abs/1408.5093


event-driven networks for image classification. Frontiers in
Neuroscience, 11, 1–12.

Stewart, T.C., Bekolay, T., Eliasmith, C. (2012). Learning to select
actions with spiking neurons in the Basal Ganglia. Frontiers in
Decision Neuroscience, 6, 2.

Stimberg, M., Goodman, D.F.M., Benichoux, V., Brette, R. (2013).
Brian 2 - the second coming : spiking neural network simulation
in Python with code generation. In Twenty second annual
computational neuroscience meeting (pp. 1–2).

Team, T.D. (2016). Theano: a Python framework for fast computation
of mathematical expressions. arXiv:1605.02688 (v1):1–19.

Tieleman, T., & Hinton, G.E. (2012). Lecture 6.5-Rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4(2), 26–31.

Yamins, D.L.K., & DiCarlo, J.J. (2016). Using goal-driven deep learn-
ing models to understand sensory cortex. Nature Neuroscience,
19(3).

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

628 Neuroinform (2019) 17:611–628

http://arxiv.org/abs/1605.02688

	NengoDL: Combining Deep Learning and Neuromorphic Modelling Methods
	Abstract
	Introduction
	Related Work

	Background
	Nengo
	Architecture
	Front-End Objects
	Back-End Objects

	TensorFlow

	Using NengoDL
	Running a Model
	Training a Model
	Inserting TensorFlow Code

	Implementation
	TensorFlow Mapping
	Signals
	Operators

	Graph Optimizations
	Merging
	Planning
	Sorting
	Simplification


	Results
	Simulation Speed
	Model Examples
	Spiking MNIST
	Memory Storage and Retrieval


	Conclusion
	Information Sharing Statement
	Acknowledgments
	Compliance with Ethical Standards
	Conflict of interests
	References
	Publisher's Note


