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Abstract
Functional connectivity networks, derived from resting-state fMRI data, have been found as effective biomarkers for
identifying mild cognitive impairment (MCI) from healthy elderly. However, the traditional functional connectivity
network is essentially a low-order network with the assumption that the brain activity is static over the entire scanning
period, ignoring temporal variations among the correlations derived from brain region pairs. To overcome this limitation,
we proposed a new type of sparse functional connectivity network to precisely describe the relationship of temporal
correlations among brain regions. Specifically, instead of using the simple pairwise Pearson’s correlation coefficient as
connectivity, we first estimate the temporal low-order functional connectivity for each region pair based on an ULS
Group constrained-UOLS regression algorithm, where a combination of ultra-least squares (ULS) criterion with a Group
constrained topology structure detection algorithm is applied to detect the topology of functional connectivity networks,
aided by an Ultra-Orthogonal Least Squares (UOLS) algorithm to estimate connectivity strength. Compared to the
classical least squares criterion which only measures the discrepancy between the observed signals and the model
prediction function, the ULS criterion takes into consideration the discrepancy between the weak derivatives of the
observed signals and the model prediction function and thus avoids the overfitting problem. By using a similar approach,
we then estimate the high-order functional connectivity from the low-order connectivity to characterize signal flows
among the brain regions. We finally fuse the low-order and the high-order networks using two decision trees for MCI
classification. Experimental results demonstrate the effectiveness of the proposed method on MCI classification.
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Introduction

Alzheimer’s disease (AD), characterized by the progressive de-
cline in episodic memory, reasoning and other cognitive do-
mains (Alzheimer's Association 2015), is considered as the most
common form of dementia. It has been reported that AD inci-
dence rate increases exponentially with aging (Ziegler-Graham
et al. 2008) and 1 in 85 persons worldwide will suffer from the
disease by 2050 (Brookmeyer et al. 2007). The latest statistics
show that AD is the fifth leading cause of death for people over
65 years old and the sixth leading cause of death in the United
States (Alzheimer's Association 2015). Recently, however, there
is no effective treatment to stop the damage to neurons leading
to the clinical symptoms of AD (Alzheimer's Association 2015),
achieving early diagnosis at the stage of MCI is of great values.
Mild cognitive impairment (MCI) is considered as the transition-
al state between normal senility and AD (Petersen et al. 2001;
Gauthier et al. 2006; Li et al. 2019b). Approximately 10% to
15% of MCI patients deteriorate to AD every year, and more
than half of them develop AD within 5 years (Petersen et al.
2001; Gauthier et al. 2006). Due to this high conversion rate, it is
thus crucial to accurately identify MCI so that appropriate ac-
tions can be taken to slow down the progress of the disease.
However, MCI is difficult to diagnose because of its relatively
subtle symptoms (Eshkoor et al. 2015). In this case, many re-
searchers dedicated to the diagnosis of AD andMCIwith the aid
of neuroimaging techniques (Davatzikos et al. 2011; Suk et al.
2014; Huang et al. 2010; Liu et al. 2014).

Neuroimaging techniques, such as Magnetic Resonance
Imaging (MRI) (Fan et al. 2008; Hu et al. 2016; Cuingnet
et al. 2011) and Magnetoencephalography (MEG) (Amezquita-
Sanchez et al. 2016), are considered to be a powerful tool for
classification of neurodegenerative diseases, especially for MCI
and AD (Josef Golubic et al. 2017; Sandanalakshmi and Sardius
2016). On the other hand, resting-state functional Magnetic
Resonance Imaging (rs-fMRI), which employs the blood-
oxygenation-level-dependent (BOLD) signal as neurophysiolog-
ical index, has been used recently for the early diagnosis of MCI
before the appearance of clinical symptoms (McKenna et al.
2016; Wee et al. 2016; Khazaee et al. 2017). The correlation
between BOLD signals of two brain regions is regarded as the
functional connectivity between that region pair (Greicius 2008).
The functional connectivity or temporal correlations among all
regions within the brain (Van Den Heuvel and Pol 2010) are
often characterized through functional connectivity networks
using the graph theory (Fornito et al. 2010; Lee et al. 2017; Li
et al. 2013). The differences between normal and damaged func-
tional connectivity networks caused by pathological attacks can
be considered as the biomarkers to study the pathological under-
pinnings of MCI (Jie et al. 2014; Li et al. 2014; Qi et al. 2010;
Chand et al. 2017; Wee et al. 2014).

The most classical functional connectivity network model-
ing approach is based on pairwise Pearson’s correlation

coefficient (Wee et al. 2012a; Power et al. 2011). The
correlation-based methods are easy to understand and have
less computational complexity. However, in fact, brain re-
gions are connected with only a limited number of regions,
not all brain regions (Liao et al. 2017). Thus, the correlation-
based networks are inconformity with the sparse nature of
actual brain networks (Lee et al. 2011; Li et al. 2014). To
overcome this limitation, some sparse modeling approaches
have been proposed to construct sparse functional connectiv-
ity network based on whole brain connectivity information,
i.e., identifying a small number of connections from the whole
brain dense connections. For example, Lee et al. (2011) con-
structed sparse brain networks based on a l1-norm regularized
linear regression model, and the difference between the
modular structures was derived from the sparse brain
networks of autism spectrum disorders and pediatric control
subjects, respectively. Rosa et al. (2015) proposed a sparse
functional connectivity network modeling method based on
l1-norm regularized maximum likelihood estimation and
Gaussian graphical models, and discovered the discriminative
changes in brain networks betweenmajor depressive disorders
and normal controls (NCs). These sparse brain network
modeling methods are considered more sensitive to reject
the spurious connections than the correlation-based methods
(Lee et al. 2011; Rosa et al. 2015). In addition, to minimize the
influence of inter-subject variability, some recent approaches
have also adopted l2, 1-norm penalization to ensure the con-
sistency of non-zero connections across subjects (Li et al.
2018d, c; Wee et al. 2014). For example, a sparse causality
model aid by l2, 1-norm penalization was proposed to detect
causal interactions in multivariate time series (Haufe et al.
2008). The group constrained causality model yields a better
performance than some classical methods including Granger
Causality, Ridge Regression, and Lasso in the causal structure
detection. Ryali et al. (2012) adopted a sparse partial correla-
tion method which combines l1- and l2-norm penalization to
estimate the functional connectivity between brain regions in
fMRI data, where l1-norm penalty provides sparse interpret-
able solutions and l2-norm penalty improves the sensitivity of
the model. Thus, this method can provide a more accurate
brain connection estimation result. Furthermore, in order to
explore study the directional causal interactions among brain
regions, a cross-spectral density connectivity estimation meth-
od was proposed to estimate the effective connection from the
whole brain fMRI data (Lennartz et al. 2018). With a reduced
dependence on hemodynamic variability, this method may
produce more reliable connectivity estimation results. In ad-
dition, a group constrained effective connectivity inference
method was further proposed for MCI identification (Li
et al. 2018d). This approach combines the l2, 1-norm penali-
zation with the time-dependent effective connectivity estima-
tion, and thus can generate effective brain connectivity net-
works with the consistent topology among subjects. In all the
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aforementioned modeling methods, the vertices of brain net-
works correspond to the brain regions and the edges corre-
spond to the correlation among brain regions, thus producing
the so-called low-order network (Chen et al. 2016). It is nota-
ble that the low-order correlation network is normally calcu-
lated over the whole time series, without considering potential
temporal variations among the correlations (Chen et al. 2016).
However, the brain activities are indeed not static across the
entire scanning period and the correlations among brain re-
gions vary across time (Allen et al. 2014; Hutchison et al.
2013; Liu et al. 2017). Therefore, the conventional methods,
which ignore temporal variations among correlations, may fail
to diagnose MCI accurately (Chen et al. 2017). Recently, a
high-order network modeling method has been proposed to
preserve the dynamic correlation information neglected in the
conventional methods (Chen et al. 2016), where the vertices
of high-order network correspond to the brain region pairs,
and the edges correspond to the correlation between the brain
region pairs. The high-order network modeling approach
takes the temporal variations among correlations into account,
and discovers discriminative dynamic correlation information
for MCI classification. However, the existing high-order net-
work modeling approach (Chen et al. 2016) is derived using
the pairwise Pearson’s correlation-based low-order functional
connectivity, which is inconsistent with the sparse nature and
small-world characteristics of most biological networks
(Supekar et al. 2008).

To overcome this deficiency, we propose a novel high-
order network modeling method that utilizes a specially
des igned un i f i ed spa r se reg ress ion f ramework .
Specifically, we construct the high-order functional connec-
tivity networks by using a novel ULS Group constrained
topology structure detection algorithm which is accompa-
nied with an Ultra-Orthogonal Least Squares (UOLS) algo-
rithm. The former, which consists of an ultra-least squares
(ULS) criterion and a Group constrained topology structure
detection algorithm, is applied to detect the topology of
functional connectivity networks. The latter, which consists
of the ULS criterion and an Orthogonal Least Squares
(OLS) algorithm (Li et al. 2019a), is employed to estimate
the strength of functional connectivity. The rationale of
using the ULS criterion in our proposed method is that,
besides extracting the classical dependent relation between
the fMRI time series of a region pair, it further extracts the
dependent relation of the associated weak derivatives, and
thus avoids the overfitting problem which is common in the
conventional least squares criterion (Guo et al. 2016). The
weak derivative, which can be calculated for all integrable
functions, is a measure describing interconnections among
the data points, where the definition of the weak derivative
can be found at Appendix. In other words, the classical least
squares (LS) criterion based method does not take into con-
sideration the continuity between fMRI time series. The

absence of the connection information between data points
may lead to an inaccurate model structure. To overcome this
limitation, we integrate the ULS criterion, which can de-
scribe the relationship among data points, into our proposed
framework. Additionally, different from the traditional
sparse regression algorithm with a l1-norm penalization
which leads to different network structures at individual
level (Lee et al. 2011), the Group constrained topology
structure detection algorithm in our modeling method uti-
lizes a l2, 1-norm penalization to encourage an identical
network topology among subjects. Identical network to-
pology ensures an easier comparison between subjects,
thus achieving a better generalization performance in
brain disease classification (Wee et al. 2014; Zhu et al.
2014).

The high-order network is able to encode the temporal
variations of correlation between brain regions, while it is
unable to characterize the holistic correlation calculated
based on the whole time series as in the low-order corre-
lation network. Therefore, in order to incorporate both the
low-order correlation and the temporally dynamic infor-
mation encoded in the high-order correlation for better
classification performance, we first construct a decision
tree (DCT) for each type of correlations and then fused
their classification scores together to provide the final
classification decision. The fused DCT model takes into
account not only the correlation derived based on the
whole time series, but also the temporal variations be-
tween correlations. We have compared our proposed
framework (i.e., fusion of high-order and low-order func-
tional connectivity networks) with the state-of-the-art
methods on the same dataset, and the experimental results
demonstrate the superiority of the proposed framework for
MCI classification.

In summary, the main contributions of our proposed frame-
work are three-fold:

& Taking into consideration the discrepancy between the
weak derivatives of the observed signals and the model
prediction function during functional connectivity net-
work estimation;

& Derive the functional networks using sparse regres-
sion framework to preserve the sparse nature of brain
networks while enforcing identical network topology
among all subjects to ease the between-subject
comparison;

& Simultaneously considering the dynamic correlation
information and the holistic correlation information
for MCI classification by fusing the high-order and
low-order networks.

The rest of the paper is organized as follows. BMaterials
and Methods^ section furnishes information on the data

Neuroinform (2020) 18:1–24 3



acquisition and post-processing, followed by the proposed
framework for the construction and fusion of low- and high-
order functional connectivity networks for MCI classification.
Then, we evaluate and discuss the performance of the pro-
posed framework in BResults and Discussions^ section.
Finally, we conclude this paper in BConclusion^ section.

Materials and Methods

Proposed Framework

In Fig. 1, we provide the proposed MCI classification frame-
work, based on the fusion of high-order and low-order sparse
functional connectivity networks. BData Acquisition and
Preprocessing^ section provides the details of data acquisition
and preprocessing; In BLow-Order Functional Connectivity
Networks^ sec t ion and BHigh-Order Funct iona l
Connectivity Networks^ section, we construct the low- and
high-order functional connectivity networks, respectively.
BFeature Extraction, Selection, and Classification^ section
gives the process of the feature extraction, selection, and fu-
sion classification. Finally, we summarize the methodology in
BSummary of Methodology^ section.

Data Acquisition and Preprocessing

This study is approved by the local ethical committee and all
of participants voluntarily participated in this study with in-
formed consents. The participants are recruited via advertise-
ments in local newspapers and media. All the participants
carry on regular neuropsychological assessment, including
the mini-mental state examination (MMSE) (Van Patten
et al. 2018), the hospital anxiety and depression Scale
(HAD) (McKenzie et al. 2018), and the lawton’s instrumental
activities of daily living (IADL) (Mao et al. 2018). All the
participants are also evaluated using the Clinical Dementia
Rating scale (CDR) (Das et al. 2018). MCI patients are diag-
nosed according to the criteria proposed by Petersen (2004),
which are: (1) memory loss complaint corroborated by an
informant; (2) objective cognitive impairment in single or
multiple domains, adjusted for age and education; (3) pre-
served general cognitive function; (4) failure to meet the
criteria for dementia; (5) the Clinical Dementia Rating
(CDR) score is 0.5. The inclusion criteria of NCs were: (1)
no complaint of memory loss; (2) CDR score is 0; (3) no
severe visual or auditory impairment.

Twenty-eight MCI patients and thirty-three demo-
graphically matched NCs are selected from the partici-
pants. All subjects are scanned using a standard echo-
planar imaging (EPI) sequence on a 3 Tesla Siemens
TRIO scanner with the following parameters: TR =
3000 ms, TE = 30 ms, acquisition matrix = 74 × 74, 45

slices, and voxel thickness = 3 mm. One-hundred and
thirty resting-state fMRI volumes are acquired. Standard
preprocessing pipeline of the fMRI images is performed
using Statistical Parametric Mapping 8 (SPM8) software
package, which includes removal of first 10 fMRI vol-
umes, slice timing correction, head-motion correction, re-
gression of nuisance signals (ventricle, white matter,
global signal, and head-motion with Friston’s 24-
parameter model (Wee et al. 2016)), signal de-trending.
Next, the brain space was parcellated into 90 region-of-
interests (ROIs) based on the automated anatomical label-
ing (AAL) atlas (Tzourio-Mazoyer et al. 2002). Finally,
we adopt a band-pass filter (0.01–0.08 Hz) to eliminate
the effects of low- and high-frequency noise.

Low-Order Functional Connectivity Networks

ULS Group Constrained Topology Structure Detection

Suppose that there are N subjects (N = 61), each subject includes
the total ofM ROIs (M= 90), ynm denotes the ROI time series of
them-th ROI from the n-th subject. Compared to thewidely-used
Lasso algorithm (Lee et al. 2011) with a l1-norm penalization,
which may generate different network topologies for different
subjects, the Group constrained topology structure detection al-
gorithmwith a l2, 1-norm penalizationminimize this inter-subject
variability by encouraging an identical network topology across
subjects (Wee et al. 2014). The objective function of the Group
constrained topology structure detection algorithm is given by

f Θmð Þ ¼ ∑N
n¼1 ynm−A

n
mθ

n
m

�� ��2
2
þ λ Θmk k2;1 ð1Þ

whereAn
m ¼ yn1;…; ynm−1; y

n
mþ1;…; ynM

� �
is amatrixwhich in-

cludes all ROIs time series except the m-th ROI, λ > 0 is the
regularizationparameter that controls the sparsity level of the

regression model, θnm ¼ θn1;…; θnm−1; θ
n
mþ1;…; θnM

� �T
is the

weight vector that describes the relationship between the
m-th ROI and the other eighty-nine ROIs for n-th subject,

and Θm ¼ θ1m; θ
2
m;…; θNm

� �
is the weight matrix for all sub-

ject. It should be noted that each row of the matrixΘm repre-
sents the coefficient vector of one ROI for all subjects, while
each column of thematrixΘm represents the coefficient vec-
tor of all ROIs for one subject (i.e. θnm ). ‖Θm‖2, 1 is the sum-
mation of the l2-norm of each row in the matrixΘm, not the

summation of the l2-norm of each column in Θm (i.e. ∑N
n¼1

θnm
�� ��

2
). Therefore, Eq. (1) encourages consistent non-zero

elements for the given ROI across all subjects and cannot be

rewritten as f θnm
� � ¼ ynm−A

n
mθ

n
m

�� ��2
2
þ λ θnm

�� ��
2

n ¼ 1; 2;…;Nð Þ.
Constructing the sparse network structure can be consid-
ered as an optimization problem, i.e., minimizing the
above objective function.
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Fig. 1 The schematic diagram of the proposed framework



In order to obtain a more accurate evaluation standard for
the model fitness, an ULS criterion is integrated into the
Group constrained topology structure detection algorithm to
generate an ULS Group constrained topology structure detec-
tion algorithm. The ULS criterion, which considers the dis-
crepancy between the weak derivatives of the observed sig-
nals and the model prediction function and thus avoids the
overfitting problem, is defined by

JULS ¼ ~ym
n−~Am

nθnm
��� ���2

2
; ð2Þ

w h e r e ~ynm ¼ ynm
� �T

; D1ynm
� �T

; D2ynm
� �T

;…; DLynm
� �Th iT

,

generated by connecting the original ROI time series ynm with

its weak derivatives Dlynm l ¼ 1; 2;…; Lð Þ, is the ultra-ROI

time series of the m-th ROI from the n-th subject, and ~A
n
m

¼ ~yn1;…;~ynm−1;~y
n
mþ1;…;~ynM

� �
is a matrix consisting of all

ultra-ROI time series except the m-th self ROI (the details of
the ULS criterion and weak derivatives are provided in
Appendix). Specifically, as discussed in Appendix, the ULS
criterion can be incorporated into the Group constrained to-
pology structure detection algorithm by replacing the original
ROI time series ynm with the ultra-ROI time series~ynm in Eq. (1).
Therefore, the ULS Group constrained topology structure de-
tection algorithm is adopted to detect a more accurate network
topology via the following objective function:

f Θmð Þ ¼ ∑N
n¼1 ~ym

n−~Am
nθnm

��� ���2
2
þ λ Θmk k2;1: ð3Þ

By separating the weak derivative partDlynm l ¼ 1; 2;…; Lð Þ
from the original ROI time series part ynm, Eq. (3) can be
rewritten as

f Θmð Þ ¼ ∑N
n¼1‖y

n
m−A

n
mθ

n
m‖

2
2 þ ∑N

n¼1∑
L
l¼1‖D

lynm−D
lAn

mθ
n
m‖

2
2 þ λ‖Θm‖2;1

ð4Þ
It should be noted that the estimated coefficients matrix Θm

based on Eq. (4) cannot be regarded as the functional connectiv-
ity strengths, because they are biased as the result of group-
constrained sparse penalization (Li et al. 2018d). Particularly,
some of the coefficients are even negative, leading to difficulty
in interpreting and analyzing the functional connectivity network.
Therefore, the estimated coefficients matrixΘm based on Eq. (4)
are only treated as the network topology indicator. TheROIswith
non-zero elements in the coefficient matrixΘm are considered to
have functional connections with the target m-th ROI, while the
zero element in Θm indicates the non-connection between the
corresponding ROI with the target m-th ROI.

Strength Estimation of Sparse Functional Connectivity
Networks Via UOLS

Supposing that P ROIs have been found correlated to the
target m-th ROI based on the ULS Group constrained

topology structure detection algorithm in BULS Group
Constrained Topology Structure Detection^ section, the
associated the ultra-ROI time series of these ROIs

ynmp
¼ ynmp

� �T
; D1ynmp

� �T
; D2ynmp

� �T
;…; DLynmp

� �T
	 
T

p ¼ 1; 2;…;Pð Þ
are selected as the candidate time series to be used for the
functional connectivity strength estimation, while the ultra-
ROI time series of other ROIs are discarded. Then, we utilize
an UOLS algorithm to estimate the functional connectivity
strengths between these P ROIs with the target m-th ROI (Li
et al. 2018d). The UOLS algorithm is the combination of the
ULS criterion (Eq. (2)) and the OLS algorithm (Guo et al.
2016). According to Appendix, the ULS criterion can be inte-
grated into the OLS algorithm by incorporating the weak de-
rivatives into the original ROI time series. Therefore, we can
obtain the UOLS algorithm by replacing the original ROI time
series with the ultra-ROI time series (containing the original
ROI time series and its weak derivatives) in the OLS algorithm.
The detailed procedure of the UOLS algorithm can be founded
in Table 1. In the UOLS algorithm, the functional connectivity
strength is estimated in a stepwise orthogonal forward proce-

dure. The value ofMaxUerr ~ynm;~y
n
mp

� �
is regarded as the func-

tional connectivity strength between the target m-th ROI and
candidate p-th ROI.

In summary, we first repeat the BULS Group Constrained
Topology Structure Detection^ sectionM times to detect the
network topology for all subjects (each time a different ROI
for all subjects will be selected to be the target ROI in Eq.
(4)). Then, the network connectivity strengths for all sub-
jects are estimated by repeating the BStrength Estimation of
Sparse Functional Connectivity Networks via UOLS^ sec-
tionM × N times. Each time a different ROI for one subject
will be regarded as the target ROI. In this way, we can obtain
a low-order ULS Group constrained-UOLS network for
each subject.

High-Order Functional Connectivity Networks

Ultra-ROI Time Series Segment

The first step in the high-order network construction is to
employ a sliding window to partition each ROI time series
into multiple overlapping segments. For the one ROI time
series containing Z temporal image volumes, ynm, the total
number of time series segments by using the sliding win-
dow can be computed as K = [(Z − S)/r] + 1, where S is the
size of the sliding window and r denotes the step size
between adjacent windows. Letting ynm kð Þ be the k-th segment
generated from ynm, for the n-th subject, the k-th segments of all
M ROIs can be represented in a matrix form as

Y n kð Þ ¼ yn1 kð Þ; yn2 kð Þ;…; ynM kð Þ� �
ϵRS�M . Further, the set of

the k-th segments for all subjects and all ROIs can be
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represented by Y(k)ϵRS ×M ×N. Thus, by applying a sliding win-
dow to all fMRI time series, we can obtain K sets of time series
segments Y(k). Then, we generate the ultra-ROI time series

segment ~Y kð Þ ¼ Y kð Þð ÞT ; D1Y kð Þ� �T
; D2Y kð Þ� �T

;…; DLY kð Þ� �Th iT
by connecting the original time series segment Y(k) with
its weak derivatives DlY(k)(l = 1, 2, … , L), where ‘T’ in
the (Y(k))T denotes the transpose of interchanging the first
and second dimensions for the three-dimensional tensor.
The details of the weak derivative and the ULS criterion
are provided in Appendix.

Construction of Temporal Low-Order Functional Connectivity
Networks

For each ultra-ROI time series segment ~Y kð Þ, we apply the ULS
Group constrained topology structure detection algorithm across
subjects to detect the functional connectivity network structure
and then apply anUOLS at the individual level to re-estimate the
connectivity strength of each derived connection, produc-
ing a total of K × N temporal low-order functional connec-

tivity networks. Taking each ROI with ynm kð Þ� �
as the vertex

and Cn
m1;m2

kð Þ
n o

1≤m1≤M ; 1≤m2≤M ;m1≠m2ð Þ as the con-
nectivity strength for each pair of vertices, the temporal
low-order functional connectivity network can be expressed

as Gn kð Þ ¼ ynm kð Þ� �
;Cn

m1;m2
kð Þ

� �
k ¼ 1; 2;…;Kð Þ, where

Cn
m1;m2

kð Þ
n o

is the correlation between the m1-th ROI and

m2-th ROI of the n-th subject in the k-th window. A larger

value of Cn
m1;m2

kð Þ
n o

indicates a stronger connection be-

tween the m1-th ROI and m2-th ROI in the k-th window.
The next step is to extract the correlation time series from

the temporal low-order functional connectivity networks. For
the n-th subject, the correlation time series of each ROI-pair

(m1,m2), Cn
m1;m2

¼ Cn
m1;m2

1ð Þ;Cn
m1;m2

2ð Þ;…;Cn
m1;m2

Kð Þ
h iT

ϵRK, can be

obtained by concatenating all Cn
m1;m2

kð Þ k ¼ 1; 2;…;Kð Þ.
Different from ynm that represents the time series of a ROI,
Cn

m1;m2
characterizes the variations of the correlation of ROI-

pair (m1,m2) across time (Chen et al. 2016). Considering the
low-order network is asymmetric, the total number of corre-

lation time series Cn
m1;m2

j1≤m1≤M ; 1≤m2≤M ;m1≠m2

n o
for each

subject is M(M − 1).

Construction of High-Order Functional Connectivity Networks

The final step is to construct high-order functional connectivity
networks based on the correlation time series. For the set of all
correlation time series Cn

m1;m2
j1≤m1≤M ; 1≤m2≤M ;m1≠m2; 1≤n≤N

n o
,

Table 1 Strength estimation of functional connectivity via UOLS algorithm

Neuroinform (2020) 18:1–24 7



we employ the ULS Group constrained topology structure de-
tection algorithm to detect the high-order network structure and
then employ the UOLS to estimate the high-order connectivity
strength, establishing a total of N high-order networks with
identical network structure. Specifically, for each pair of corre-

lation time series ð Cn
m1;m2

n o
; Cn

m3;m4

n o
), En

m1;m2ð Þ; m3;m4ð Þ
n o

is

used to represent the high-order correlation between them. In

other words, En
m1;m2ð Þ; m3;m4ð Þ

n o
is the high-order connectivity

strength between the ROI-pairs (m1,m2) and (m3,m4). By con-

sidering ROI-pair (m1,m2) with Cn
m1;m2

n o
as vertex and

En
m1;m2ð Þ; m3;m4ð Þ

n o
as the weights of edges, the high-order net-

work can be expressed as Gn ¼ Cn
m1;m2

n o
; En

m1;m2ð Þ; m3;m4ð Þ
n o� �

.

Therefore, a high-order network is devoted to describe the re-
lationship of temporal correlations among brain regions.

However, there is an obvious limitation about the high-
order network, i.e., the scale of the high-order network is
too large. As mentioned above, the number of vertices

Cn
m1;m2

n o
is M(M − 1), thus the number of edges is propor-

tional to M4. This large scale of a high-order network leads
to a large amount of computation complexity and the poor
generalization performance. To overcome this limitation,
the Ward’s hierarchical grouping (Chen et al. 2014) is ap-
plied to group the correlation time series into different
clusters. Specifically, when grouping the correlation time
series for all subjects into different clusters, we need to
ensure the consistency of the clustering results between
different subjects. Thus, the correlation time series

Cn
m1;m2

n o
for all subjects (n = 1, 2, … , N) are first connect-

ed together Cm1;m2 ¼ C1
m1;m2

� �T
; C2

m1;m2

� �T
;…; CN

m1;m2

� �T
	 
T

ϵRKN�1.

Then, we apply the Ward’s hierarchical grouping (Chen
et al. 2014) to group Cm1;m2

� �
into different U clusters

and obtain the grouping results {Ω1,Ω2, … ,ΩU}, where
ROI-pair is (m1,m2) ∈Ωu if Cm1;m2 belongs to the u-th clus-
ter. The correlation time series that belongs to the same
cluster have the similar time variation. Then, the mean
correlation time series of the u-th cluster for the n-th sub-
ject can be calculated as follows:

C
n

u ¼
∑ m1;m2ð Þ∈Ωu

Cn
m1;m2

Ωuj j ; ð5Þ

where |Ωu| is the number of elements in Ωu. Finally, the

mean correlation time series of each cluster C
n
u

� �
is used

as the vertices of the high-order network, instead of the

correlation time series Cn
m1;m2

n o
. As a result, the scale of

the high-order network can be significantly reduced and
the generalization capability of the high-order network

can be significantly improved (Chen et al. 2016).

Feature Extraction, Selection, and Classification

Feature Extraction

The ULS Group constrained-UOLS sparse regression is an
asymmetric network model. Thus, the low-order and high-
order ULS Group constrained-UOLS networks are asymmet-
ric networks. In this work, we extract four typical asymmetric
network features from the low-order and high-order ULS
Group constrained-UOLS networks, respectively, including
the weighted clustering coefficient, betweenness centrality,
in-degree, and out-degree (Rubinov and Sporns 2010;
NeuroimageFagiolo 2007). Specifically, the weighted-
clustering coefficient can quantify the probability that the
neighbors of one ROI are connected to each other (Chen
et al. 2016), and reflects the prevalence of clustered connec-
tivity around this ROI (Rubinov and Sporns 2010).
Betweenness centrality reflects the idea that the central nodes,
which take part in many shortest paths from one ROI to an-
other, consequently act as the important controls of informa-
tion flow in the brain network (Rubinov and Sporns 2010). In-
degree and out-degree are the most fundamental measures of
the asymmetric network andmost other measures are based on
the degree of nodes (Bullmore and Sporns 2009). Therefore,
we finally extract these four features from the low-order and
high-order networks, which are widely used to describe the
characteristics of brain networks (Chen et al. 2018, 2016;
Khazaee et al. 2015, 2016). For a node i of an asymmetric
network, the weighted clustering coefficient is defined by

WCi ¼
∑ j≠i∑h≠ i; jð Þ c1=3i; j þ c1=3j;i

� �
c1=3i;h þ c1=3h;i

� �
c1=3j;h þ c1=3h; j

� �
2 di di − 1ð Þ − 2d↔i
� � ;

ð6Þ
where ci, j is the connectivity strength from a node i to j,
di represents the number of adjacent points of a node i,
and d↔i denotes the number of bilateral edges between i
and its adjacent nodes. For a node i, the betweenness
centrality is defined by

BCi ¼ ∑ j≠i;k≠ i; jð Þ
ρjk ið Þ
ρjk

; ð7Þ

where ρjk is the number the of shortest paths from k to j,
and ρjk(i) denotes the number of the shortest paths from k
and j that pass through i. The in-degree and out-degree of
a node i are defined as the number of connections from its
adjacent nodes to i, and the number of connections from i
to its adjacent nodes, respectively.

In this section, four types of features were extracted from
each ROI (in low-order network) or cluster (in high-order
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network). Hence, we can obtain 4 ×M low-order features and
4 ×U high-order features from each subject (M = 90 and the
parameter optimization of U is provided in BImpact of the
Number of Clusters U^ section). Then, we arrange these fea-
tures into a low-order feature vector (with 4 ×M features) and
a high-order feature vector (with 4 ×U features), respectively.

Feature Selection

It is inevitable that the features extracted from functional con-
nectivity networks contain some irrelevant or redundant fea-
tures for MCI classification. Those irrelevant or redundant
features increase the running time of the learning algorithm
and deteriorate the generalization performance of the classifier
(Jain and Singh 2018). Thus, we input the low-order and high-
order feature vectors obtained in BFeature Extraction^ section
into a feature selection filter to eliminate these irrelevant and
redundant features. Specifically, for all features, the correla-
tion coefficients between the features and the class labels of
training samples are first calculated. The featurewith a larger
correlation coefficient is considered as a more discrimina-
tive feature for MCI classification. The feature with its coef-
ficient larger than a predefined threshold ε1 will be selected
to form a feature set γ1. Then, we apply the Relief algorithm
(Zhang et al. 2016) to compute the weights for the features
that do not belong to γ1. The features with their weights
larger than a predefined threshold ε2 will be selected to form
a feature set γ2. Next, by treating the feature values as the
corresponding classification scores for the training samples,
we can compute the area under curve (AUC) for the features
that do not belong to γ1 and γ2. The features whose AUC are
larger than a predefined threshold ε3 will be selected (denot-
ed as γ3). Finally, γ = γ1 ∪ γ2 ∪ γ3 will be the final feature
vector for MCI classification.

Classification

Due to the limited sample size, in this work, a bagging-
based nested 10-fold cross-validation scheme is adopted
to determine the optimal parameter and evaluate the clas-
sification performance. The nested 10-fold cross-valida-
tion scheme contains two cross-validation loops: the inner
cross-validation loop based on the training set (containing
9 fold subjects) is used to determine the optimal parame-
ters including feature selection parameters ε1 ([0.1,
0.15,⋯, 0.5]), ε2 ([0.01, 0.02, ⋯, 0.1]) and ε3 ([0.1,
0.15,⋯, 0.5]), and the outer cross-validation loop based
on the test set (containing 1 fold subjects) is applied to
evaluate the generalization performance of DCT model.

The bagging approach generates a strong classifier by
combining a series of weak classifiers which are con-
structed based on the bootstrapped samples from the train-
ing dataset (Shah et al. 2015; Breiman 1996). It should be

noted that the weak classifiers need to be relatively unsta-
ble, such that the classification results of them can change
considerably even with a slightly different training
dataset. Therefore, we adopt a typically unstable classifier
(i.e. DCT) to construct the weak classifiers. Then, we
combine the weak classifiers via the bagging approach
to generate a strong classifier.

For each fold of the outer cross-validation loop, two DCT
sub-models are constructed based on the low-order feature
vector and the high-order feature vector selected in BFeature
Selection^ section, respectively. For the test data set, each
DCT sub-model can provide a classification score for each
subject, and we get the final classification score for each sub-
ject by combining the classification scores from two DCTsub-
models with a certain fusion weight α.

To characterize performance comparison between dif-
ferent methods, we use four frequently used performance
measures including accuracy (ACC), sensitivity (SEN),
specificity (SPC), and AUC (Li et al. 2018b; Wang et al.
2017). The accuracy, sensitivity, and specificity are de-
fined as follows (Li et al. 2017):

ACC ¼ TP þ TN
TP þ FN þ TN þ FP

ð8Þ

SEN ¼ TP
TP þ FN

ð9Þ

SPC ¼ TN
TN þ FP

ð10Þ

where TP, FP, TN, and FN denote the true positive, false
positive, true negative, and false negative, respectively. In
order to obtain reliable evaluation results, we repeat the 10-
fold cross-validation for 20 times and report our classification
results as the average of these 20 repetitions.

Summary of Methodology

The proposed fusion of high- and low-order functional
connectivity networks framework is summarized and
listed as follows:

(1) Data Acquisition and Preprocessing:
1) Scan the fMRI images of twenty-eight MCI patients and

thirty-three NCs using a standard echo-planar imaging
(EPI) sequence on a 3 Tesla Siemens TRIO scanner;

2) Preprocess the fMRI images is performed using the
SPM8 software package, including removal of first 10
fMRI volumes, slice timing correction, head-motion
correction, regression of nuisance signals, signal de-
trending, and band-pass filtering.

(2) The construction of the low-order networks:
1) Connect the ROIs time series with its weak derivatives

to generate the ultra-ROI time series;
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2) Detect the topology of low-order networks via the
ULS Group constrained topology structure detec-
tion algorithm;

3) Apply an UOLS algorithm to estimate the functional
connectivity strength of the low-order networks.

(3) The construction of the high-order networks:
1) Apply a sliding window to partition the original

ROIs time series into multiple overlapping segments
of subsequence;

2) Generate the ultra-ROI time series segment by
connecting the each ROIs time series segment with its
weak derivatives;

3) Similar to the construction of low-order networks, con-
struct the temporal low-order networks based on the
ultra-ROI time series segments via the ULS Group
constrained topology structure detection algorithm and
UOLS algorithm;

4) Stack all temporal low-order networks of all subjects
together (Leonardi et al. 2013) to generate a set of cor-
relation time series, with each correlation time series
corresponding to the strength of the edge in the same
coordinate of stacked networks;

5) Apply Ward’s hierarchical grouping (Chen et al. 2014)
to group the correlation time series into different clus-
ters. Calculate the mean correlation time series in each
cluster, and take these mean correlation time series as the
new vertices of the high-order network;

6) Different from the construction of low-order net-
works based on the ROI time series, the high-
order networks are constructed based on the mean
correlat ion t ime series via the ULS Group
constrained topology structure detection algorithm
and UOLS algorithm, where, for each subject, we
can obtain a high-order functional connectivity net-
work by this step.

(4) Feature Extraction, Selection, and Classification:
1) Extract low- and high-order features from low- and

high-order networks, respectively. Select the most dis-
criminative features from the low- and high-order fea-
tures, respectively;

2) Construct two DCT sub-models (Akhoondzadeh 2016)
based on the selected low- and high-order features, re-
spectively, and obtain the final classification scores for
each subject by combining the classification scores from
the two DCTsub-models with a certain fusion weight α.

Results and Discussions

The Impact of Parameters Optimization

In this section, we investigate the influence of different param-
eters on the classification performance, including the highest
order of the weak derivatives L, the window size S, the step
size r, the sliding window function, the number of clusters U,
and the fusion weight α, respectively.

Effect of the Highest Order of the Weak Derivatives L

In order to extract the information of relations among fMRI

data points, we incorporate the weak derivatives Dlynm
l ¼ 1; 2;…; Lð Þ into the original ROI time series ynm, where
L is the highest order of the weak derivatives and determines
the number of weak derivatives used in the low- and high-
order network construction. We seek to explore how the clas-
sification performance of the low-order, high-order, and fu-
sion frameworks are influenced by the changes of L.
Specifically, we varied L from 0 to 4 with a step of 1, and
reported the classification accuracy and AUC values of the
low-order, high-order and fused methods in Fig. 2. When
L = 0, these classification frameworks are constructed only
based on the original ROI time series without the weak deriv-
atives. It can be noticed that the classification performance at
L = 0 is inferior to that at 0 < L ≤ 4, confirming the importance
of incorporating the weak derivatives into the original ROI
time series to improve the classification performance.
Furthermore, the maximum accuracy and AUC values are
achieved at L = 2, indicating that the combination of the

Fig. 2 Classification accuracy (a)
and AUC (b) with respect to L
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first-order derivative and the second-order derivative is capa-
ble of representing the relations among fMRI data points. This
phenomenon can be interpreted as that the effect of weak-
noise may be amplified in high-order weak derivatives (L > 2).

Influence of Window Size, Step Size and Window Function
on Classification Performance

One important step of the proposed method is using a sliding
window to partition each ROI time series into multiple over-
lapping segments. Determining the optimal window size (S),
step size (r) and function of the sliding window is essential to
the proposed classification framework. In this section, we seek
to investigate how the window size, step size, and function of
the sliding window affect the classification performance of the
proposed high-order and fused methods. Specifically, we var-
ied S from 45 to 85 in steps of 5, and r from 1 to 2. With the
window function maintained as the rectangular function, the
classification accuracy of the high-order and fused methods
with respect to S and r is shown in Fig. 3.

Compared to r = 2, the high-order and fused methods yield
a relatively preferable performance when using r = 1. This
phenomenon can be interpreted as that a larger step size leads
to a less number of time series segments, while the number of
time series segments is equal to the length of correlation time
series in the high-order functional connectivity. A relatively
short correlation time series may cause the insufficient infor-
mation for representing the temporal variations among the
correlations. It also can be understood as some temporal var-
iations among correlations may be ignored while a relatively
large step size is adopted.

By fixing r = 1, a relatively high and robust accuracy for the
fusedmethod can be achieved, when S varies between 55 and 70,
and the highest accuracies for the high-order method are
achieved within the range of 65 ≤ S ≤ 70. However, when S be-
comes too small or too large, the classification accuracy de-
creases gradually. This can be interpreted from two aspects.
First, when S is too small, the temporal low-order networks are

Table 2 Mathematical representation of the tested sliding window
functions

Windows
functions

ω(s)

Rectangular 1

Triangular 1− s− S−1ð Þ=2
S=2




 



Hann 0:5 1−cos 2πs

S−1

� �� �
Hamming 0:54−0:46cos 2πs

S−1

� �
Sine sin πs

S−1

� �
Gaussian e

−12
s− S−1ð Þ=2
0:4 S−1ð Þ=2

� �2
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Fig. 3 Classification accuracy of high-order and fused methods against
different S and r

Fig. 4 Classification accuracy of high-order and fused methods against
different sliding window functions

Fig. 5 Classification accuracy of high-order and fused methods with
different the number of clusters U



constructed based on small time series segments which can seri-
ously reduce the reliability of correlation in the temporal low-
order networks. Second, when S is too large, the number of time
series segments is insufficient in computing the correlation time
series, causing the high-order correlation, which is calculated
based on the low-order correlation time series, unreliable.

By fixing r = 1 and S = 65, we explored the influence of
sliding window function using six commonly used window
functions, including Rectangular, Triangular, Hann,
Hamming, Sine, and Gaussian. The mathematical representa-
tion of these windows is shown in Table 2. The classification
accuracies of high-order and fused methods are shown in
Fig. 4. The Triangular window achieved the lowest classifica-
tion accuracy while the Rectangular, Hann, Hamming win-
dow achieved relatively high classification accuracy.

Impact of the Number of Clusters U

In order to reduce the scale of the high-order networks, we
perform a Ward’s hierarchical grouping method (Chen
et al. 2014) to group the correlation time series into differ-
ent clusters. We perform a series of experiments to explore
the influence of the different number of clusters U on the
classification performance. Specifically, we varied U from

100 to 700 in steps of 100 and report the ACCs of the
proposed high-order and fused methods in Fig. 5. It can
be observed that the high-order and fused methods yield a
relatively high and robust classification accuracy. The
highest ACCs of the high-order and fused methods are
achieved at U = 300. However, the classification accuracy
decreases gradually when U becomes too small or too
large. This is reasonable since U determines the number
of clusters and further controls the scale of the high-order
networks. When U is too small, the correlation time series
with different temporal variations are grouped into the
same cluster, thus reducing the purity of clusters and the
reliability of the mean correlation time series of each clus-
ter. It further leads to the unreliability of high-order net-
works, which is constructed based on the mean correlation
time series of each cluster. Meanwhile, when U is too large,
the correlation time series with the similar temporal varia-
tions are partitioned into different clusters. It may cause the
scale of the high-order network to be too large and produce
redundant high-order features, thus deteriorating the per-
formance of the classifiers.

Effect of the Fusion Weight α

The fusion weight α determines the contribution of the
low-order and high-order networks in the final fusion

Fig. 6 Classification accuracy (a)
and AUC (b) of the proposed
fused method with respect to α

Table 3 The number of extracted
features and selected features for
each method

Method Number of extracted
features

Number of selected
features

Low-order correlation-based 180 30

High-order correlation-based 600 82

Fused correlation-based 780 112

Low-order ULS Group constrained-UOLS 360 32

High-order ULS Group constrained-UOLS 1200 299

Fused ULS Group constrained-UOLS (Proposed) 1560 331
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classification framework. A larger α value indicates the
larger contribution of the high-order networks and smaller
contribution of the low-order networks to the classifica-
tion. When α = 0, the fusion classification framework is
reduced to the low-order sub-model, and when α = 1, the
fusion classification framework is reduced to the high-
order sub-model. In this experiment, we seek to investi-
gate how the classification performance of the fusion
framework is inf luenced by the changes of α .
Specifically, we changed the value of α from 0 to 1 with
a step of 0.05, and reported the classification accuracy
and AUC values of the fusion classification framework
in Fig. 6. Relatively high accuracy values was achieved
with the range of 0.45 ≤ α ≤ 0.55, indicating the relatively
equal contribution from the low- and high-order connec-
tivity. On the other hand, AUC of more than 0.95 can be
achieved over a relatively wide range of 0.45 ≤ α ≤ 0.85,
indicating relatively robust and consistent classification
performance with respect to α. Furthermore, higher

classification accuracy and AUC were achieved when
the fusion strategy is used (0 < α < 1), indicating the dom-
inance of fusing the dynamic correlation information and
the holistic correlation information.

Classification Accuracy

In this work, we compare the MCI classification performance
of the proposed fused ULS Group constrained-UOLS method
with other methods, which include the conventional low-order
correlation-based method, the high-order correlation-based
method (Chen et al. 2016), the fused correlation-basedmethod
(Chen et al. 2016), the low-order ULS Group constrained-
UOLS method, and the high-order ULS Group constrained-
UOLS method on the same dataset. As mentioned in BFeature
Extraction^ section, we extract four types of features from the
low-order and high-order ULS Group constrained-UOLS net-
works, including the weighted clustering coefficient, between-
ness centrality, in-degree, and out-degree. Therefore, 4 ×M
low-order features and 4 ×U high-order features are extracted
from low-order and high-order ULS Group constrained-
UOLS networks, respectively (M = 90 and U = 300).
Because low-order and high-order correlation-based networks
are non-sparse symmetric matrices, only the weighted cluster-
ing coefficient and degree can be extracted from the
correlation-based networks. Hence, we extract 2 ×M low-
order features and 2 ×U high-order features from low-order
and high-order correlation-based networks, respectively (M =
90 and U = 300). For each competing method, we use the
nested 10-fold cross-validation scheme described in
BClassification^ section to optimize the feature selection pa-
rameters ε1, ε2 and ε3, and evaluate the classification perfor-
mance. The number of selected features fed into the classifier
of each method is provided in Table 3.

The performance measures are computed according to the
average results of the 10-fold cross-validation that is repeated
20 times and shown in Table 4. The proposed fused ULS
Group constrained-UOLS method yields the best accuracy
of 85.5%, the best sensitivity of 86.6%, and the best AUC of

Table 4 Performance comparison between correlation-based and ULS Group constrained-UOLS networks

Method ACC(%) SEN(%) SPC(%) AUC p-values

Low-order correlation-based 62.4 51.4 71.7 0.626 2.7 × 10−17

High-order correlation-based 69.3 63.9 73.9 0.772 3.8 × 10−13

Fused correlation-based 69.7 63.0 75.3 0.800 1.8 × 10−12

Low-order ULS Group constrained-UOLS 81.5 74.3 87.6 0.736 2.0 × 10−13

High-order ULS Group constrained-UOLS 81.6 72.9 88.9 0.908 5.6 × 10−11

Fused ULS Group constrained-UOLS (Proposed) 85.5 86.6 84.6 0.960 –

The numbers marked bold indicate the best performance
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0.960, respectively. Although the best specificity of 88.9% is
obtained by the high-order ULS Group constrained-UOLS
method, it also indicates that the dynamic correlation informa-
tion is important and should be incorporated into MCI classi-
fication. By comparing these results, we can demonstrate the
superiority of fused ULS Group constrained-UOLS method
from three aspects. First, the sparse regression-based models
(ULS Group constrained-UOLS) outperform the correlation-
based models, indicating that the sparse network structure and
the information of weak derivatives are beneficial to MCI
classification. Second, the high-order networks perform better
than the low-order networks, confirming the importance of
dynamic correlation information for MCI classification.
Third, the fusion networks have better classification perfor-
mance than the corresponding low-order and high-order net-
works, proving the necessity of simultaneously considering
the dynamic correlation information and the holistic correla-
tion information. Furthermore, our proposedmethod performs
significantly better than all the competing methods in terms of
ACC, SPC, and AUC based on the two-sample t-test results

on 20 repetitions. Table 4 also shows the p-values for the
comparison of AUC between the proposed method and other
methods. Figure 7 shows the ROC curves of all compared
methods. It can be observed that the proposed method
achieves the largest area under ROC curves, indicating its
excellent diagnostic ability with respect to the changes of the
discrimination threshold.

Low-Order Functional Connectivity Network

Figure 8a, b show two examples of the low-order functional
connectivity networks for MCI and NC, respectively. The dis-
crepancy network obtained by subtracting the MCI network
from the NC network is shown in Fig. 9. The two functional
connectivity networks show the relatively different patterns in
terms of network topology and strength. For instance, the
connectivity between bilateral precuneus is disrupted in MCI
subjects, compared to the NC subjects who show stronger
connectivity strength between them, which is consistent with
the previous study (Haussmann et al. 2017; Mi et al. 2017)
that the atrophy in precuneus is related to AD/MCI.
Figure 10a, b graphically show the topology of the aforemen-
tioned networks for MCI and NC subjects, respectively. With
the same threshold of 0.4, totally 51 connections are survived
in the NC network while only 42 connections are survived in
the MCI networks. This observation is consistent with the
previous study (Zhou et al. 2013), indicating that some con-
nections of the MCI network have been disrupted by patho-
logical attacks.

Moreover, to demonstrate the temporal variation of
correlations, we compare a series of temporal low-order
functional connectivity networks. Specifically, Fig. 11a
shows the low-order functional connectivity network of
one MCI subject, which characterizes the holistic corre-
lation between different ROIs calculated on the whole
time series. The low-order correlation between a pair of
ROIs shows no temporal variation. In order to extract

Fig. 8 Low-order functional
connectivity networks for MCI
(a) and NC (b)
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temporal variation information contained in the fMRI
time series, the sliding window approach is employed to
construct a collection of temporal low-order functional
connectivity networks, with each of them computed
based on a segment of fMRI subseries that is equivalent
to the length of sliding window. Some of the temporal
networks are provided in Fig. 11b-f. It is clearly observed
that these temporal low-order networks, which are com-
puted using subsequence fMRI subseries, consistently
change over the scanning period. Therefore, we can con-
clude that the conventional low-order network, which is

computed using the entire fMRI time series, is unable to
characterize the temporal variations of correlations be-
tween different ROIs over the entire scanning period,
and thus the other type of network should be constructed
to effectively characterize the dynamic correlation be-
tween the ROIs. The existing methods, which use the
dynamic networks (temporal low-order networks) for di-
agnosing brain diseases (Wee et al. 2016; Zhu et al.
2016), extract the network features from the temporal
low-order networks directly to construct the brain disease
classifiers. These methods do not take into account the

Fig. 10 The structure of two
aforementioned networks for
MCI (a) and NC (b)
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Fig. 11 Conventional and temporal low-order functional connectivity networks for MCI. (a) Conventional network; (b–f) Temporal networks



temporal continuity of correlations between ROIs. In oth-
er words, these methods consider each temporal low-
order network independently and omit the information
of relative positions of the temporal low-order networks.
The absence of this information may lead to a suboptimal
classification model. Therefore, we further construct the
high-order networks to overcome the limitation of the
temporal low-order network methods.

The Clustering in the Construction of High-Order
Functional Connectivity Network

As mentioned earlier, Ward’s hierarchical grouping (Chen
et al. 2014) is applied to group the correlation time series into
different clusters. In this clustering method, parameter initial-
ization is not required, reducing the dependence of the method
on the hyper-parameters and thus improving the robustness of
clustering results. Some correlation time series are displayed
in Fig. 12a. It can be clearly observed that the correlations
between ROIs undergo large variation over the scanning peri-
od. Furthermore, the significant correlation between ROIs is
only occurred for a short period of time and is almost zero in
the rest of the time series. Figure 12b shows the clustering
results for the correlation time series, with those belonging
to the same cluster being depicted in the same color. By com-
paring Figs. 12a and b, we find that the correlation time series
with similar temporal variations are grouped into the same
cluster, while the time series with dissimilar temporal varia-
tion are assigned to different clusters. In Fig. 12c, we provide
the mean correlation time series for each cluster. By using the
mean correlation time series of each cluster as the new vertices
of a high-order network, we construct a collection of small-
scale high-order functional connectivity networks, without
largely losing the important dynamic correlation information.

The Most Discriminative Regions and Clusters

Themost discriminative brain regions and clusters are defined as
the ones with the highest frequency of selection in 20 repetitions
of 10-fold cross-validation, corresponding to the low-order and
the high-order network, respectively. As mentioned above, we
use clusters to replace the original correlation time series as the
new vertices of high-order networks for reducing the scale of
networks. Hence, for high-order networks, we select the most
discriminative clusters as the biomarker for MCI identification.

The Most Discriminative Brain Regions and Low-Order
Connections

The most discriminative brain regions selected from the
low-order networks are listed in Table 5 and displayed in
Fig. 13, which include the right olfactory cortex
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Fig. 12 Clustering results of the correlation time series. a Original
correlation time series; b Three clusters of the correlation time series
based on Ward’s algorithm (correlation time series from the same
cluster are depicted with the same color); c The mean correlation time
series of each cluster



(OLF.R), right inferior frontal gyrus triangular part
(IFGtriang.R), left hippocampus (HIP.L), left median cin-
gulate and paracingulate gyri (DCG.L), and left superior
frontal gyrus orbital part (ORBsup.L). These regions are
frequently reported as highly associated with AD/MCI
pathology (Chen et al. 2016; Matsuda 2013; Salvatore
et al. 2015; Vasavada et al. 2015; Xu et al. 2016).
Particularly, olfactory deficits are prevalent in AD/MCI
patients (Vasavada et al. 2015). The symptoms of

olfactory deficits normally appear before the clinical cog-
nitive deficits and memory deficits, which is consistent
with the fact that AD attacks the central olfactory struc-
tures preferentially (Vasavada et al. 2015). Hence, the
decline in olfactory cortex (OLF), can be regarded as
an earlier and effective biomarker for identifying MCI
from healthy elderly. Previous works also reported that
hippocampus (HIP) is a key brain region for memory
(Jaroudi et al. 2017; Du et al. 2001; Sze et al. 1997).

Table 5 The top 20 most discriminative ROIs selected from the low-order network

No. ROI index ROI abbr. References Location

1 22 OLF.R (Sun et al. 2012; Vasavada et al. 2015) Frontal lobe

2 14 IFGtriang.R (Salvatore et al. 2015; Chen et al. 2016; Xu et al. 2016) Frontal lobe

3 37 HIP.L (Salvatore et al. 2015) Limbic lobe

4 33 DCG.L (Matsuda 2013) Limbic lobe

5 5 ORBsup.L (Xu et al. 2016) Frontal lobe

6 23 SFGmed.L (Xu et al. 2016) Frontal lobe

7 43 CAL.L (Xu et al. 2016) Occipital lobe

8 20 SMA.R (Rose et al. 2006) Frontal lobe

9 16 ORBinf.R (Salvatore et al. 2015) Frontal lobe

10 6 ORBsup.R (Xu et al. 2016; Wee et al. 2012b) Frontal lobe

11 72 CAU.R (Salvatore et al. 2015) Sub cortical gray nuclei

12 62 IPL.R (Salvatore et al. 2015) Parietal lobe

13 71 CAU.L (Salvatore et al. 2015) Sub cortical gray nuclei

14 75 PAL.L (Matsuda 2013) Sub cortical gray nuclei

15 66 ANG.R (Xu et al. 2016) Parietal lobe

16 31 ACG.L (Salvatore et al. 2015; Wee et al. 2012b) Limbic lobe

17 38 HIP.R (Xu et al. 2016) Limbic lobe

18 12 IFGoperc.R (Chen et al. 2016) Frontal lobe

19 36 PCG.R (Wee et al. 2012b) Limbic lobe

20 57 PoCG.L (Xu et al. 2016) Central region

Fig. 13 The top 20 most
discriminative ROIs
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The atrophy in HIP is believed to be an early biomarker
of AD/MCI. On the other hand, the most discriminative
brain regions are located mainly in the frontal lobe and
limbic lobe. In the previous studies, the frontal lobe,
which plays an important role in the integration of non-
task based memories stored, has been reported as the
important brain area associated with AD/MCI pathology
(Ribeiro and Busatto Filho 2016). The limbic lobe is
believed to be highly related with language and memory,
in which AD patients showed an obvious reduction in
regional cerebral blood flow (Takahashi et al. 2017).

A multiple linear regression between CDR score and
feature values for the selected top 20 most discriminative
ROIs is performed to examine the relationship between
the CDR score and the selected ROIs. Then, an Analysis
of Variance (ANOVA) is adopted to check the signifi-
cance of the correlation between the CDR score and the
selected ROIs. The ANOVA F-test value is 2.003 (p-value

is 0.03), which is larger than the critical value of F-test
under 95% confidence interval, indicating that the CDR
scores show a significant linear correlation with feature
values of the selected ROIs. Thus, the most discriminative
ROIs selected in this work are highly correlated to the
CDR score, in line with the diagnosis criteria of MCI
subjects used in this study.

In addition, we calculate the low-order connections
among the top 20 most discriminative ROIs by averaging
the low-order connectivity strengths of all MCI and NC
subjects, respectively. The low-order connections are pro-
vided in Fig. 14. The discriminative power of each con-
nection between MCIs and NCs are evaluated by using
the two-sample t-test, and p-values of all connections are
provided in Fig. 15a. Figure 15b provides the connections
that are significantly different (p < 0.05) between NC and
MCI subjects. According to statistical analysis results, we
observe a significant difference in functional connection

Fig. 14 Connectivity strengths
among the top 20 most
discriminative ROIs identified
from the low-order network
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between left and right hippocampi (HIP.L and HIP.R) for
MCI and NC subjects. The connectivity strength between
HIP.L and HIP.R was significantly larger in MCI subjects
compared to NC subjects. This phenomenon can be
interpreted as that the MCI subjects may require stronger
interactions between some brain regions than NC subjects
for brain compensation due to cognitive impairment
(Salvatore et al. 2015), which is consistent with the brain
compensatory phenomenon that has been reported in the
literature (Jie et al. 2016; Qi et al. 2010).

TheMost Discriminative Clusters and High-Order Connections

As for the high-order networks, the top 20 most discrimina-
tive clusters and the ROI-pairs contained in these clusters
are listed in Table 6. Most of these clusters contain only one
ROI-pair. The ROI-pairs in the most discriminative clusters
include the left middle occipital gyri−right middle occipital
gyri (MOG.L−MOG.R), left Heschl gyrus−left superior
temporal gyrus (HES.L−STG.L), left middle occipital gyri
−left inferior occipital gyrus (MOG.L−IOG.L), suggesting

that the time-varying characteristics of the correlation time
series corresponding to these ROI-pairs play an important
role in MCI classification.

Additionally, Fig. 16 shows the difference of high-
order connections among the top 20 most discriminative
clusters between MCI and NC subjects. Different from the
low-order connection represents the functional connectiv-
ity strength of between two ROIs, the high-order connec-
tion, which is calculated based on the low-order correla-
tion time series, describes the relation between two clus-
ters (i.e. the relation between the low-order connections).
The significant difference in high-order connection is ob-
served between the cluster 13 (containing ROI-pair
MOG.L−IOG.L) and cluster 9 (containing ROI-pair
MOG.L−MOG.R). This high-order connection (row 13,
column 9) in NC subjects is stronger than that in MCI
subjects, which implies that the temporal variations of
the low-order connectivity strength between MOG.L and
IOG.L is highly correlated with the temporal variations of
the low-order connectivity strength between MOG.L and
MOG.R in NC subjects, but not in MCI subjects. This

Table 6 The top 20 most discriminative clusters selected from the high-order network

Clusters ROI-pairs Clusters ROI-pairs

Cluster 1 CUN.L−CUN.R Cluster 11 IOG.L−MOG.L

Cluster 2 SMG.R−IPL.R Cluster 12 SMG.R−SMG.L

Cluster 3 INS.R−HES.R Cluster 13 MOG.L−IOG.L
Cluster 4 STG.L−ROL.L Cluster 14 MFG.R−IFGtriang.R; IFGtriang.R−MFG.R

Cluster 5 SMA.R−SMA.L Cluster 15 TPOsup.R−AMYG.L

Cluster 6 SFGmed.L−SFGdor.L Cluster 16 ROL.R−INS.L; INS.L−ROL.R
Cluster 7 HES.R−INS.R Cluster 17 INS.R−INS.L
Cluster 8 SOG.R−MOG.L Cluster 18 AMYG.L−TPOsup.L
Cluster 9 MOG.L−MOG.R Cluster 19 HES.L−STG.L
Cluster 10 INS.L−INS.R Cluster 20 MOG.R−MOG.L

Note that the brain networks constructed in this paper are asymmetric networks, thus the ROI-pair (m1,m2) is different from the ROI-pair (m2,m1)

Fig. 16 Comparison of
correlation difference among the
top 20 most discriminative
clusters identified based on the
high-order connectivity networks,
where elements with zero indicate
no correlation between two
clusters
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difference between MCI and NC can be used as an effec-
tive biomarker for identifying MCI from NC.

Conclusion

In this paper, we proposed a novel fusion approach to infer the
high- and low-order functional connectivity networks for MCI
classification. By using the ULS Group constrained topology
structure detection algorithm and UOLS algorithm, our ap-
proach successfully extracts the temporal information of con-
nections among fMRI data, which can be further used to con-
struct the functional connection for the low- and high-order
networks. Furthermore, hierarchical grouping (based on
Ward’s algorithm) is applied to reduce the scale and computa-
tional complexity of the high-order network. By fusing the
DCT sub-models that are trained using the low- and high-
order networks separately, our proposed approach integrates
both the information of holistic correlations and the temporal
variations at the disease identification stage. Promising results
obtained demonstrate the superiority of our proposed method
and also the importance of integrating both the conventional
holistic correlation and the dynamic temporal correlation infor-
mation for improving the performance of MCI classification.
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Appendix

The weak derivative and Ultra-Least Squares Criterion

A linear system with k inputs and one output can be described
by a linear regression model below:

y tð Þ ¼ ∑k
i¼1θixi tð Þ þ e; ð11Þ

where y(t) and xi(t) denote the system output and input vari-
ables, θi is the system parameter, and e is the system noise. For
this system, the ordinary least squares regression problem can
be solved via the least squares criterion as follows:

JLS ¼ y tð Þ−Σk
i¼1θixi tð Þ

�� ��2
2
; ð12Þ

where t ∈ [0, T], y(t) and xi(t) are time dependent signals
with finite amplitude on the interval [0, T], and thus y(t)
and xi(t) are L2 integrable functions belong to the
Lebesgue space L2([0, T]), where L2([0, T]) = {x(t)| ∫[0,
T]|x(t)|

2dt < + ∞}. Supposing ŷ tð Þ is prediction function
of y(t), it is obvious that the least squares criterion only
measures the discrepancy between y(t) and ŷ tð Þ on the
whole interval [0, T], ignoring how the discrepancy dis-
tributes at every individual time point. Therefore, the least
squares criterion cannot accurately describe the similarity
of function shapes and discards the information of corre-
lations among data points, leading to a common
overfitting problem for identification of the dynamic sys-
tem (Li et al. 2018a; Guo et al. 2016).

In order to overcome this limitation, we integrate a weak
derivative part into the least squares criterion to construct an
ULS criterion:

JULS ¼ y tð Þ−Σk
i¼1θixi tð Þ

�� ��2
2
þΣL

l¼1 Dly tð Þ−Σk
i¼1θiD

lxi tð Þ
�� ��2

2
ð13Þ

whereDl is the l-th order weak derivative (l = 1, 2,… , L). The
weak derivative, which measures interconnections among the
data points, is a generalization of the derivative that is in the
usual sense. Different from the derivatives which can be cal-
culated only for the differentiable functions, the weak deriva-
tives can be calculated for all integrable functions. Supposing
that x(t) belong to the Lebesgue space L2([0, T]), the l-th order
weak derivative of x(t) is defined as the functionDlx(t)ϵL2([0,
T]) which satisfies

∫ 0;T½ �x tð ÞDlφ tð Þdt ¼ −1ð Þl∫ 0;T½ �φ tð ÞDlx tð Þdt; ð14Þ

for all infinitely differentiable functions φ(t) with
φ(0) =φ(T) = 0. As discussed in (Guo et al. 2016), the regres-
sion model fitted by weak derivatives takes into account the
relationship among data points and is therefore more effective
and accurate. Given discrete observations of the system
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signals, {y(j)}, {xi(j)}, j = 1, 2,… , J, the l-th order weak de-
rivative can be calculated as

Dly hð Þ ¼ Σhþ J 0
j¼h y jð Þφ lð Þ j−hð Þ h ¼ 1; 2;…; J−J 0ð Þ ð15Þ

Dlxi hð Þ ¼ Σhþ J 0
j¼h xi jð Þφ lð Þ j−hð Þ h ¼ 1; 2;…; J−J 0ð Þ ð16Þ

where φ(t) (t ∈ [0, J0]) is the test function, which is l-th order
derivable on the interval [0, J0], φ

(l)(t) denotes the l-th order
derivative of the φ(t). Due to the l-th order weak derivative
(l = 1, 2,… , L) of original signals is used in this work, the test
function is required to have L-th order derivative. Therefore,
the (L + 1)-th order B-spline basis function which satisfies the
above condition is adopted as the test function in this paper.
More details of B-spline basis function and weak derivative
can be found at Guo et al. (2016).

The Lebesgue space L2([0, T]) = {x(t)| ∫[0, T]|x(t)|2dt < +∞}
is a function space, in which the functions are L2 integrable
(i.e. the l2-norm of the function is finite). Meanwhile, the
Sobolev space HL([0, T]) = {x(t)| x(t) ∈ L2([0, T]), Dlx ∈
L2([0, T]), l = 1, 2,⋯, L} is a subspace of L2([0, T]), in which
not only the functions but also the l-th order weak derivatives
of the functions (l = 1, 2,… , L) are L2 integrable (i.e. belong
to L2([0, T])). The definition of Sobolev space HL([0, T]) can
also be written as

HL 0;T½ �ð Þ
¼ x tð Þj∫ 0;T½ � x tð Þj j2dt < þ∞; ∫ 0;T½ � Dlx



 

2dt < þ∞; l ¼ 1; 2;⋯;L
n o

:

ð17Þ

The least squares criterion only needs to calculate l2-norm of
the discrepancy between the observed signal y(t) and the model

prediction function ∑k
i¼1θixi tð Þ, and thus is defined in the

Lebesgue space L2([0, T]). However, the ULS criterion calcu-
late not only the l2-norm of the discrepancy between y(t) and
∑k

i¼1θixi tð Þ, but also the l2-norm of the discrepancy between

the weak derivatives of y(t) and ∑k
i¼1θixi tð Þ. Therefore, the

weak derivatives of y(t) and ∑k
i¼1θixi tð Þ are required to belong

to L2([0, T]), and further the functions y(t) and xi(t) of the ULS
criterion are required to belong toHL([0, T]). For these reasons,
the ULS criterion is defined in the Sobolev space HL([0, T]).

The fMRI time series is a low-frequency signal with finite
energy. Thus, the fMRI time series and its weak derivatives
are L2 integrable functions (i.e. belong to L2([0, T])). The
fMRI time series can be further considered as the discrete
observations of the signals belonging to HL([0, T]).
Therefore, the ULS criterion is applicable to the study of
fMRI time series.

The new criterion considers not only the discrepancy be-
tween the observed signal and the model prediction function,
but also the discrepancy between their weak derivatives.
Thus, the ULS criterion is a more accurate evaluation standard
for the model fitness. Essentially, the ULS criterion is the
combination of the least squares criterion with the weak

derivative of the original signals. By connecting the original
signals y(t) and xi(t) with their weak derivatives Dly(t) and
Dlxi(t)(l = 1, 2, … , L), we generate the corresponding ultra-

signals ~y tð Þ ¼ y tð Þð ÞT ; D1y tð Þ� �T
; D2y tð Þ� �T

;…; DLy tð Þ� �Th iT
and

~xi tð Þ ¼ xi tð Þð ÞT ; D1xi tð Þ
� �T

; D2xi tð Þ
� �T

;…; DLxi tð Þ
� �Th iT

,

and Eq. (13) can be rewritten as

JULS ¼ ‖ ~y∼ tð Þ−Σk
i¼1θix

∼
i tð Þ‖22: ð18Þ

Therefore, we can integrate the ULS criterion into our pro-
posed framework by incorporating the weak derivatives into
the original time series.
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