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Abstract
Automatic segmentation of the hippocampus from 3D magnetic resonance imaging mostly relied on multi-atlas registration
methods. In this work, we exploit recent advances in deep learning to design and implement a fully automatic segmentation
method, offering both superior accuracy and fast result. The proposed method is based on deep Convolutional Neural
Networks (CNNs) and incorporates distinct segmentation and error correction steps. Segmentation masks are produced by
an ensemble of three independent models, operating with orthogonal slices of the input volume, while erroneous labels
are subsequently corrected by a combination of Replace and Refine networks. We explore different training approaches
and demonstrate how, in CNN-based segmentation, multiple datasets can be effectively combined through transfer learning
techniques, allowing for improved segmentation quality. The proposed method was evaluated using two different public
datasets and compared favorably to existing methodologies. In the EADC-ADNI HarP dataset, the correspondence between
the method’s output and the available ground truth manual tracings yielded a mean Dice value of 0.9015, while the required
segmentation time for an entire MRI volume was 14.8 seconds. In the MICCAI dataset, the mean Dice value increased to
0.8835 through transfer learning from the larger EADC-ADNI HarP dataset.

Keywords Hippocampus segmentation · Convolutional neural networks · Deep learning · Error correction ·
Transfer learning · Magnetic resonance imaging

Introduction

Medical studies have proven that there is a close relationship
between the hippocampus and memory function (Scoville
and Milner 2000). Volume reduction and morphological
degeneration of the hippocampus have been associated
with the existence of neurological diseases, such as the
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Alzheimer’s disease and other forms of dementia (Du et al.
2001). Additionally, patients with extensive hippocampal
damage may suffer from depression (Bremner et al. 2000),
epilepsy (Bernasconi et al. 2003) or schizophrenia (Harrison
2004).

Structural and volumetric analysis of the hippocampus
can aid clinicians in the diagnosis and early detection
of related pathologies (Jack et al. 2011). Thus, the
hippocampus has been the subject of several longitudinal
studies and medical research projects (Leung et al. 2010;
Bateman et al. 2012). Analysis of the hippocampus
is usually performed using magnetic resonance imaging
(MRI) of the brain (Fig. 1). While manual segmentation
of the hippocampus by specially trained human raters is
considered to be the gold standard, it is also laborious
and expensive. Furthermore, manual segmentations are
susceptible to inter-rater and intra-rater variability.

The aforementioned limitations of manual tracing
highlight the need for automated segmentation methods,
especially when dealing with large datasets. Over the last
years, automatic segmentation of the hippocampus attracted
great scientific and research interest. As a result, many
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Fig. 1 A sagittal brain MRI
slice (left), zoomed hippocampal
region with the outline of the left
hippocampus depicted in yellow
(middle) and 3D reconstruction
of the left hippocampus (right)

different approaches have been proposed, which can be
classified into different categories.

The most popular one is based on multi-atlas registration
and fusion techniques. First, multiple atlas images are
registered (usually non-linearly) to the new image. The
computed transformations are then applied to the manual
segmentation masks, producing one separate segmentation
for each used atlas. Methods differ in terms of total number
of used atlases and their selection method. Individual
segmentations are combined to a final result using a variety
of fusion techniques, such as majority or average voting
(Collins and Pruessner 2010), use of global (Langerak et al.
2010) or local (Coupé et al. 2010) weights, joint label
fusion (Wang et al. 2013) and accuracy maps (Sdika 2010).
Multi-atlas methods are robust to anatomical variability,
but their performance depends on registration quality and
segmentation time increases linearly with the number of
registrations.

Another category is based on Active Contour Models
(ACM), which evolve according to the intensities of the
image. Their performance depends largely on the existence
of clear edges at the boundaries of the segmented object.
To produce better segmentations, Active Shape Models
incorporate prior knowledge about the shape of the structure
to the evolution of the contour (Shen et al. 2002). In
Yang et al. (2004), the shapes of both the hippocampus
and neighbouring structures were modeled using Principal
Component Analysis and a set of manually segmented
atlases.

A combination of the multi-atlas framework with ACM
was proposed in Zarpalas et al. (2014a). The method was
based on 3D Optimal Local Maps (OLMs), which locally
control the influence that image information and prior
knowledge should have at a voxel level. The OLMs were
built using an extended multi-atlas concept. In Zarpalas
et al. (2014b), the ACM evolution was controlled again
through a voxel-level map. Blending of image information
and prior knowledge was based on three-phase Gradient
Distribution on Boundary maps, having one phase for
the strong edge boundary parts, where image gradient
information is to be trusted, a second one for the
blurred/noisy boundaries, where image regional information
is to be trusted, and a third one for the missing boundaries,

where shape prior knowledge should take the lead to
influence the overall ACM.

The last category of segmentation methods is based on
machine learning (Morra et al. 2010; Tong et al. 2013).
Typical methods of this category include the training of a
classifier, based on a training set of atlases. Conventional
machine learning methods usually extract a set of hand-
crafted features from each training instance to construct
a training dataset, which is then used to optimize the
classifier’s parameters. The same set of features is then
extracted from each new image and fed to the trained
classifier, which produces the segmentation mask.

Convolutional Neural Networks (CNNs) have been
proposed as a new type of classifier (LeCun et al.
1998). In correspondence to conventional neural networks,
CNNs also consist of interconnected neurons, organized in
successive layers. However, in CNNs, neurons of a single
layer share trainable parameters and are usually connected
only with a subset of the previous layer’s neurons, thus
having a limited field of view. The potential value of CNNs
became evident when Krizhevsky et al. (2012) won the
2012 ImageNet Large Scale Visual Recognition Challenge
(Russakovsky et al. 2015). Since then, CNNs have been
utilized to address a variety of image processing problems.
Advances in the field allowed the training of much deeper
networks with better distinctive capabilities (He et al.
2016).

Recently, deep learning methods have been applied in the
medical domain, including various applications in structural
brain MRI. More specifically, CNNs have been utilized for
the segmentation of brain tissue (Moeskops et al. 2016;
Zhang et al. 2015; Chen et al. 2016), tumor (Havaei et al.
2017; Pereira et al. 2016) and lesions (Kamnitsas et al. 2017;
Brosch et al. 2016). Segmentation of anatomical structures
using CNNs have been studied in Choi and Jin (2016) for
the striatum and in Shakeri et al. (2016) and Dolz et al.
(2017) for the thalamus, caudate, putamen and pallidum.
CNN-based segmentation of basal ganglia (including the
hippocampus) has been also explored in Milletari et al.
(2017), Wachinger et al. (2017), and Kushibar et al. (2017).
Finally, CNNs have been used for brain extraction (Kleesiek
et al. 2016) and full brain segmentation (de Brébisson and
Montana 2015; Mehta et al. 2017).
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In this work, we leverage the unique properties of
CNNs to design and train a fully automatic segmentation
method, aiming to provide superior segmentation accuracy
compared to previous methods, while substantially reducing
the required segmentation time. Compared to existing CNN-
based segmentation methods, the proposed method differs
in various ways. A comparative analysis is presented in
the remainder of this section, focusing mainly on methods
that segment the hippocampus and other anatomical brain
structures.

Most previous methods performed the segmentation in
a single step (de Brebisson and Montana 2015; Mehta et
al. 2017; Kushibar et al. 2017). In contrast, we split the
processing pipeline into distinct stages and include an error
correction mechanism to improve the overall performance.
In the first stage, a segmentation mask of both hippocampi
is computed. Erroneous labels are subsequently corrected
by an independent module. The processing pipeline in Choi
and Jin (2016) also involved two stages. However, in that
case the first stage operated in lower resolution and only
performed an approximate localization of the structure,
which was segmented in the second stage. In contrast, our
first stage completes both tasks at once and provides high
quality segmentation masks to the error correction module.

Contrary to methods that use 3D patches as input
to a single CNN (Wachinger et al. 2017), in each
processing stage of the proposed method, the MRI volume
is decomposed into orthogonal slices, which are fed
to an ensemble of three independent CNNs. The final
3D segmentation is obtained by fusing the individual
segmentations. Orthogonal slices have also been used in
de Brébisson and Montana (2015), Mehta et al. (2017),
and Kushibar et al. (2017), but fusion in these cases was
performed within the CNN, before the final classification
layers. Using a different approach, Milletari et al. (2017)
stacked the three orthogonal 2D patches to form a
3-channel input, which was then processed by a single
CNN. In our architecture, we perform a late fusion of the
outputs of independent CNNs, which we train separately,
allowing them to optimize better for each slicing operation.
Furthermore, by using model ensembles we manage to
improve the segmentation quality and eliminate spatial
inconsistencies without the need of complicated post-
processing, as was the case in Shakeri et al. (2016),
Wachinger et al. (2017), and Milletari et al. (2017),
where Conditional Random Fields and Hough voting where
utilized for such purposes.

In general, previously proposed CNN-based medical
image segmentation methods used shallower networks, with
fewer convolutional layers (de Brébisson and Montana
2015; Wachinger et al. 2017; Mehta et al. 2017). While
easier to train, these lower capacity models exhibit
inferior distinctive capabilities and may prove inadequate

for the segmentation of complex structures, such as the
hippocampus. Deeper CNNs can generalize better to unseen
cases, but their training can suffer from vanishing or
exploding gradients (Glorot and Bengio 2010). To overcome
such difficulties, we make extensive use of Residual Blocks
(He et al. 2016) and Batch Normalization layers (Ioffe and
Szegedy 2015) in all CNNs. This enables us to design
and effectively train deeper networks, achieving higher
segmentation quality.

Lastly, we explore and validate the importance of transfer
learning in the medical domain, where large annotated
datasets are rare. In contrast to other segmentation methods,
CNNs inherently require a sufficiently large training
dataset, in order to be able to properly generalize to
previously unseen cases (Sun et al. 2017). When sufficiently
large datasets are not available, the performance of CNNs
can be improved by exploiting transfer learning techniques
(Razavian et al. 2014; Yosinski et al. 2014). In our case,
we were able to utilise the CNNs trained with the EADC-
ADNI Harp dataset and fine-tune them to the smaller
MICCAI dataset. Despite the fact that different manual
segmentation protocols were used (HarP and brainCOLOR
respectively), such combination of multiple datasets proved
notably advantageous, leading to the conclusion that such
strategies could greatly benefit the community, by offering
robust and extendible automatic segmentation mechanisms.

Materials

Two different open access datasets were used for training
and testing, with a total of 135 atlases. Those datasets
include cases with a wide variety of ages, medical diagnoses
and MR scanners, therefore assisting in the demonstration
of the robustness of our method.

EADC-ADNI HarP Dataset

We used the preliminary version of the dataset provided by
the EADC-ADNI Harmonized Protocol project (Boccardi
et al. 2015), consisting of 100 3D MP-RAGE T1-weighted
MRIs and the corresponding segmentation masks of both
hippocampi. This dataset includes MRIs from elderly
people, with four different medical diagnoses: healthy
(Normal), Mild Cognitive Impairment (MCI), Late Mild
Cognitive Impairment (LMCI) and Alzheimer’s Disease
(AD). A total of 15 different MR scanners (1.5 and 3.0
Tesla) were used for the acquisition of the images. The
distribution of participants per clinical and demographic
characteristic is presented in Table 1.

All MRIs were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (Jack et al. 2008)
and have the same dimensions of 197 × 233 × 183
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Table 1 Distribution of demographic characteristics per medical
diagnosis in the HarP dataset

Diagnosis N Gender Age Scanner

M F 60-70 70-80 80-90 1.5T 3.0T

Normal 29 16 13 4 17 8 17 12

MCI 21 13 8 7 6 8 13 8

LMCI 13 7 6 4 7 2 8 5

AD 37 20 17 13 14 10 20 17

Total 100 56 44 28 44 28 58 42

voxels, with a voxel size of 1 × 1 × 1 mm. Manual
segmentations of both hippocampi were carried out by
specially trained tracers using the Harmonized Protocol
(HarP). Segmentation masks are freely available at http://
www.hippocampal-protocol.net.

MICCAI Dataset

The MICCAI dataset consists of 35 atlases and was first
used at the MICCAI 2012 Grand Challenge on Multi-
atlas Labeling (Landman and Warfield 2012). During the
challenge, 15 of the atlases were available for training
purposes, while the remaining 20 were used only for testing.
The mean participant age is 23 years (ranging from 19 to 34)
for the training set and 45 years (ranging from 18 to 90) for
the test set. All participants were considered to be healthy.

All MRIs were obtained from the Open Access Series
of Imaging Studies repository (Marcus et al. 2007). The
original 3D MP-RAGE T1-weighted MRIs were acquired
using a Siemens Vision MR scanner (1.5 Tesla). The
MRIs used in the challenge have a voxel size of 1 ×
1 × 1 mm and dimensions up to 256 × 334 × 256
voxels. Manual segmentations of 143 brain structures were
carried out according to the brainCOLOR labeling protocol.
The MICCAI dataset is publicly available at https://my.
vanderbilt.edu/masi/workshops/.

Preprocessing

Unlike multi-atlas segmentation methods, the proposed
method does not require any additional registration of the
MRIs, thus making it significantly lighter in terms of

required computational time. The preprocessing procedure
consists of three separate steps, which are common for both
datasets.

First, brain extraction was performed using the Brain
Extraction Tool (Smith 2002), which is available as part
of the FMRIB Software Library. Besides the fact that
non-brain information is not essential for the segmentation
of internal structures, such as the hippocampus, this
step was also necessary as specific non-brain regions
contained voxels with arbitrarily high brightness values,
which negatively affected the normalization process in the
final preprocessing step.

Then, brain regions were corrected for intensity inho-
mogeneity with the N3 package of the MINC toolkit (Sled
et al. 1998). Although inhomogeneity correction is carried
out internally by software in most modern MR scanners, we
include this step to account for older scanners and to further
improve the preprocessing outcome.

Finally, we normalized the intensity of each voxel
by subtracting the mean and dividing with the standard
deviation. The mean and standard deviation values were
calculated separately for each MRI, taking into account
only the brain region. Voxels outside the brain region were
assigned a zero value.

Method

A top level diagram of the proposed architecture is
presented in Fig. 2. The proposed method is composed
of three separate modules. In the segmentation module,
the input, which is a pre-processed 3D MRI, passes
through a group of CNNs and a segmentation mask of
the hippocampus is obtained. Subsequently, a wider region
around the hippocampus is cropped, both form the mask
produced by the segmentation module and the input MRI.
Finally, the cropped MRI volume and segmentation mask
are given as inputs to the error correction module, which
corrects the erroneous labels and produces the final, error
corrected mask.

Segmentation

A schematic diagram of the segmentation module is
presented in Fig. 3. We opted for an ensemble of three
independent segmentation CNNs, operating with orthogonal

MRI
error

correction

hippocapal
region

cropping

error
corrected

masksegmentation segmentation
mask

Fig. 2 Top level architecture of the proposed method. The processing pipeline consists of three main modules: segmentation, hippocampal region
cropping and error correction
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Fig. 3 Segmentation module architecture. The 3D MRI is decomposed into orthogonal slices. Each type of slices is processed by an independent
segmentation CNN. Average fusion combines all single slice outputs to a final 3D segmentation mask

slices of the input MRI volume, followed by a late fusion of
their outputs. Both the input and output of the segmentation
module are 3D images. However, all three segmentation
CNNs used inside this module receive 2D slices as input and
produce the corresponding 2D segmentations. In particular,
the 3D MRI is decomposed into sagittal, coronal and axial
slices. Each type of slices is then fed to an independent
segmentation CNN, which was trained using only slices
of the same type. The 2D outputs of each segmentation
CNN are stacked along the third dimension to form a 3D
segmentation mask. The output of the segmentation module
is obtained by performing a voxel-wise average fusion of
the individual 3D segmentation masks.

Orthogonal patches were used in combination with 3D
patches in de Brébisson and Montana (2015). Authors
claimed that using three 2D orthogonal patches is preferable
over a single 3D patch. In their architecture, different
input types were provided to separate branches within a
single CNN and the intermediate results were concatenated
inside the CNN, before the final fully-connected layers.
In contrast, we use full orthogonal slices to train three
independent segmentation CNNs and form an ensemble of
models, each receiving a different input. Model ensembles
have shown consistent performance benefits in other visual
tasks (He et al. 2016; Szegedy et al. 2017), which we found
to be also true for hippocampus segmentation.

Forming such a model ensemble would not be possible if
the 3D MRI volumes were used as input to the CNNs, which
is the main reason for preferring 2D CNN inputs. Other
reasons supporting the preference of 2D inputs concern the
training process. In particular, 3D inputs would significantly
limit the number of independent training examples, while
GPU memory requirements would impose a constraint on
the maximum CNN depth, especially when working with
complete images instead of patches (refer to “Training with
the HarP Dataset” for more details). Also, the combination
of multiple complete 3D volumes into training batches,

which ensure smoother training, would only have been
possible for very shallow CNNs with inferior performance.

Segmentation CNNs

Sagittal, coronal and axial segmentation CNNs share a
common internal structure, which is presented in Fig. 4.
The input of each segmentation CNN is a 2D image (MRI
slice), with spatial dimensions of d1 × d2 pixels and one
channel (grayscale image). The output is an image of
equal dimensions with values in the range of [0, 1], which
correspond to the probability of each pixel belonging to the
hippocampus.

Input (d d 1)1 2× ×

BatchNorm

Conv 3 3, 128 filters×

ReLU

Output (d d 1)1 2× ×

MulConstant (0.5)

Tanh

AddConstant (1)

Conv 3 3, 1 filter×

ReLU

BatchNorm

Conv 3 3, 64 filters×

BatchNorm

Conv 3 3, 128 filters×

ReLU

BatchNorm

Conv 3 3, 128 filters×

+
6×

Fig. 4 Internal structure of sagittal, coronal and axial segmentation
CNNs. Each CNN is 15 convolutional layers deep and contains six
consecutive residual blocks at its core
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The core network consists of six consecutive Residual
Blocks, depicted with a dashed bounding box in Fig. 4.
Each block is composed of two parallel branches. The first
branch includes two convolution layers. The second is a
simple identity shortcut, forwarding the input of the block
and adding it to the output of the first branch. Residual
networks have been proven to be easier to train, as shortcut
connections help to deal with the problem of vanishing
gradients.

Each segmentation CNN has a total of 15 spatial
convolutional layers, with 3 × 3 filters and additional bias
parameters. Convolutions are always performed with single
stride and zero-padding to maintain the spatial dimensions
of the layer’s input. Since no fully connected layers are
used, segmentation CNNs are fully convolutional, which
makes their evaluation with different input sizes much more
efficient (Long et al. 2015).

In contrast to the U-Net architecture, which is commonly
used in medical segmentation tasks (Ronneberger et al.
2015; Çiçek et al. 2016), our segmentation CNNs do not
include any pooling layers. As a result, the spatial dimen-
sions of the input image remain unaltered throughout the
CNN. U-Net like models with equal depth have been eval-
uated at the initial stage of our research, but they produced
consistently inferior results compared to the selected CNN
structure (−3% in terms of Dice for individual segmenta-
tion CNNs when using two downsampling and upsampling
operation, even when learned upsampling was used). We
attribute this behavior to the nature of pooling operations,
which suppress the input information into a more coarse
representation, combined with the morphology of the struc-
ture of interest, which contains a high level of detail. While
the U-Net has shown good performance in segmenting
more arbitrarily shaped structures like tumors, the proposed
CNN structure appears to be better suited for hippocampus
segmentation.

With the exception of the last one, every convolutional
layer is followed by a spatial batch normalization layer
(BatchNorm). These layers improve the gradient flow,
allow the usage of higher learning rates, minimize the
effect of parameter initialization and act as a form of

regularization. Batch normalization is skipped only after the
last convolutional layer, since we do not want to alter the
output’s distribution.

A ReLU activation (Nair and Hinton 2010) is added
after most BatchNorm layers, which is defined as f (x) =
max(0, x). In comparison with the sigmoid function,
ReLU activations do not limit the output’s range, are
computationally cheaper and lead to faster convergence
rates during training. The last convolutional layer is
followed by a Tanh activation layer and subsequent addition
and multiplication with constants to transfer the output’s
range to [0, 1].

Each segmentation CNN has a total of 1.86 million
trainable parameters. The Field of View (FoV) at the output
layer is 31×31 pixels, meaning that the value of each output
pixel depends on a 31 × 31 region of the input, centered at
that specific location (Fig. 5). Adding more residual blocks
and therefore increasing the FoV size did not increase the
performance, leading to the conclusion that the selected
FoV is sufficiently large to capture all useful anatomical
information around the hippocampus.

Hippocampal Region Cropping

While significantly reducing the training and testing times
of subsequent modules, the introduction of the hippocampal
region cropping module to the processing pipeline leaves
the overall segmentation accuracy unaffected, due to the
carefully selected cropped region size. In order for the
performance of subsequent CNNs to remain constant, the
whole FoV must be covered, even at the endpoints of the
hippocampus. As error correction CNNs have a similar
structure to segmentation CNNs, with the same FoV size of
31 × 31 pixels, we adjust the cropped region to include at
least 15 more voxels at every direction from the boundary
of the hippocampus. Also, we crop a single region including
both hippocampi, as separate regions usually overlapped,
unnecessarily increasing the overall processing time.

During training, the calculation of the cropped region
coordinates is based on the ground truth. Since the ground
truth masks are available, the optimal crop position and size

Fig. 5 Field of View (FoV) size
at the output layer of each
segmentation CNN (blue
square) in relation to a medium
sized hippocampus (shown in
red). Best viewed in color
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for each training atlas can be calculated. However, we crop
all training atlases to a common size, accounting for the
largest hippocampus size in each dimension, in order to be
able to combine slices from different MRIs to the same
mini-batch during training.

In contrast, during testing the cropping procedure
is based on the segmentation masks produced by the
segmentation module of the proposed method. First, we
calculate the weight center of the segmentation mask. Then,
we crop a region of 120 × 100 × 100 voxels (along the
sagittal, coronal and axial axes) around that center point,
which is both sufficiently large to contain both hippocampi
and the required area around them and small enough to
lead to substantial performance benefits in terms of total
processing time.

Error Correction

Errors in automatic segmentation methods can be catego-
rized to random and systematic. While random errors can
be caused by noise or anatomical differences, systematic
errors originate from the segmentation method itself and
are repeated under specific conditions. Thus, systematic
errors can be corrected using machine learning techniques.
For example, a classifier may be built to identify the
conditions under which systematic errors occur, estimate the
probability of error for segmentations produced by a host
method and correct the erroneous labels. Wang et al. (2011)
proposed an error correction method for hippocampus seg-
mentation, using a multi-atlas registration and fusion host
method. Combined with joint label fusion, this error cor-
rection method won the MICCAI 2012 Grand Challenge on
Multi-Atlas Segmentation.

CNNs have been successfully utilized for error correction
purposes in the fields of human pose estimation (Carreira
et al. 2016), saliency detection (Wang et al. 2016) and
semantic image segmentation (Li et al. 2016). There are
two different alternatives regarding the output of error
correction CNNs. Replace CNNs calculate new labels,
which substitute the labels computed by the host method.
On the contrary, Refine CNNs calculate residual correction
values and their output is added to the host method’s
output. According to Gidaris and Komodakis (2017), each
variant has its own shortcomings. Replace CNNs must
learn to operate as unitary functions in case the initial
labels are correct, which is challenging for deeper networks.
Refine CNNs can more easily learn to output a zero value
for correct initial labels, but face greater difficulties in
calculating big residual correction in the case of hard
mistakes.

The proposed method incorporates an error correction
module targeted to systematic errors originating from the
base segmentation algorithm. The detailed architecture is
presented in Fig. 6. Orthogonal slices are extracted from
the cropped MRIs and segmentation masks and are fed to
independent CNNs, followed by a late average fusion of
their outputs. A combination of Replace and Refine CNNs
is used at each of the three branches. A Replace CNN is
placed first, followed by the corresponding Refine CNN.
The extended use of residual blocks in Replace CNNs
minimizes the aforementioned problem of them having
difficulties operating as unitary function when needed and
lets them focus on correcting hard mistakes. With hard
mistakes already corrected, Refine CNNs are used to only
make fine adjustments to the final labels. Thus, in the
proposed architecture, we keep only the advantages of each

error
corrected

mask

average
fusion

cropped
segmentation

mask

cropped
MRI

Replace
CNN

(sagittal)

Refine
CNN

(sagittal)
+

Replace
CNN

(coronal)

Refine
CNN

(coronal)
+

Replace
CNN
(axial)

Refine
CNN
(axial)

+

Fig. 6 Error correction module architecture. The cropped MRI and segmentation mask are decomposed into orthogonal slices. Each type of slices
is processed by a separate chain of error correction CNNs. Average fusion combines all single slice outputs to a final 3D and error corrected
segmentation mask
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error correction CNN variant and efficiently correct both
hard and soft segmentation mistakes.

Error Correction CNNs

Each Replace and Refine CNN in Fig. 6 has the CNN
structure presented in Fig. 4, with two minor differences.
The first is the number of channels in the input layer of error
correction CNNs, which is equal to the number of inputs in
each case (2 for Replace and 3 for Refine CNNs). Filter depth
at the first convolutional layer is modified accordingly. The
second difference only applies to Refine CNNs. Layers
after the last convolutional layer are omitted, since we do not
need to explicitly restrict the output to a specific range in
the case of residual corrections.

The Replace and Refine CNNs in each branch, along
with the addition that follows were implemented as a
single, deeper network and were trained in an end-to-end
way, allowing their parameters to be co-adapted. On a
technical level, this module consists of only three deeper
error correction CNNs, denoted with dotted bounding boxes
in Fig. 6.

Implementation

We used Torch7 (Collobert et al. 2011) for the imple-
mentation and training of the proposed method. We also
utilized the cuDNN Library (Chetlur et al. 2014) to accel-
erate the training and inference processes. All experiments
were performed on a computer equipped with a NVIDIA
GeForce GTX 1080, Ubuntu 16.04 LTS, CUDA v9.0.176
and cuDNN v7.0.3. The code and trained models will be
available upon the acceptance of this paper.

Training with the HarP Dataset

To facilitate the training and evaluation processes, the
dataset must be first split into training and test sets.
Aiming to obtain meaningful results during evaluation,
we ensured that these sets were mutually exclusive in all
of our experiments. Only the training set was utilized to
train the proposed method, while the separate test set was
subsequently used to measure the performance.

After pre-processing, only a small amount of voxels
corresponded to the region of the brain. This imbalance
created significant problems, such as loss oscillations,
that disrupted the training process. To limit the training
data to the brain region, we used only slices that
contained part of the brain and cropped them to smaller
dimensions, maintaining the whole area of even the
largest brain. Cropping dimensions were common for each
slicing operation, to facilitate the combination of slices in

mini-batches. These steps where applied only to the inputs
of segmentation CNNs and only during training. At test
time, the whole MRI volume was provided as input
to the segmentation module. Inputs provided to error
correction CNNs were already cropped, as was described in
“Hippocampal Region Cropping”.

Training the proposed method consists in training six
different CNNs, three for the segmentation and three for
the error correction of sagittal, coronal and axial slices,
respectively. We preferred full slices over patches as input to
all CNNs. This led to better efficiency and lower processing
times, as each output was calculated with a single forward
pass and unnecessary calculations for overlapping patch
regions were avoided (Long et al. 2015). Slices from all
MRIs belonging to the training set were fed to the networks
in random order, which also changed after the completion
of each training epoch. The mini-batch size was set to eight
slices, due to memory constraints.

Initializing the trainable parameters of each CNN was
based on the Xavier method (Glorot and Bengio 2010), but
with random values obtained from a uniform distribution in
the [−1, 1] range. Trainable parameters were updated using
the Adam optimizer (Kingma and Ba 2014), with beta1 =
0.9 and beta2 = 0.999. The loss function used during
training was the mean square error between the output and
the ground truth segmentation masks. Training of each CNN
always lasted for 40 complete epochs and the model saved
at the end of the training process was used later to evaluate
the performance. Initial learning rate was set to 5×10−5 and
was exponentially decayed after every iteration according
the formula:

learning rate = 5 × 10−5e−0.175epoch (1)

where epoch is the exact number of completed epochs.
Learning rate was decreased by a factor of 1000 until the
end of training.

Training of each segmentation and error correction
CNN required on average 7.5 and 4.2 hours respectively.
Although error correction CNNs are twice as deep, as they
include both the Replace and Refine networks, their training
time was lower, due to the smaller input dimensions after
cropping.

Transfer Learning to theMICCAI Dataset

Multi-atlas based segmentation methods can provide accu-
rate segmentations using a small number of very simi-
lar atlases. When large datasets are available, a selection
method is necessary to extract the most similar atlases,
as using the whole dataset deteriorates the segmentation
quality (Aljabar et al. 2009). On the contrary, CNNs inher-
ently require sufficiently large training sets. In segmentation
tasks, CNN performance increases logarithmically with the
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size of the training dataset (Sun et al. 2017). The required
dataset size is in general proportional to the capacity of the
used model. Deeper CNNs can generalize better to unseen
cases, but at the same time require more data to train prop-
erly. The MICCAI dataset, which contains only 15 training
atlases, is not directly applicable to the proposed method. To
overcome this inefficiency, we exploited the unique proper-
ties of CNNs, which allow efficient transfer learning from
larger datasets.

In practice, CNNs are rarely trained from scratch, either
due to insufficiently large training sets or to reduce the
required training time. Instead, it is common practice to
use a pre-trained network, which was usually trained with a
much larger dataset and to fine-tune it to the new, smaller
dataset, to account for this dataset’s specific characteristics.
Features already learned by a CNN can be reused to address
a new problem, using a different dataset. Transfer learning
is more efficient when data from different datasets are of
similar nature. In this way, features already learned are more
appropriate for the new task and less fine-tuning is required.

The conditions for applying transfer learning between
the datasets used in this study are favorable, as they
both contain T1-weighted MRIs of the brain. The transfer
learning procedure is presented in Fig. 7. First, all CNNs
were pre-trained from scratch using the HarP dataset. Then,
the pre-trained CNNs were fine-tuned utilizing only the 15
atlases from the MICCAI training set. Finally, the fine-tuned

fine-tuned
models

HarP atlases
(100)

MICCAI training
atlases (15)

MICCAI test
MRIs (20)

randomly
initialized

models

pre-trained
models

pre-training
(40 epochs)

fine-tuning
(10 epochs)

output
masks

Training phase

Test phase

Fig. 7 Transfer learning from HarP to the MICCAI dateset

models were evaluated with the MICCAI test set. The same
procedure was followed for both segmentation and error
correction CNNs.

Compared to the training procedure of the respective
CNNs with the HarP dataset, two hyperparameters were
altered during fine-tuning. The initial learning rate was set
to 2 × 10−5, as bigger values led to zero outputs after the
first fine-tuning epoch, indicating that useful features for the
detection of hippocampal regions were quickly forgotten,
due to the dominant background class. Combined with the
initial learning rate, which was set as high as possible,
a fine-tuning duration of 10 epochs was enough to reach
maximum performance.

Due to the decreased number of epochs and atlases in
the MICCAI training set, fine-tuning was completed much
faster. On average, 23 and 7.5 minutes were required for the
fine-tuning of each segmentation and error correction CNN
respectively.

Thresholding

To obtain a binary segmentation mask during evaluation,
we applied a threshold to the value of each voxel of the
error corrected mask. Since they express the probability of
a single voxel belonging to the hippocampus, the default
threshold value was set to 0.5.

Segmentation masks were normally forwarded to the
error correction module in continuous form, without any
thresholding applied. However, to study the effect of
different components in the overall performance, thresholds
were also applied to the segmentation masks produced by
the segmentation module (without error correction) and to
the outputs of each individual CNN.

Results

EvaluationMetrics

The level of agreement between the outputs and the
corresponding manual segmentations was quantified using
the following metrics:

Dice = 2 · |A ∩ B|
|A| + |B| (2)

Jaccard = |A ∩ B|
|A ∪ B| (3)

precision = |A ∩ B|
|B| (4)

recall = |A ∩ B|
|A| (5)

571Neuroinform (2019) 17:563–582



where A is the set of voxels classified as part of
the hippocampus by the proposed method and B the
corresponding set of the ground truth mask. The Wilcoxon
signed-rank test was utilized to assess the statistical
significance between the different outcomes.

Results in the HarP Dataset

The performance of the proposed method in the HarP
dataset was evaluated through a 5-fold cross-validation
process. The 100 atlases of the HarP dataset were equally
and proportionally divided into five folds, according to
gender, age, medical diagnosis, MR scanner field strength
and bilateral hippocampal volume. Training and testing of
the entire method were repeated five times in the HarP
dataset. In each round, the method was trained from scratch
with a different set of 80 atlases (4 training folds) and
subsequently tested with the remaining 20 atlases (test fold).
First, segmentation CNNs were trained and tested for all
cross-validation rounds, in order to provide intermediate
segmentation masks for the entire dataset. Then, error
correction CNNs were trained and tested in a similar
manner. It is important to point out that no data utilized
during training were also used to test the performance in any
case.

Table 2 shows the mean Dice and standard deviation in
the HarP dataset, averaged over all five test folds. Results
are reported for the outputs of each segmentation CNN and
after average fusion for both the segmentation and error
correction steps.

We notice that individual segmentation CNNs exhibit
different levels of accuracy, with coronal slices appearing
to be best suited for hippocampus segmentation. This is
clearly visible in Fig. 8, where red bars corresponds to
the median value, blue boxes to the 25th-75th percentile
range and red crosses to outlier values (more than 1.5×
the interquartile range away from the box). Also, individual
segmentation CNNs produce segmentations with various
types of errors. For example, they may not recognize
parts of the hippocampus in some slices or classify as
foreground voxels far away from the actual position of the
structure, resulting in spatial incoherence. These problems
are eliminated after fusion (Fig. 9), while both the mean
Dice value and standard deviation improve over the best

Table 2 Mean Dice and standard deviation for the outputs of
individual CNNs and after average fusion using the HarP dataset. “EC
fusion” refers to the output of the error correction module

Sagittal Coronal Axial Fusion EC fusion

Dice 0.8834 0.8898 0.8665 0.8965 0.9010

std 0.0278 0.0266 0.0348 0.0224 0.0182

sagittal coronal axial fusion
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0.8

0.85

0.9

0.95

Fig. 8 Dice distribution for the segmentation step using the HarP
dataset

performing coronal segmentation CNN. The improvements
of fusion over each individual CNN are statistically
significant (p < 8.5 × 10−12).

The error correction step improves the quality of the
received segmentation mask, both in terms of mean Dice
and standard deviation. After fusion, the mean Dice value
increases to 0.9010, which is 0.0045 higher than the best
result obtained without error correction. The improvement
offered by error correction is also statistically significant
(p < 1.4 × 10−12). A qualitative example comparing
the outputs before and after the error correction module
on a difficult case of the HarP dataset is presented
in Fig. 10. Iterative refinement using multiple stacked
error correction modules was also explored, using either
the same or different CNNs in successive modules and
additional error correction modules consisting only of
Refine CNNs. In terms of mean Dice, using CNN duplicates
and two successive error correction modules led to a
small performance improvement. Aiming to achieve the
best trade-off between segmentation accuracy and total
processing time, we chose to include a single error
correction module for hippocampus segmentation.

The performance of the proposed method in different
medical diagnoses is presented in Table 3. We notice that
error correction offers consistent improvement regardless
of the diagnosis, which highlights the robustness of the
proposed method to different medical cases. As expected,
Dice is lower for patients with AD, due to the deformation
of the hippocampus structure, but also due to the reduced
average hippocampal volume. Smaller structures have
higher percentage of voxels near their surface. This affects
the segmentation quality (Fig. 11), as it is more challenging
for the automatic method to segment areas near the outer
surface, than internal ones.
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Fig. 9 Effect of average fusion
during segmentation. The output
of the coronal segmentation
CNN and the segmentation
mask after average fusion are
depicted in cyan and yellow
respectively. The outline of the
ground truth is depicted in red.
Best viewed in color

Table 4 compares the proposed method to other published
methods that use the same dataset. Values are shown as they
appear in the respective publications, for each hippocampus
separately or combined. The proposed method is also
compared to two widely used segmentation tools, namely
FreeSurfer (Fischl et al. 2002) and FIRST (Patenaude et al.
2011). Segmentation masks were obtained by executing the
default test scripts (recon-all -all and run first all) provided
with the respective packages. The performance of the tools
was assessed for the structure of the hippocampus, treating
all other output labels as background.

We observe that the proposed method compares favor-
ably to previous methods in every evaluation metric. It is
also the only one based on CNNs, which demonstrates their
potential in brain MRI segmentation. The next two meth-
ods, exhibiting a mean Dice value over 0.88, are based on
multi-atlas registration and fusion techniques. Trained and
validated using a different set of ADNI MRIs, a patch-based
label fusion method with structured discriminant embedding
(Wang et al. 2018) acheived a mean Dice value of 0.879
and 0.889 for the left and right hippocampus respectively.
A CNN-based method, also validated using MRIs from
the ADNI database, was proposed in Chen et al. (2017).
Despite the fact that only normal cases were included and
the hippocampal region was manually cropped before seg-
mentation, their final result (mean Dice value of 0.8929) is
also inferior to that of the proposed method.

Furthermore, we compared each of the estimated
hippocampal volumes with the corresponding ground truth
volume. The proposed method produces segmentations that
are on average 70mm3 smaller, taking into account both
hippocampi. Although relatively small (−1.3% compared to

the ground truth), the volume difference can be attributed to
the many fine details in the manual tracings, which are more
difficult to be captured. The correlation coefficient between
the two volumes is 0.97. Based on these results, we conclude
that there is high level of agreement, which is also evident
in Fig. 12.

Qualitative results are presented in Fig. 13, where an
indicative sagittal, coronal and axial slice is shown for the
best, median and worst case. The ADNI image ID, medical
diagnosis, bilateral ground truth hippocampal volume and
Dice value are listed for each case. We observe that most
details of the manual tracings are well preserved by the
proposed method, while the outline from the automatic
segmentation method is smoother. Output volumes are
spatially consistent and close to the corresponding manual
tracings, even when the boundary of the hippocampus is not
visible, as in the sagittal slice of the best and worst cases and
the axial slice of the median case. Automatic segmentation
quality seems satisfactory even in the worst case, where
the inferior Dice value can be attributed to the very small
bilateral hippocampal volume.

Results in theMICCAI Dataset

The MICCAI dataset was already divided into two sets. In
our study, we used the same training and test sets. Since
a single split of the dataset was used, a total of six CNNs
needed to be trained. Fine-tuning of the error correction
CNNs required segmentation masks for the 15 atlases of the
MICCAI training set, which were not directly available, as
testing of the segmentation module was conducted using the
separate test set. To that end, a 5-fold inner cross-validation

Fig. 10 Effect of error correction on a difficult case of the HarP dataset (case #254893, diagnosed with AD). The outputs before and after the
error correction are depicted in cyan and yellow respectively. The outline of the ground truth is depicted in red. Best viewed in color
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Table 3 Mean Dice and standard deviation per diagnosis in the
HarP dataset. Results were obtained after average fusion for both the
segmentation and error correction steps

Diagnosis Segmentation Error correction

Normal (29) 0.9071 (± 0.0201) 0.9115 (± 0.0145)

MCI (21) 0.8970 (± 0.0227) 0.9020 (± 0.0176)

LMCI (13) 0.9053 (± 0.0117) 0.9075 (± 0.0115)

AD (37) 0.8849 (± 0.0220) 0.8898 (± 0.0173)

All (100) 0.8965 (± 0.0224) 0.9010 (± 0.0182)

was performed with the MICCAI training set, using a
different set of 12 atlases to fine-tune the segmentation
CNNs at each round and the remaining 3 atlases to produce
segmentation masks for later usage, during the fine-tuning
of the error correction module.

Table 5 summarizes the results for the segmentation
step using different training approaches. When training
from scratch, with random parameter initialization, the
mean Dice value in the MICCAI test set was 0.8182
after fusion. Evaluating the pre-trained with the HarP
dataset CNNs without any additional fine-tuning resulted in
inferior performance. Transfer learning led to far superior
segmentation quality. Mean Dice value was significantly
higher for all three individual segmentation CNNs and
reached the value of 0.8711 after fusion (p = 4.8 ×
10−5 compared to training from scratch). Furthermore,
Dice improved for all 20 test atlases in relation to both
training from scratch and evaluating the pre-trained CNNs.
These results suggest that while CNN-based methods can
benefit from larger datasets, a transfer learning procedure
is essential to surpass the performance of training from

ground truth volume [mm3]

2000 3000 4000 5000 6000 7000 8000
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Fig. 11 Dice values for the error corrected segmentation masks against
bilateral ground truth hippocampal volumes in the HarP dataset. Best
viewed in color
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Fig. 12 Bland-Altman plots showing the hippocampal volume
agreement between the error corrected and ground truth masks for the
left (top plot) and right (bottom plot) hippocampus in the HarP dataset.
Dashed lines indicate the 95% confidence level interval

scratch, especially when different segmentation protocols
and MR scanners are involved. In the remainder of this
section, all results refer to the transfer learning training
approach.

Table 6 presents the mean Dice and standard deviation
values in the MICCAI test set for the outputs of each
segmentation CNN and after average fusion for both the
segmentation and error correction steps. Dice distributions
for the segmentation step are presented in Fig. 14.
Compared to the HarP dataset, the improvement of
fusion over the individual CNNs is less obvious, but still
statistically significant (p < 0.0024). However, one notable
difference is the larger effect of error correction in the
overall performance, which improves the mean Dice value
by 0.0105 (p = 2.4 × 10−4), more than twice the amount
compared to the improvement in the HarP dataset.

For our final results, which were obtained with error
correction and after average fusion, we searched for the
optimal threshold value, in order to further improve the
adaptation of the proposed method to the new dataset, after
the process of transfer learning. To that end, we utilized only
the 15 atlases of the MICCAI training set and performed
another 5-fold inner cross-validation, this time with respect
to the error correction CNNs. Maximum Dice in the training
set was achieved with T = 0.42. This value was then used
when evaluating the proposed method with the MICCAI test
set, further increasing the mean Dice by 0.0019 to the value
of 0.8835 (p = 0.0478). In order to obtain the best possible
result, the threshold search should be repeated when transfer
learning to a new domain. However, it should be noted
that this is not necessary, as the proposed method performs
almost equally well and still surpasses the competition (refer
to Table 7) using a wide range of threshold values, including
the default value of 0.5, as presented in Fig. 15.

Table 7 compares the proposed method with the three
top performing entries of the MICCAI challenge (PICSL
BC, NonLocalSTAPLE and PICSL Joint), other published
methods that use the same test set, as well as the FreeSurfer
and FIRST segmentation tools. Segmentation masks for all
entries of the MICCAI challenge are publicly available,
which enabled us to calculate all evaluation metrics. Results
for de Brébisson and Montana (2015) were produced using
the provided official code. For the rest of the methods, we
report only values included in the respective publications.
As can be seen, the proposed method compares favorably to
all other methods. Kushibar et al. (2017) and de Brébisson
and Montana (2015) are both CNN-based methods that
utilize orthogonal slices as inputs and combine them within
a single CNN. The proposed method achieves superior
performance, which strengthens our choice to form model
ensembles, comprised of independent CNNs for each slicing
operation and combine their outputs with late fusion.

Taking into account both hippocampi, the proposed
method produces segmentations that are on average
126mm3 larger than the respective ground truth volumes.
The larger output volume (1.7% compared to the ground
truth) can be attributed to the selection of a lower threshold
value (T = 0.42), which was optimized for maximum Dice.
The correlation coefficient between them is 0.90. Volume
agreement is graphically presented in Fig. 16.

Figure 17 shows qualitative results for the best, median
and worst case. A representative sagittal, coronal and
axial slice is presented, along with the MRI ID, bilateral
hippocampal volume and Dice value.

Processing Time

Processing time was measured with the whole MRI volume
as input to the proposed method. The input dimensions
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Fig. 13 Qualitative results for
the error corrected masks in the
HarP dataset. The outlines of the
automatic segmentations and the
ground truth masks are depicted
in yellow and red respectively.
Best viewed in color

median case: #11821, MCI, vol = 4734 mm , Dice = 0.9035
3

worst 28391  AD 2482case: # , , vol = mm , Dice = 0.
3

8457

best 7025  Normal 7480case: # , , vol = mm , Dice = 0.9
3

321

Table 5 Mean segmentation
Dice in the MICCAI test set
using different training
approaches

Sagittal Coronal Axial Fusion

Train from scratch 0.8143 0.8074 0.7351 0.8182

Pre-trained HarP CNNs 0.7723 0.7737 0.6712 0.7690

Transfer learning 0.8577 0.8655 0.8265 0.8711

Table 6 Mean Dice and
standard deviation for the
outputs of individual CNNs
and after average fusion in the
MICCAI test set. “EC fusion”
refers to the output of the error
correction module

Sagittal Coronal Axial Fusion EC fusion

Dice 0.8577 0.8655 0.8265 0.8711 0.8816

std 0.0338 0.0256 0.0429 0.0247 0.0150
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Fig. 14 Dice distribution for the segmentation step using the MICCAI
test set

were 197 × 233 × 189 and up to 256 × 334 × 256 voxels
for the HarP and the MICCAI datasets respectively. For
computational efficiency, when a mini-batch consists only
of non-brain slices (the sum of all pixels is zero), we
explicitly set the output to zero, without passing these slices
through the CNNs.

Using a single NVIDIA GTX 1080, segmenting one MRI
of the HarP dataset requires 14.8 seconds. In the MICCAI
dataset, where the dimensions of the input MRI volume
are larger, the equivalent required time is 21.8 seconds. In
more detail, each segmentation CNN requires on average
3.7 or 6.0 seconds when segmenting a MRI from the Harp
or the MICCAI dataset respectively. After cropping, error
correction CNNs always receive fixed sized volumes in
evaluation mode and require on average 1.2 seconds each,
including both the Replace and Refine parts. Time is almost
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Fig. 15 Effect of threshold value in the overall performance after
transfer learning to the MICCAI dataset Ta
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Fig. 16 Bland-Altman plots showing the hippocampal volume
agreement between the error corrected and ground truth masks for the
left (top plot) and right (bottom plot) hippocampus in the MICCAI test
set. Dashed lines indicate the 95% confidence level interval

entirely consumed by the CNNs, as all other processes, such
as average fusion or thresholding, add a negligible amount.
Thus, the total required time can be reduced by a factor of 3
through the parallel execution of sagittal, coronal and axial
CNNs in different graphics cards.

To make fair comparison, we must also consider the
preprocessing time required for a new MRI. In the literature,
additional registrations that must be performed for each new
MRI are often considered to be part of the preprocessing
procedure and time spent is not counted or reported
separately. For example, in Giraud et al. (2016), which has
a competing performance in terms of Dice, authors report
5 minutes for preprocessing and only a few seconds for
segmentation. In comparison, the preprocessing pipeline
of the proposed method is completed within 30 seconds,
with single-core CPU execution. In the MICCAI dataset,
the second best performing method (Kushibar et al. 2017),

which is CNN-based and utilizes the GPU, also requires a
total of 5 minutes for every test MRI. Thus, the proposed
method is overall more than 5× faster compared to those
methods. Compared to other methods of Table 4, where
Platero and Tobar (2017) is reported to require 17 minutes
per MRI and Zhu et al. (2017) requires 20 minutes just for
the label fusion step, the proposed method can be considered
at least 23× faster, which is a dramatic improvement, given
that it also offers superior segmentation accuracy.

Discussion

In this work, we developed an automatic segmentation
method of the hippocampus from magnetic resonance
imaging, incorporating a number of different CNNs and
exploiting their distinctive capabilities. The proposed
architecture is composed of three modules. In the first
one, we calculate a segmentation mask for the whole MRI
volume. Then, based on that segmentation mask, we crop
a wider area around both hippocampi. Finally, the error
correction module, which uses a combination of Replace
and Refine CNNs, corrects erroneous labels within the
cropped region and further improves the performance of
the entire method. The proposed architecture can be easily
extended to consider multiple structures or even perform
full brain segmentation by adjusting or totally removing the
region cropping module, should sufficient and annotated
datasets become available for all structures of interest.

Inside the segmentation and error correction modules,
3D inputs are decomposed into 2D orthogonal slices.
We trained separate CNNs for each slicing operation and
performed a late voxel-wise average fusion of their outputs.
In practice, we designed an ensemble of three models, with
common internal structure, but different training data. All
CNNs are fully convolutional and operate with full slices,
allowing efficient inference regardless of the input size.

We followed two different approaches while training
the proposed method. Starting with random initialization,
we managed to obtain state-of-the-art results in the HarP
dataset, which included a sufficiently large number of
atlases. This was not possible for the MICCAI dataset,
due to the much smaller training set, contradicting the
philosophy of CNN training. To overcome this inefficiency,
we used the already trained networks with the HarP dataset
as an initialization point and consequently fine-tuned them
with the MICCAI training set. Overall, transfer learning
showed spectacular relative improvement, proving that
in CNN-based segmentation methods the combination of
multiple datasets is beneficiary, even with different manual
segmentation protocols. This is a unique advantage of CNNs
compared to other segmentation methods, which can be
exploited for applications in the medical domain, where the
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Fig. 17 Qualitative results for
the error corrected masks in the
MICCAI test set. The outline of
the automatic segmentation and
the ground truth are depicted in
yellow and red respectively.
Best viewed in color

median case: #1003, vol = 9130 mm , Dice = 0.8839
3

best 8 6900 9128case: #103  , vol =          mm , Dice = 0.
3

worst 25 5749 437case: #10    , vol =          mm , Dice = 0.8
3

creation of large and manually annotated datasets is costly
and time consuming.

The proposed method was validated using two different
public datasets, which include cases with various demo-
graphic and clinical characteristics, demonstrating high
robustness and surpassing in performance previously pub-
lished methods. As shown by the results, the addition of
the error correction mechanism led to a systematic improve-
ment and helped our implementation take precedence over
other competing methods. Overall, for a test MRI, the pro-
posed method is dramatically faster when compared to
multi-atlas registration and fusion methods.
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Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger,
O. (2016). 3d u-net: learning dense volumetric segmentation from
sparse annotation. In: International conference on medical image
computing and computer-assisted intervention, Springer, pp. 424–
432.

Collins, D.L., & Pruessner, J.C. (2010). Towards accurate, automatic
segmentation of the hippocampus and amygdala from MRI by
augmenting ANIMAL with a template library and label fusion.
NeuroImage, 52(4), 1355–1366.

Collobert, R., Kavukcuoglu, K., Farabet, C. (2011). Torch7: A matlab-
like environment for machine learning. In: BigLearn, NIPS
workshop, EPFL-CONF-192376.
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