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Abstract
We report on novel supervised algorithms for single-trial brain state decoding. Their reliability and robustness are essential
to efficiently perform neurotechnological applications in closed-loop. When brain activity is assessed by multichannel
recordings, spatial filters computed by the source power comodulation (SPoC) algorithm allow identifying oscillatory
subspaces. They regress to a known continuous trial-wise variable reflecting, e.g. stimulus characteristics, cognitive
processing or behavior. In small dataset scenarios, this supervised method tends to overfit to its training data as the
involved recordings via electroencephalogram (EEG), magnetoencephalogram or local field potentials generally provide a
low signal-to-noise ratio. To improve upon this, we propose and characterize three types of regularization techniques for
SPoC: approaches using Tikhonov regularization (which requires model selection via cross-validation), combinations of
Tikhonov regularization and covariance matrix normalization as well as strategies exploiting analytical covariance matrix
shrinkage. All proposed techniques were evaluated both in a novel simulation framework and on real-world data. Based
on the simulation findings, we saw our expectations fulfilled, that SPoC regularization generally reveals the largest benefit
for small training sets and under severe label noise conditions. Relevant for practitioners, we derived operating ranges of
regularization hyperparameters for cross-validation based approaches and offer open source code. Evaluating all methods
additionally on real-world data, we observed an improved regression performance mainly for datasets from subjects with
initially poor performance. With this proof-of-concept paper, we provided a generalizable regularization framework for
SPoC which may serve as a starting point for implementing advanced techniques in the future.
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Introduction

In many modern applications based on biomedical signals,
machine learning software is extensively used to infer
variables or states of interest (Mahmud et al. 2018).
Examples are electrocardiographic imaging, where machine
learning can be used to deduce cardiac activities or
pathologies from multiple sensors (Ramanathan et al.
2004), for controlling an upper-limb prosthesis from
an amputee’s electromyography recordings (Farina et al.
2014), or for decoding users’ mental states from their
electroencephalographic (EEG) activity (Dähne et al. 2014;
Clerc et al. 2016). In all these applications, signals are
recorded using multiple sensors, resulting in multivariate
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data that should be analyzed using robust classification or
regression methods. Such machine learning problems are
often very challenging.

Prominent neurotechnological systems are brain-
computer interfaces (BCI) which typically utilize EEG
recordings that enable users to interact with a computer
or a physical device (Millán et al. 2010). Such practical
closed-loop applications require the extraction of relevant
and robust features (Farquhar and Hill 2013) from high-
dimensional EEG data which unfortunately suffer from an
inherently low signal-to-noise ratio (Krusienski et al. 2011;
Makeig et al. 2012). In addition, for most BCI applications
only small calibration datasets are available to train the
decoding algorithms — typically a few dozens or maxi-
mally a couple of hundreds of training samples — which
further aggravates the situation (Lotte 2015). Thus, it is
necessary to design robust decoding methods and training
procedures, such that over-fitting to the training data is
avoided (Makeig et al. 2012).

A widely used approach for effective decoding of
EEG signals are spatial filter methods. They learn a
linear transformation to project multivariate EEG signals
derived from several sensors to a lower dimensional
subspace (de Cheveigné and Parra 2014; Blankertz et al.
2008) for instance to remove artifacts (De Vos et al.
2010) or to extract task-related neural activity (Makeig
et al. 2004). In the context of BCI, the most prominent
algorithm for a supervised scenario is the common
spatial pattern algorithm (CSP; Koles 1991; Ramoser et
al. 2000). It is deployed for solving EEG classification
tasks that are characterized by amplitude modulations
of brain rhythms. Unfortunately, CSP is specifically
sensitive towards noisy training data (Reuderink and Poel
2008), non-stationarities (Samek et al. 2014) and small
datasets (Grosse-Wentrup et al. 2009; Park et al. 2017).
To mitigate a subset of these limitations, regularization
variants have been proposed for CSP (Lotte and Guan
2011; Samek et al. 2014). In general, regularization guides
an optimization problem by adding prior information, thus
limiting the space of possible solutions. Even though
regularization is of specific importance for ill-posed
problems such as source reconstruction (Tian et al. 2013),
less underdetermined problems can also profit. For CSP,
a broad bandwidth of regularization approaches has been
published, such as L1- and L2-norm penalties (Wang and
Li 2016; Lotte and Guan 2011; Arvaneh et al. 2011;
Farquhar et al. 2006), regularized transfer learning strategies
that accumulate information across multiple sessions and
subjects (Cheng et al. 2017; Devlaminck et al. 2011; Samek
et al. 2013; Kang et al. 2009; Lotte and Guan 2010) and
variants which favor invariant solutions across sessions/runs
under EEG non-stationarities (Arvaneh et al. 2013; Samek
et al. 2012; Samek et al. 2014; Cho et al. 2015).

Taking a closer look into the BCI decoding literature,
a variety of methods for oscillatory EEG classification
problems can be found, but for the regression case
the choice still is extremely limited (Wu et al. 2017)
even though regression methods allow tackling highly
interesting problems. Examples are the estimation of
continuous mental workload levels (Frey et al. 2016;
Schultze-Kraft et al. 2016), decoding the depth of cognitive
processing (Nicolae et al. 2017), predicting single-trial
motor performance (Meinel et al. 2016) or continuous
decoding of movement trajectories (Úbeda et al. 2017). A
spatial filtering solution, which solves an EEG regression
problem, was provided by Dähne et al. (2014) with the
source power comodulation algorithm (SPoC). It optimizes
spatial filters that describe oscillatory subspace components,
whose bandpower co-modulate with a given continuous
univariate target variable. Comparing the formulations of
the objective functions of SPoC and CSP, both can be
translated into a Rayleigh quotient. Thus, the known
limitations of CSP regarding noise, non-stationarities and
limited data were found to also apply to SPoC (Castaño-
Candamil et al. 2015). However, regularization approaches
for SPoC have not yet been explored.

The main goal of this paper is to close this gap. Thus,
we present generally applicable regularization variants for
SPoC to improve the algorithm’s robustness. Therefore, we
first evaluate regularized SPoC variants on a very recent
simulation approach based on post-hoc labeling of arbitrary
EEG recordings. This allows probing the stability of the
regularized variants under reduced training datasets, varying
label noise conditions and different strengths of oscillatory
sources. In a second step, we evaluate the methods on a real-
world dataset and compare the findings of both scenarios.
As regularization introduces additional hyperparameters,
we will compare model selection via cross-validation with
an analytical solution. Finally, we provide the practitioner
with information on how to determine suitable parameters
for SPoC regularization and provide open source software
for regularized SPoC. This paper builds upon preliminary
results reported in a conference paper by Meinel et al.
(2017).

Supervised Spatial Filter Optimization
for Single-Trial EEG Regression

Let x(t) ∈ R
Nc describe multivariate EEG signals acquired

from Nc channels at time sample t . Moreover, the signals
are assumed to be bandpass filtered. A spatial filter w ∈
R

Nc can be interpreted as a projection of x(t) from the
Nc-dimensional sensor space to a one-dimensional source
component ŝ(t) = w�x(t) according to the linear model of
the EEG (Parra et al. 2005).
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Prerequisites for the SPoC Algorithm

Based upon the course of events in the conducted
experimental paradigm, an EEG recording x(t) can be
translated into Ne single epochs X(e) ∈ R

Nc×Ns with
Ns sample points per epoch. Hereafter, 〈·〉 refers to an
average across epochs. For each epoch e, we assume to
have access to a continuous epoch-wise target variable z(e)

which is required to be standardized to zero mean and
unit variance. This variable z provides label information
about the experimental paradigm and could represent
e.g. stimulus intensity, behavioral responses or cognitive
measures. Subsequently, our goal is to search for a source
component ŝ within the full EEG signal, whose epoch-wise
power �ŝ(e) is linearly related to the target variable z(e).

A spatial filter w defines an estimated source ŝ when
applied to the EEG signal. Due to the preceding bandpass
filtering, its power can be assessed by its variance within the
epoch e such that �ŝ(e) = Var[ŝ(t)](e) = Var[w�x(t)](e).

The central principle of SPoC is to search an optimal
spatial filter w∗ such that the epoch-wise power of the
resulting estimated source component ŝ maximally co-
modulates with the known target variable z. Once this
optimal filter has been found, it can then be employed to
estimate the target variable z(e) from the bandpassed signal
X(t, e)1 using the variance:

zest (e) ≈ �ŝ(e) = Var[ŝ(t)](e) = w��(e)w (1)

where �(e) = (Ns − 1)−1X(e)�X(e) denotes the epoch-
wise spatial covariance matrix.

Striving to find a formulation of the overall optimization
function requires two ingredients. The first one is expressed
by the (Euclidean) mean of the power 〈�ŝ(e)〉 across epochs
by:

〈�ŝ(e)〉 Eq. (1)= w�〈�(e)〉w = w��avgw (2)

with �avg := 〈�(e)〉 defining the averaged covariance
matrix across all Ne epochs.

The second ingredient is expressed as the covariance
between the epoch-wise power of the source component
and the target variable z. One can show the following
relation (Dähne et al. 2014):

J1(w) := Cov[�ŝ(e), z(e)] = w��zw (3)

where �z := 〈�(e) z(e)〉 defines the label-weighted
covariance matrix averaged over epochs. While the original
SPoC formulation comprised two different optimization
strategies, we will restrict further analysis to SPoCλ which

1To simplify the notation, epoched data X(t, e) will further on be
written as a matrix X(e).

optimizes covariance instead of correlation, but allows
deriving a closed-form solution of the spatial filters.

Optimizing Covariance - SPoCλ Algorithm

As the covariance is directly affected by the scaling of its
arguments, it requires a constraint upon possible solutions.
In SPoCλ this is tackled by a filter norm constraint J2(w) :=
Var[ŝ](e) = w��avgw = 1 which translates into the
following Rayleigh quotient:

Jλ(w) = J1

J2
= w��zw

w��avgw
(4)

The optimization task w∗ = argmaxw Jλ(w) can be
transfered into a generalized eigenvalue problem (de
Cheveigné and Parra 2014) and thus delivers a closed-
form solution. Overall, the approach returns a full set
{w∗

j }j=1,..,Nc of Nc spatial filters with j indexing the rank.
It is determined in descending order of the eigenvalues
and thereby according to the covariance. Throughout the
remaining paper, the SPoCλ algorithm is used. It will be
referred to by the term SPoC.

Regularization for Regression Based Spatial
Filtering

In most BCI scenarios small training datasets of a high
dimensionality are encountered (Makeig et al. 2012). In this
setting, SPoC shows an impairing sensitivity and thus might
be prone to overfit the training data (Castaño-Candamil
et al. 2015). A common machine learning strategy in such
situations is to add prior information and thus regularize the
objective function of an algorithm.

Similar to the regularization strategies proposed by Lotte
and Guan (2011) for CSP, there are two possible branches of
regularization strategies for the SPoC algorithm: The first is
to directly add prior information on the level of the objective
function in Eq. 4. This leads to a restriction of the solution
space of possible filters. The second one directly addresses
the involved empirical covariance matrices which suffer
from small training sets and noisy data. Poorly estimated
covariance matrices will not characterize the intended
neural activity well. Therefore, regularization on the level
of covariance matrices intends to improve their estimation
and thus enhance the spatial filtering optimization. In the
following, we will propose two regularization approaches,
one from each branch of strategies.

Additional Penalty on the Objective Function

Introducing a regularization to the objective function of
SPoC can be achieved by adding a penalty term P(w)
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to the denominator of the Rayleigh quotient stated in
Eq. 4:

˜Jλ(w) = w��zw
(1 − α)w��avgw + αP (w)

(5)

where α ≥ 0 is the regularization parameter that modulates
the strength of the penalty. In general, the term P(w)

penalizes solutions of w that do not fulfill a specified prior.
Thereby it increases the algorithm’s robustness to outliers
and small training sets.

In this paper, we select a simple quadratic penalty of the
form:

P(w) = w�Iw = ‖w‖2 (6)

using the identity matrix I ∈ R
Nc×Nc . This penalty is

known as Tikhonov regularization (Tikhonov 1963) and has
similarly been introduced for CSP (Lotte and Guan 2011).
As the penalty P(w) scales with the spatial filter norm,
solutions w with small weights are preferred. Regarding
utmost regularization strength in Eq. 5 expressed by α = 1,
the Rayleigh quotient simplifies to the one of the principal
component analysis (PCA, De Bie et al. 2005) meaning that
a PCA on the z-weighted covariance matrix is computed.
For the introduced Tikhonov regularization of SPoC, model
selection wrt. α can be done via cross-validation (CV).

Trace Normalization

SPoCλ optimizes covariance which is not scale-invariant.
This drawback might be mitigated by the norm constraint,
but to directly compensate for the relative scaling of
the covariance matrices in Eq. 5, a normalization of all
covariance elements by the trace tr[·] might also be a
suitable strategy as already proposed for CSP (Ramoser
et al. 2000; Lu et al. 2010):

̂�(e) = �(e)

tr[�(e)] ;
̂�avg = �avg

tr[�avg] (7)

Here, we investigate the effect of applying the trace norm
to �(e) and �avg entering (5), but not upon �z as its
label-weighting shall be maintained.

Equivalence to Covariance Shrinkage

Inserting the given Tikhonov penalty P(w) of Eq. 6 into
the objective function in Eq. 5, enables to factorize the
denominator to a shrinkage of the averaged covariance
matrix �avg towards the identity matrix I ∈ R

Nc×Nc :

˜�avg = (1 − α)�avg + αI (8)

By that we have shown that substituting �avg by the
shrinked version ˜�avg in the objective function of SPoC (see

Eq. 4) is equivalent to the Tikhonov formulation stated in
Eqs. 5 and 6.

Regularization of CovarianceMatrices

In parallel to the proposed Tikhonov regularization which
builds upon a CV procedure for model selection, there
are faster ways of determining a suitable regularization
strength. We will focus on two strategies for covariance
shrinkage which allow to use an analytic solution to
determine the regularization parameter.

Automatic Shrinkage of Sample Covariance Matrices

When estimating a sample covariance matrix S ∈ R
Nc×Nc

based on Ntrain training data samples, there was a
systematic bias reported in the setting of Nc > Ntrain:
large eigenvalues get overestimated while small eigenvalues
tend to be underestimated (Bai and Silverstein 2009). The
situation can be improved by shrinking the covariance
matrix S towards the identity matrix I (Ledoit and Wolf
2004; Schäfer and Strimmer 2005):

˜S = (1 − α∗)S + α∗νI (9)

Under the assumption of i.i.d. data and thus in the absence
of outliers, Ledoit & Wolf derived a closed-form solution for
the optimal shrinkage parameter α∗ and the optimal scaling
parameter ν by minimizing the expected mean squared
error. For the exact closed-form solution of α∗ and ν, we
refer the reader to Ledoit and Wolf (2004), Schäfer and
Strimmer (2005), and Bartz and Müller (2014). This closed-
form solution holds the advantage of directly computing
an estimate of α∗ without cross-validation. Note that the
additional scaling factor ν takes a similar role as the trace
normalization introduced for Tikhonov regularization with
the difference that it only takes diagonal terms into account.

Automatic Shrinkage of Averaged Covariance Matrix

As shown in Section “Additional Penalty on the Objective
Function”, the Tikhonov penalty introduced for the SPoC
objective function can be rewritten as a shrinkage of the
covariance matrix �avg , which was gained by averaging
across the epoch-wise covariances �(e). Thus, one can
directly apply the closed-form solution for α∗ and ν, but it
first requires to estimate the averaged covariance matrix as
�avg = (Ns · Ne − 1)−1 x�

cat xcat using a concatenated data
matrix of all Ne epochs, namely xcat = [x(1), ..., x(Ne)] ∈
R

Nc×(Ns ·Ne). To compensate for signal non-stationarities,
each data epoch X(e) should be corrected to channel-wise
zero mean prior to concatenation.
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Automatic Shrinkage of Epoch-Wise Covariance Matrix

SPoC includes the label-weighted covariance matrix �z

which holds all the available label information. A direct
covariance shrinkage for �z was tested in pilot experiments
(data not shown), but this turned out not to be beneficial
— probably because adding a regularization term would
diminish the contained label information. As both �z and
�avg require a computation of the epoch-wise covariance
�(e), we propose to choose this matrix as regularization
target using the previously mentioned closed-form solution
for α∗ and ν in order to derive a shrinked estimate
�̃(e).

Overviewon Evaluated SPoCRegularization Variants

In Sections “Additional Penalty on the Objective Function”
and “Regularization of Covariance Matrices” different
regularization strategies were introduced. In Table 1 an
overview over all proposed approaches is given. The first
three rows summarize Tikhonov regularization variants
which all require an estimation of α by means of cross-
validation. Among them, ‘Tik-SPoC’ comprises Tikhonov
regularization only according to Eq. 5, while ‘NTik-SPoC’
considers an additional trace norm both for �(e) and �avg .
The largest extent of regularization is realized by ‘ASNTik-
SPoC’ which uses the same strategy as ‘NTik-SPoC’ with
additional automatic shrinkage on �(e) for the computation
of �z. As this term applies to the numerator (N) of the
objective function, this is marked accordingly in Table 1.
The last two rows in Table 1 summarize automatic shrinkage
approaches using the closed-form solution by Ledoit &
Wolf (LW). Applying automatic shrinkage to the averaged
covariance matrix will be referred to as automatic Tikhonov
regularization ‘aTik-SPoC’. In contrast, using automatic
shrinkage directly upon �(e) in the numerator (E) and
denominator (D) of the objective function will be referred
to as ‘AS-SPoC’.

Experiments and Validation Procedure

Simulation Data

In this work, we aim to characterize and benchmark the
introduced regularization techniques for the SPoCλ algo-
rithm. However, in the majority of real-world EEG exper-
iments there is no ground truth s available which severely
challenges the validation procedure. To compensate for
this, a novel data-driven simulation approach for labeling
datasets was utilized (Castaño-Candamil et al. 2017). It
generates ground-truth label information based on known
sources from arbitrary pre-recorded EEG measurements.
This post-hoc data labeling allowed obtaining noiseless
labels from a relatively large amount of EEG data (here
up to 1000 epochs) while conserving the real statistics of
the neural activity including non-stationarities of the signal.
Furthermore, the approach provided full control over label
noise and allows studying its influence upon the decoding
performance. In the following, a detailed description for the
dataset generation is given.

Preprocessing

In total, 40 datasets of a single motor imagery session
per subject formed the basis for the simulation. The
experimental design of the motor imagery paradigm is
described in detail in Blankertz et al. (2010). From the
recorded EEG, we utilized the signals of 63 passive EEG
channels placed according to the extended 10-20 system.
The preprocessing of each raw EEG dataset consisted
of a high-pass filtering at 0.2 Hz, low-pass filtering at
48 Hz and sub-sampling to 120 Hz. For each dataset,
the continuous EEG recordings of active task periods
(from the task cue to the end of the imagery interval)
were segmented into non-overlapping epochs of 1000 ms
duration. Artifact epochs were identified by a min-max
threshold and by a variance criterion. The latter was

Table 1 Overview on introduced regularization variants for SPoC using two model selection schemes: cross-validation (CV) and based on the
Ledoit & Wolf shrinkage estimator (LW)

Method Regularization target Normalization

˜�(e) ˜�avg
̂�(e), ̂�avg

Tik-SPoC – CV –

NTik-SPoC – CV �
ASNTik-SPoC LW: N CV �
AS-SPoC LW: N,D – –

aTik-SPoC – LW –

For �̃(e) it is explicitly marked if regularization is applied to the numerator (N) and/or to the denominator (D) of the objective function. The
checkmarks refer to covariance normalization
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additionally applied to detect and remove outlier channels.
Details about the artifact preprocessing are described
in Meinel et al. (2016).

As SPoC’s stability depending on the number of training
epochs Ne shall be studied in this paper, we discarded
datasets with Ne < 1000. Similarly, datasets where more
than 10% of the original EEG channels had to be rejected,
were removed from further analysis. Applying these criteria,
the data of 12 out of 40 subjects remained.

Post-Hoc Labeling of Pre-Recorded EEG Data

As illustrated in Fig. 1a, the following steps were applied
to generate continuous labels ztrue from pre-recorded EEG
datasets in a data-driven way:

1. Bandpass filtering of the data to a frequency band of
interest. For our analysis, we choose the alpha-band
frequency range of [8, 12] Hz.

2. Based on the bandpass filtered data, an ICA decom-
position (fastICA, Hyvarinen 1999) into Nin = 20
independent components (ICs) was computed.

3. To identify and remove artifactual components in an
automatic way, the data-driven classification approach
MARA (Winkler et al. 2014) for the identification
of artifactual components was applied. A posterior
probability threshold (part = 10−8) describing the
probability of an artifact feature was applied for
discarding components of non-neural origin resulting in
Nsel ≤ Nin selected ICs.

4. The log-bandpower for each selected component j,
with j = {1, .., Nsel}, was computed by the Hilbert
transform and averaged in each 1 s time interval which

defined the epoch-wise known target variable zj (e) as
sketched in Fig. 1b.

Overall, the preprocessed data of 12 subjects resulted in 145
oscillatory components (≈ 12 per subject) which survived
MARA. For each selected IC, the log-bandpower activation
was sampled across Ne = 1000 epochs and thus delivered
continuous epoch-wise labels ztrue(e) to the respective
epoched EEG signals X(e).

We expect the SPoC decoding accuracy to be sensitive
to the strength of envelope changes of an oscillatory
component. The simulation design enables to empirically
study this influence by extracting the absolute width in
bandpower fluctuations of a single selected IC across a full
session. Therefore, we define the fluctuation width of the
j th IC as σz := Var[zj (e)] calculated across the Ne = 1000
epochs as illustrated in Fig. 1c.

Probing the Algorithms under Reduced Datasets and Label
Noise

In an offline analysis using the generated 145 labeled
datasets, all five introduced SPoC regularization variants
and the standard SPoC approach were evaluated in a 10-fold
chronological CV. For each epoch e, an estimate of the target
variable zest (e) was derived according to Eq. 1 by selecting
the highest ranked spatial filter obtained from the training
data.

To analyze the benefit of regularization under different
dataset sizes, we evaluated the algorithms’ stability by
systematically reducing each dataset with originally 1000
epochs to smaller data chunks. Therefore, epochs from the
session end were removed. For each of the 145 labeled

b c

a

Fig. 1 Procedure for data-driven post-hoc labeling of arbitrary pre-
recorded EEG signals. a Processing pipeline to extract independent
components (ICs). b For each IC and epoch e, the log-bandpower

average of the epoch serves as a ground truth label ztrue(e). c Dis-
tribution of ztrue over all epochs of an exemplary IC. Its bandpower
fluctuation width is described by σz
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datasets, 22 discrete, logarithmically scaled dataset sizes
Ne ∈ [20, 1000] (respectively training set sizes Ntrain) were
tested. Similarly, we probed the stability of our approaches
under varying label noise conditions. Therefore, each
sample of the target variable distribution ztrue was modified
by adding normally distributed label noise, resulting in
a noisy label set znoisy which was used for the CV
procedure. According to the label noise model proposed by
Castaño-Candamil et al. (2017), the correlation between the
undistorted and the noisy labels ρn = Corr(ztrue, znoisy)

can be controlled via the label noise parameter ξn := 1−ρn.
A value ξn = 1 refers to maximal label noise, while ξn = 0
indicates that the labels are completely noise free. Five fixed
levels for ξn were evaluated.

For the CV-based regularized SPoC variants (see
Table 1), the regularization strength α was varied in a range
α ∈ {0; [10−8, 100]}. Overall, 20 discrete, logarithmically
scaled α levels were analyzed. To summarize, we tested
all algorithms on different hyperparameter sets 
 =
{(Ntrain, ξn, α)}.

Real-World Scenario

Dataset for Evaluation

In order to examine the regularization methods in a real-
world decoding scenario, we utilized data of 18 subjects
who participated in a repetitive visuo-motor hand force task
with 400 trials per session. The task enables to extract a
single-trial motor performance metric such as the reaction
time (RT) or the cursor path length. During the full session,
EEG from 63 passive Ag/AgCl electrodes (EasyCap) placed
according to the extended 10-20 system was recorded
by multichannel EEG amplifiers (BrainAmp DC, Brain
Products) with a sampling rate of 1 kHz. In each trial, a
“get-ready” interval preceded a visually presented “go-cue”,
the latter indicating the start of a motor execution phase.
In an offline analysis by Meinel et al. (2016), we found
that oscillatory bandpower features recorded during the get-
ready interval can partially explain upcoming single-trial
motor performance. For further details, please see Meinel
et al. (2016).

Building upon these findings, in this paper the EEG
signals were segmented into epochs along the time interval
[-500, +500] ms relative to the go-cue in each trial to
decode RT of the upcoming motor task. After data
preprocessing and outlier rejection following the workflow
described in Meinel et al. (2016), we now restricted any
further analysis to oscillatory features within the alpha-
band frequency range of [8, 12] Hz. The bandpass filter
was realized applying a zero-phase butterworth filter of 6th
order. The number of epochs Ne surviving the preprocessing
varied across subjects from 142 to 352.

Evaluation Scheme

All algorithms were evaluated within a (nested) 10-
fold chronological CV. The three CV-based regularization
variants demanded an additional inner CV to estimate the
individually optimal regularization parameter α∗. It was
chosen among 15 discrete, logarithmically scaled values
in the range α ∈ [10−8, 1]. The α-value maximizing the
z-AUC evaluation score (details see Section “Evaluation
Scores”) was selected and applied to the outer CV in
order to train the respective spatial filtering algorithm and
linear regression model. The methods ‘aTik-SPoC’ and ‘AS-
SPoC’ allow for an analytical estimate of α∗ and hence
did not require an inner CV. In contrast to the simulation
scenario, the total number of ground truth neural source(s)
which might (partially) explain the target variable ztrue is
not known a priori. By applying a regression model, we
assume that several sources might contribute to explain the
labels ztrue.

For each α in the inner or outer CV, the following
scheme was applied: a spatial filter set {w(i)}i=1,..,Nc was
computed on training data xtr . The first Nf eat = 4
highest ranked components were selected as input to train
a linear regression model with coefficients {βj }j=0,..,Nf eat

.
The model was trained upon the log-bandpower features
�j,tr = log(Var[w(j)

tr xtr ]). On each feature �j,tr , the
mean μj,tr and the variance σj,tr was estimated in
order to standardize the data to zero mean and unit
variance before entering the regression model. Given unseen
test data xte, the log-bandpower features �j,te(e) =
log(Var[w(j)

tr xte])(e) for each selected spatial filter w(j)
tr

were first standardized by μj,tr and σj,tr . Subsequently,
the corresponding coefficients βj of the trained linear
regression model enabled to estimate the target variable
zest (e) via:

zest (e) = β0 +
Nf eat
∑

j=1

βj�j,te(e) (10)

Evaluation Scores

To compare the estimated labels zest with the known
or measured labels ztrue in the simulation and real-
world scenarios across the proposed regularization variants,
different evaluation scores can be considered (Meinel et al.
2016). In general, the Pearson correlation coefficient could
be utilized but has the drawback, that it is very sensitive
to the number of samples (Kenney 2013). Therefore, we
instead decided to utilize the following three scores in this
paper:

– Angle θ between spatial filters: The design of the
simulation scenario gives access to each ground truth
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spatial filter wtrue. As all proposed SPoC variants
directly optimize for a spatial filter estimate w
with arbitrary sign and amplitude (this characteristic
is inherited from the formulation as an eigenvalue
problem), the angle θ between the spatial filters can
directly serve as an evaluation metric:

θr = arccos

(

w� wtrue

‖w‖ ‖wtrue‖
)

θ =
{

θr , θr ≤ π/2
π − θr , θr > π/2

(11)

with 0 < θ < π . A perfect decoding will be expressed
by an angle θ = 0. Please note that the angle θ can only
be estimated within the simulation scenario.

– Separability z-AUC of labels: Another possibility is
to transfer the continuous labels ztrue into a two-
class scenario according to the median of ztrue.
This enables the utilization of the receiver operating
characteristics (ROC) curve which is calculated upon
the estimated target variable zest given the true two-
class labels (Fawcett 2006). As ROC performance
can be reduced to a scalar value by calculating the
area under the ROC curve (AUC), we will name this
metric z-AUC as it characterizes the separability of the
estimated target variable zest . The z-AUC score can be
directly evaluated in both scenarios (Meinel et al. 2017).
A perfect decoding corresponds to z-AUC = 1 while
chance level correspondents to a value of 0.5.

– Relative z-AUC performance: The score z-AUCref

corresponds to the baseline performance of SPoC with-
out any regularization. In this paper, we will compare it
to performances obtained by the proposed regularized
variants (see Table 1). Given a hyperparameter con-
figuration 
, the target variable obtained under these
hyperparameters zest (w(
)) can be estimated using
Eq. 1 and the corresponding z-AUC can be computed.
For fixed 
, the performance of a regularized SPoC
variant z-AUCreg(
) can be assessed as the relative
change of z-AUC to the baseline SPoC performance:

rel. z-AUC(
) := z-AUCreg(
) − z-AUCref (
)

z-AUCref (
)

(12)

If rel. z-AUC > 0, this directly corresponds to a relative
performance increase compared to SPoC and vice versa.

Results

First, we studied the characteristics of the regularization
algorithms on 145 analysis problems within the simu-
lation framework. It allows assessing the influence of

Fig. 2 Simulation data: scatter plot relating the fluctuation width σz

of each selected ICA component to their baseline SPoC performance
z-AUCref for non-reduced datasets with 1000 epochs. Based on its
σz-distribution, the dataset of each IC was labeled into one of three
classes, defined by the quartile thresholds Q25 and Q75

(hyper)parameters such as regularization strength, dataset
size or label noise under controlled conditions. Second, the
approaches were tested on real-world data to verify the
transferability of the findings and to provide rules of thumb
for the practitioner.

Simulation Data

Labeling According to Bandpower FluctuationWidth

The SPoC algorithm optimizes for oscillatory components
that co-modulate in their bandpower with a given target
variable. In Fig. 2, the relation between the fluctuation width
σz and the baseline SPoC performance z-AUCref on the
full dataset Ne = 1000 is shown for each of the 145 ICs
(correlation R = 0.31 with p = 2.20 · 10−4). The results
indicate that the decoding quality of SPoC depends on the
fluctuation width σz of the underlying neural component,
with stronger fluctuation width being related to higher
decoding quality. For further analysis of the simulation
data, all 145 ICs were labeled according to their bandpower
fluctuation width σz into three classes determined by the
lower and upper quartile according to the distribution of
σz across all components (see color coding in Fig. 2). In
the following, we will show the decoding performances
z-AUCGA and θGA as grand average for each corresponding
fluctuation width class.

Sensitivity to Regularization Parameter

Regarding the CV-based regularized SPoC versions, their
sensitivity to the regularization parameter α is reported in
Fig. 3 exemplarily for the ‘high σz’ class. It reflects the
grand average (GA) of all components contained in this
class and provides different evaluation scores. The first row
reports the z-AUCGA while the second row summarizes
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Fig. 3 Simulation results:
influence of regularization
strength α onto the decoding
accuracy of three SPoC variants
regularized via CV. The grand
average performance z-AUCGA
is reported in the top row
(subplots (a) and (b)), while
subplots (c) and (d) in the lower
row report the angle θGA

between the estimated highest
ranked and the ground truth
filter as evaluation score.
Subplots in the left and right
columns differ in the number of
training data points (epochs)
used for SPoC decoding. Results
are reported for the class high σz

a b

c d

the angle θGA between filters. A regularization benefit is
expressed via an increasing z-AUCGA or a decreasing θGA

relative to the performance level at α = 10−8. A few
observations can be summarized from Fig. 3: First, the two
evaluation scores z-AUC and θ are highly (anti-)correlated
across the shown dataset scenarios and SPoC regularization
variants. As in real-world data the ground truth will not be
known a priori, further analysis will need to be restricted to
the metric z-AUC. Second, an increase of the training set
size Ntrain (left to right column) leads to a lower sensitivity
wrt. α. Third, a comparison of α sensitivity ranges across the
three regularization variants yields that ‘NTik-SPoC’ and
‘ASNTik-SPoC’ are sensitive in the interval 10−6 ≤ α ≤ 1
while ‘Tik-SPoC’ is only sensitive within 10−3 ≤ α ≤ 1.
Fourth, ‘NTik-SPoC’ and ‘ASNTik-SPoC’ behave highly
similar, while ‘Tik-SPoC’ shows a qualitative different
behavior. Based on these observations, further analysis will
focus on differences between ‘NTik-SPoC’ and ‘Tik-SPoC’.
Fifth, extreme regularization with α = 1 leads to a drop of
decoding performance regardless of the approach, while in
the absence of regularization (α = 0) a slight improvement
due to trace normalization can be reported for ‘NTik-SPoC’.

Influence of Reduced Datasets and FluctuationWidth

The simulation scenario grants access to test the stability of
different regularized SPoC variants under reduced datasets.
For the CV-based methods, a sensitivity analysis for the
regularization strength α under 22 training set sizes Ntrain

is shown in Fig. 4 for ‘Tik-SPoC’ (first row) and ‘NTik-
SPoC’ (second row). The two columns in Fig. 4 reveal
the influence of the components’ fluctuation width σz (left:
low, right: high). We observed, that regularization has the

strongest effects for components with large σz and for small
training sets. With increasing training set size Ntrain, the
sensitivity range for α shifts towards smaller α values.
Comparing the depicted methods, ‘NTik-SPoC’ shows a
higher sensitivity to regularization strength α compared to
‘Tik-SPoC’. Interestingly, for all subplots a–d the curves
along different Ntrain values converge at α = 1, as for
this value the SPoC methods collapse to a PCA on the z-
weighted covariance. Even for this extreme choice of α,
data characterized by higher σz reaches a better decoding
performance than data with lower σz.

To quantify the decoding performances across meth-
ods, the maximum GA performance z-AUCmax :=
z-AUCGA(α∗) is reported in Fig. 5a and b in the absence of
label noise. Therefore, the optimal regularization strength
α∗ = argmaxα z-AUCGA(α) is selected for fixed Ntrain

and σz class. For variants using the LW estimate, this selec-
tion is not necessary as there is an analytic solution for α∗
such that z-AUCmax = z-AUCGA. Accordingly, the relative
performance change rel. z-AUC(α∗) is reported on the GA
level in Fig. 5c and d, while e and f report the statistical sig-
nificance of the findings. Therefore, a one-sided Wilcoxon
signed rank test was applied to test if the median of perfor-
mance differences (z-AUCmax,ref (
) − z-AUCmax,reg(
))
is smaller or equal to zero for fixed Ntrain and σz. If a
p-value p < 0.05 was found (not corrected for multiple
testing), the configuration 
 reveals a significant difference
among the two methods, indicated by a colored data point in
Fig. 5e and f. The following observations can be reported:
First, the absolute decoding performance strongly depends
on Ntrain regardless of the regularization method and σz

class. Second, there is a relative performance increase of all
introduced regularization methods up to training sets of size
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a b

c d

Fig. 4 Simulation results: sensitivity of regularized SPoC variants
to α and to reduced training set sizes Ntrain. The grand average
performance z-AUCGA is reported for ‘Tik-SPoC’ (top row) and

‘NTik-SPoC’ (bottom row) and separately for the fluctuation width
classes ‘low’ (left column) and ‘high’ (right column)

a b

c d

e f

Fig. 5 Simulation results: influence of training set size and fluctuation
width upon decoding performance of optimal regularization strength
α∗. The top row depicts the grand average absolute performance of
five regularized SPoC variants for ICs that either have low (a) or high
(b) bandpower fluctuation width. The middle row depicts performance
increase or decrease of the five regularized methods relative to the

baseline SPoC method without any regularization and again separately
for IC’s of low (c) and high (d) fluctuation width. Subplots (e) and (f)
reveal color-coded points for each training set size where the regular-
ized variant significantly outperformed the baseline method (Wilcoxon
signed rank test with p < 0.05)
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Ntrain ≈ 60 on the grand average level. For larger datasets
the regularization does not reveal an additional benefit on
the grand average. Third, our results indicate that regulariza-
tion is beneficial for various methods in the ‘high σz’ class,
while this is not the case for ‘low σz’. Here, a noticeable
case is reported by the performance of ‘AS-SPoC’ which
drastically looses performance for Ntrain � 50.

Stability under Label Noise and Reduced Data

As in most real-world scenarios label noise challenges
the decoding performance of subspace methods like SPoC
(Castaño-Candamil et al. 2015). Thus, we studied its
influence for reduced datasets within the simulation data.
Figure 6 exemplary shows the degrading decoding perfor-
mance under label noise conditions for ‘aTik-SPoC’ and
‘AS-SPoC’ for ‘high σz’. Both methods have in common,
that performance estimates are very noisy under small data-
set size and increasing label noise. Regarding the maximally
achievable decoding performance for both methods at Ntrain =
900, the absolute performance z-AUCGA scales almost
linearly with the amount of label noise ξn. Referring to the
relative performance change shown in c and d as well as the
statistical tests in e and f, they reveal that under increased
levels of label noise ξn even larger training sets can profit
from regularization when compared to the unregularized

SPoC. While for ξn = 0 a relative performance increase
on the GA can be found up to Ntrain ≈ 60, for ξn = 0.6
it increases up to Ntrain ≈ 800. This effect is stronger for
‘AS-SPoC’ than for ‘aTik-SPoC’. Despite not shown here,
we would like to mention, that under increased label noise
the performance gain of the regularized variants with larger
Ntrain can be observed also for the ‘low σz’ case, but with
a lower overall decoding performance.

Optimal Regularization Parameter Ranges

To identify suitable ranges of the regularization parameter
for the CV-based methods, color-coded contour maps
of relative performance changes are provided in Fig. 7.
The maps show the grand average rel. z-AUCGA within
the (Ntrain, α) hyperparameter space separately for the
two methods ‘Tik-SPoC’ (first column) and ‘NTik-SPoC’
(second column). Maps in the upper row summarize
the performance changes in the absence of label noise
(ξn = 0) while the lower one provides these results
under systematic label noise (ξn = 0.4). The blue areas
in each map mark ranges in the hyperparameter space,
where a relative performance increase is obtained, while
“no-go” areas in red associate with a decrease of decoding
quality. When comparing Fig. 7a and b, we observe that
the trace norm in ‘NTik-SPoC’ induces a reduction of

a b

c d

e f

Fig. 6 Simulation results: interaction between label noise level ξn and
dataset size Ntrain. A level of ξn = 0 states the absence of label noise.
All curves report the grand average results for ICs belonging to the
‘high σz’ class. Subplots (a) and (b) in the top row provide the absolute
grand average performances for ‘aTik-SPoC‘ and ‘AS-SPoC’, while

the middle row depicts relative performance changes. The dots in (e)
and (f) indicate configurations, for which the regularized variant sig-
nificantly outperformed the baseline method (Wilcoxon signed rank
test with p < 0.05)
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Fig. 7 Simulation results: landscape of the grand average relative per-
formance changes in z-AUC dependent on the training set size Ntrain

and regularization strength α for ICs of high fluctuation width σz. The
isolines of relative performance changes were interpolated along a grid
search. No label noise was applied to generate maps (a) and (b) for
methods ‘Tik-SPoC’ and ‘NTik-SPoC’, respectively. The second row

reports the landscapes including a label noise level of ξn = 0.4 for both
methods. Additional diamond markers in subplots (b) and (d) depict
the grand average of α∗ for ‘aTik-SPoC’, which is independent of label
noise. This method utilizes analytically derived values of α∗ and may
serve as a reference for the CV-based ‘NTik-SPoC’

optimal α values by a few orders of magnitude as well as
a larger sensitivity range compared to ‘Tik-SPoC’. Both
plots reveal consistently a “no-go” area towards the top
right corner, which indicates, that on the grand average
strong regularization is detrimental, when large training
datasets without label noise are available. With additional
label noise in Fig. 7c and d, the heterogeneity of the relative
performance landscape increases and the “no-go” areas at
the top right shift towards larger Ntrain. In accordance
with the automatic shrinkage based methods visualized in
Fig. 6 we find, that the inclusion of label noise ξn into the
simulation has the effect that regularization might even be
beneficial for large training sets.

For different training set sizes Ntrain, we now compare
the CV-based estimates of α with those of ‘aTik-SPoC’,
which makes use of an analytical solution α∗. The grand
average of α∗ is plotted into Fig. 7b and d. As the
analytical solution for α∗ (Ledoit and Wolf 2004; Schäfer
and Strimmer 2005) is proportional to N−2

train, it should
scale anti-proportional with log10(Ntrain), which in fact was
observed in Fig. 7b. It is worth to mention, that the analytic
choices of α∗ are not influenced by label noise – compare
maps b and d – as the involved covariance shrinkage (see
Eq. 9) does not make use of the label information.

Real-World Data Scenario

Comparison of Regularized SPoC Variants

In Fig. 8, the subject-wise performance comparison of all
regularized SPoC variants to standard SPoC is depicted. To
compare each regularized variant to its baseline, we report
two different group statistics. First, the overall ratio of sub-
jects for which the regularized variant outperforms standard
SPoC is provided. Second, the values in brackets consider
only those individual performances which cross a threshold
of minimum meaningful performance z-AUCth = 0.59. For
details on how this chance level has been determined via
group analysis of predictors, we refer to Meinel et al. (2016).
To verify if a regularized variant reaches a statistically sig-
nificantly higher performance compared to standard SPoC,
a one-sided Wilcoxon rank sum test was evaluated on the
group level. The corresponding p-values are reported in the
plot headers of Fig. 8a–e.

The following observations for the RT decoding on
real-world data were made: First, in contrast to all
other regularization variants, the performance changes
induced by ‘aTik-SPoC’ are negligible small. Second,
across the remaining regularization approaches we observed
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Fig. 8 Real data: scatter plots (a)–(e) compare the performance of
different regularized SPoC variants with the unregularized baseline
method SPoC. In each subplot, a marker represents one of 18 subjects.
Above each scatter plot, the p-value of a one-sided Wilcoxon rank sum

test is given as well as the percentage of subjects for which the regular-
ized variant outperforms baseline SPoC. Additional percentage values
in brackets exclude data points located inside the grey shaded area. The
latter marks a threshold criterion on z-AUC for meaningful predictions

a tendency towards larger benefits for initially poorly
performing subjects. On the group level, all regularization
methods except ‘Tik-SPoC’ registered the majority of data
points above the bisectrix. The CV-based ‘NTik-SPoC’ and
‘ASNTik-SPoC’ behave very similarly, which have been
observed before on simulation data (see Fig. 5). Both
approaches significantly outperform the baseline SPoC
performance.

Selected Regularization Strengths

The regularization parameter values αf obtained on real
data by the nested CV-based regularization variants across
folds f are evaluated in Fig. 9a and b. Its plots should be
compared with the maps for simulations depicted in Fig. 7.
The median Med[αf ] across folds is shown for each subject.
It’s color encodes the associated z-AUC performance. The
results indicate that ‘NTik-SPoC’ operates in smaller α

ranges than ‘Tik-SPoC’ does, which is in accordance with
the observations from the simulation in Fig. 7. For the
majority of subjects, the regularization strength is outside
the “no-go” areas of the simulation as α was selected by
nested CV from the interval [10−8, 1]. For a few subjects,
a large α was chosen. As expected from simulations, this
strong regularization is linked with a low absolute decoding

level. The median of the analytically computed α∗
f across

folds for ‘aTik-SPoC’ are presented in Fig. 9c. For most
subjects a way smaller median regularization strength is
chosen compared to the CV-based ‘NTik-SPoC’ method,
while we observe that the analytical solution does not elicit
a significant decoding improvement (see Fig. 8d).

Discussion

In summary, we have proposed a set of novel regularization
techniques for SPoC. We investigated their effectiveness by
evaluating their performance both on simulated and on real-
world datasets. Overall, ‘NTik-SPoC’ based on Tikhonov
regularization and additional covariance normalization
turned out to be the most beneficial technique.

Simulation Scenario

A closer look upon the simulation results clearly shows
that the regularization benefit for SPoC strongly depends
on the dataset size, prevalent label noise conditions as well
as on the fluctuation width of the underlying component.
As a strong absolute performance variability across datasets
was present in the simulation, the reported grand average
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Fig. 9 Real data: median regularization strength across the 10-fold chronological cross-validation for each dataset as a function of the training set
size Ntrain color coded by the achieved z-AUC decoding performance

performance provides a way less optimistic view than
single dataset results do. Largest regularization benefit was
reported for low amount of data and components with
large fluctuation widths. The latter observation might be
explained by the intrinsic difficulty of SPoC to recover
sources of small bandpower changes.

Intuitively, additional label noise reduces the information
content per data point such that the estimation of �z gets
more demanding. Theoretically, this disadvantage could be
compensated by either enlarging the training set or by
adding regularization. Using the large amount of simulation
data, we were able to show that under label noise conditions
even larger datasets profit from regularization.

Surprisingly, in the simulation we found that ‘AS-SPoC’
looses performance for large datasets (especially for ‘low
σz’ components) while it outperformed standard SPoC on
small datasets and revealed a good performance on real-
world data as well. This observation might be explained as
follows: In the simulation data, the target variable is directly
estimated from the EEG (IC) epoch. As such, there should
be enough samples in each epoch to estimate reliably the
target variable, since it was created this way. Epoch regu-
larization might thus not be necessary here. However, for
real data this might not be the case, as the target variable is
not directly dependent on the EEG epoch and contains an
even unknown label noise level. As such, epoch regulariza-
tion might be much more useful in that case.

The direct transferability of the simulation results to
real-world data is limited by three major differences: First,
in real-world experiments the number of neural sources
is not known a priori. Thus, a good decoding of source
power typically requires the use of several components and
of a regression model. Second, in real-world experiments
both, label noise and the components’ fluctuation widths
act as latent variables and cannot directly be estimated.
Third, while in the simulation we can almost perfectly
recover the label information given sufficient amount of data
(z-AUC > 0.9), in real-world experiments we clearly expect
a decreased upper limit of the decoding performance. This is a

strong indicator for the assumption, that solely bandpower
information may not suffice to fully explain the labels.

Real-World Scenario

Based on the real-world data, we could show that pre-
dominantly the decoding performance of initially poorly
performing subjects was improved by almost all regularized
SPoC approaches (except ‘aTik-SPoC’). However, we can-
not report a single regularization variant that systematically
performed best on all subjects.

Two important aspects can be transfered from the
simulation to the real-world data. First, the simulation
allowed deriving an operating range of the regularization
hyperparameter α for each CV-based regularization variant.
When comparing these findings with the real-word data, we
found that the optimal choice of the regularization intensity
α for the CV-based techniques is in good accordance with
the derived “no-go” areas obtained from our simulations.

Second, according to the simulation under label noise
in Fig. 6, we could gain an estimate of the label
noise conditions ξn of any real-world dataset directly by
comparing the absolute achievable decoding levels with
the real-world decoding performances in Fig. 8. As an
example, for the best performing subject of Fig. 8e with
z-AUC ≈ 0.78 on Ntrain = 310 data points, the label
noise level can be estimated as ξn ≈ 0.2 according to
Fig. 6b. Despite such estimates may not perfectly represent
the ground truth, they might be beneficial for comparing
data from multiple experimental paradigms e.g. in order to
choose most suitable regularization strategies.

CV-Based vs. Analytical Model Selection

Overall, we introduced three CV-based Tikhonov regular-
ization methods for SPoC (see overview in Table 1) and
compared their performance against two variants based
on automatic covariance shrinkage. Although the decod-
ing performance of all three Tikhonov variants are on
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comparable levels, they strongly differ in terms of their
sensitivity range for the regularization parameter. This infor-
mation, however, is of great importance when it comes to
choosing parameters by cross-validation. Interestingly, we
found that ‘NTik-SPoC’ and ‘ASNTik-SPoC’ profit from
a logarithmically scaled search space wrt. regularization
parameter α while ‘Tik-SPoC’ could also cope with a lin-
ear scaling. We conclude that this behavior is introduced
by the additional trace normalization. When comparing
‘NTik-SPoC’ and ‘ASNTik-SPoC’, the inclusion of addi-
tional LW-based shrinkage for the numerator regularization
realized by ‘ASNTik-SPoC’ does not boost performance
significantly. Accordingly, ‘NTik-SPoC’ seems preferable
in a direct comparison due to its lower computational
effort. In future work, an alternative data-driven estima-
tion of the regularization parameter without cross-validation
might be achieved e.g. by utilizing a Bayesian framework
which estimates the regularization strength via expectation
maximization (Mattout et al. 2006).

Comparing both LW-based covariance shrinkage based
approaches, ‘AS-SPoC’ seems to be the better choice com-
pared to ‘aTik-SPoC’. Three arguments support this view.
First, referring to the label noise challenged simulation in
Fig. 6 we found that ‘AS-SPoC’ profits from regulariza-
tion under high label noise even for larger training sets
(Ntrain � 300) while this effect was less pronounced
for ‘aTik-SPoC’. Second, we found that the analytically
derived regularization parameter for ‘aTik-SPoC’ across
subjects is chosen way smaller compared to values chosen
by CV for ‘NTik-SPoC’. For ‘aTik-SPoC’, the concate-
nation of epochs results in Ns · Ntrain sample points to
estimate �avg . As the LW-based regularization parame-
ter is anti-proportional to the number of samples (Ledoit
and Wolf 2004; Schäfer and Strimmer 2005), an overly
small regularization parameter is chosen, irrespectively of
whether the covariance estimate did improve. Third, the
analytic approach makes an i.i.d. assumption about the
data. A violation thereof due to outliers might be compen-
sated with a CV-based strategy but not by ‘aTik-SPoC’.
The i.i.d. assumption might also be violated for ‘AS-SPoC’
when the LW-based analytical solution for the trial-wise
covariance matrix is challenged by autocorrelated data of
a single epoch. A potential mitigation may be provided by
alternative covariance shrinkage estimators that accounts
for autocorrelated data as proposed by Bartz and Müller
(2014). Alternatively closed-form solutions for covariance
shrinkage assuming elliptical distributions could also prove
superior to the LW-based solution (Chen et al. 2011).

Guidance for the Practitioner

Both, simulation and real-world data results strongly
indicate that there is not one single regularization variant

that outperforms all others. Different global parameters,
such as dataset size, the noise conditions or non-stationarity
in the data influence the achievable decoding accuracy.

The work by Engemann and Gramfort (2015) reported
the superiority of CV-based compared to analytical model
selection in the context of spatial whitening of M/EEG
data. This supports our proposal to prefer the CV-based
approaches ‘Tik-SPoC’ or ‘NTik-SPoC’ over the LW-
based ‘AS-SPoC’ method. All three methods, however,
are analytically solvable by an eigenvalue decomposition
and require relatively low computational effort. As they
may come up with partially disjunct components, we thus
propose in practice to evaluate all three variants in parallel.
The final feature set should be selected by a data-driven
strategy to deduce the overall most relevant oscillatory
components for a given application scenario.

Conclusion

We investigated novel regularization variants for SPoC and
reported their characteristics in a simulation and real-world
data scenario. Initially, we applied a novel data-driven
simulation framework that by design enables to generate
labeled EEG datasets. The simulation delivered two main
results:

First, it allowed comparing and explaining characteristics
of the regularized SPoC algorithms. We could study the
influence of varying training set sizes, label noise and of
the bandpower fluctuation width of the neural sources of
interest. On the one hand, we found that the achievable
overall decoding performance decays under increased label
noise conditions and smaller datasets. On the other hand,
small datasets and label noise were the settings under
which several regularized SPoC variants could outperform
the original unregularized algorithm. As most real-world
experiments come with an unknown amount of label noise,
we expect that the benefits of regularization would transfer
into real-world problems. Second, the simulation outcomes
offered a guideline for practitioners. It proposes to tune the
search for a suitable regularization parameter to a log-scaled
search space. Furthermore, it indicates that the number of
training data points and label noise present in the data
should guide the choice of this parameter.

As an additional validation, we tested the regularized
SPoC algorithms on real-world EEG data. Its outcome
supported the guidelines obtained by simulation concerning
the choice of regularization parameters and achievable
performance improvements. We found that individual
datasets could profit strongly from single forms of
regularization. As a consequence, we recommend testing
several versions of regularization if decoding performance
is to be optimized in practice.
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While we have chosen to compare relatively simple
and general regularization techniques, this work could be
expanded to more sophisticated regularization strategies
e.g. to realize session-to-session or subject-to-subject
transfer scenarios. The presented regularization framework
and the evaluation strategy using simulated and real-world
datasets may pave this way.
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through bwHPC and the German Research Foundation (DFG) by grant
no. INST 39/963-1 FUGG. Fabien Lotte received research support
from the French National Research Agency with the REBEL project
(grant ANR-15-CE23-0013-01) and the European Research Council
with the BrainConquest project (grant ERC-2016-STG-714567). For
parts of the data analysis, the Matlab-based BBCI toolbox was
utilized (Blankertz et al. 2016). The authors declare that they have no
conflict of interest.

References

Arvaneh, M., Guan, C., Ang, K.K., Quek, C. (2011). Optimizing
the channel selection and classification accuracy in EEG-based
BCI. IEEE Transactions on Biomedical Engineering, 58(6), 1865–
1873. https://doi.org/10.1109/TBME.2011.2131142.

Arvaneh, M., Guan, C., Ang, K.K., Quek, C. (2013). Optimiz-
ing spatial filters by minimizing within-class dissimilarities
in electroencephalogram-based brain-computer interface. IEEE
Transactions on Neural Networks and Learning Systems, 24(4),
610–619. https://doi.org/10.1109/TNNLS.2013.2239310.

Bai, Z., & Silverstein, J.W. (2009). Spectral analysis of large dimen-
sional random matrices. Springer Science & Business Media.

Bartz, D., & Müller, K.-R. (2014). Covariance shrinkage for
autocorrelated data. In Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N.D., Weinberger, K.Q. (Eds.) Advances in neural
information processing systems, (Vol. 27 pp. 1592–1600): Curran
Associates Inc.

Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.-
R. (2008). Optimizing spatial filters for robust EEG single-trial
analysis. Signal Processing Magazine, IEEE, 25(1), 41–56.

Blankertz, B., Sannelli, C., Halder, S., Hammer, E.M., Kübler, A.,
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